

### A Spin on Wave Dark Matter RICE Mustafa A. Amin





| wit | n Jain                          | 2109.0 |
|-----|---------------------------------|--------|
|     | Zhang, Jain                     | 2111.  |
|     | Jain, Ka <mark>rur, Mocz</mark> | 2203.  |
|     | Mirbabayi                       | 2211.  |
|     | Jain                            | 2211.  |
|     | Long, Schiappacasse             | 2301.  |
|     | Jain, Thomas, Wanischarunarung  | 2304.  |
|     |                                 |        |

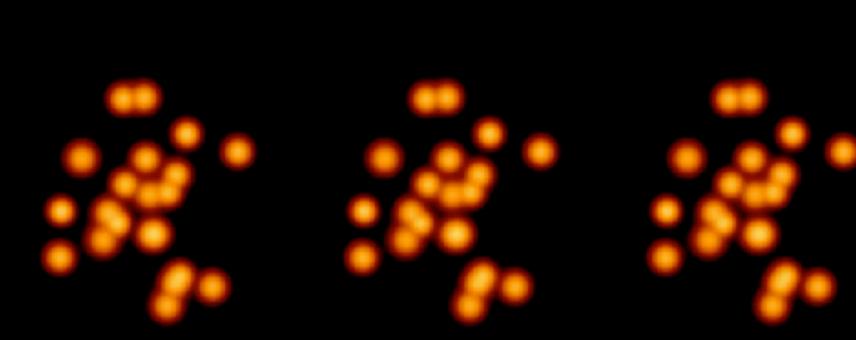
#### .04892 .08700 .11935 .09775 .08433 .11470 .01985

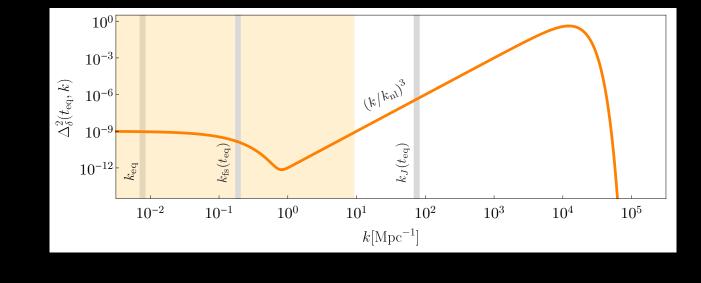


### talk in 2 parts

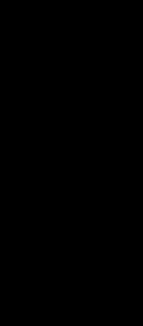
### . A lower bound on dark matter mass

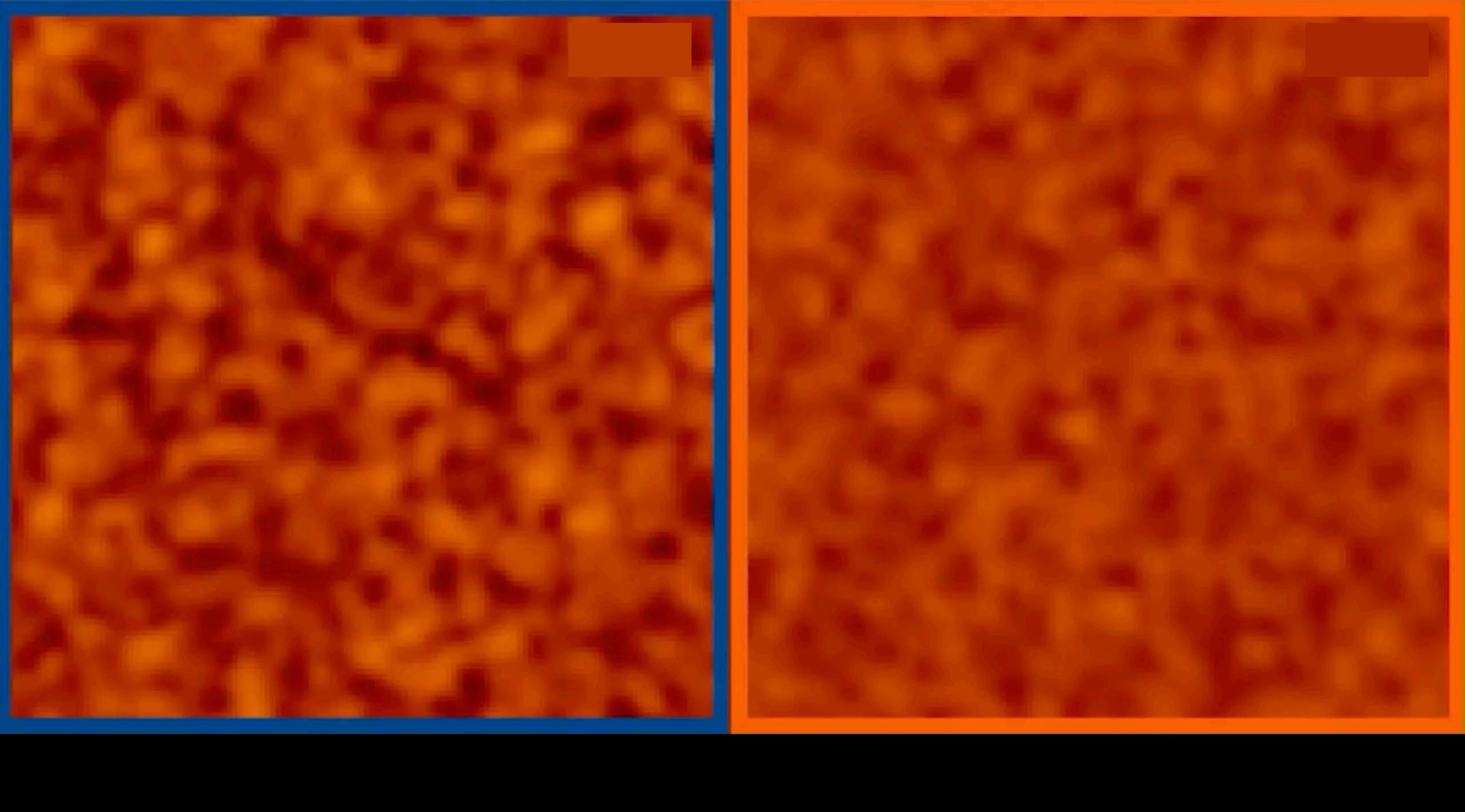
### 2. Spin of wave dark matter from astrophysics?

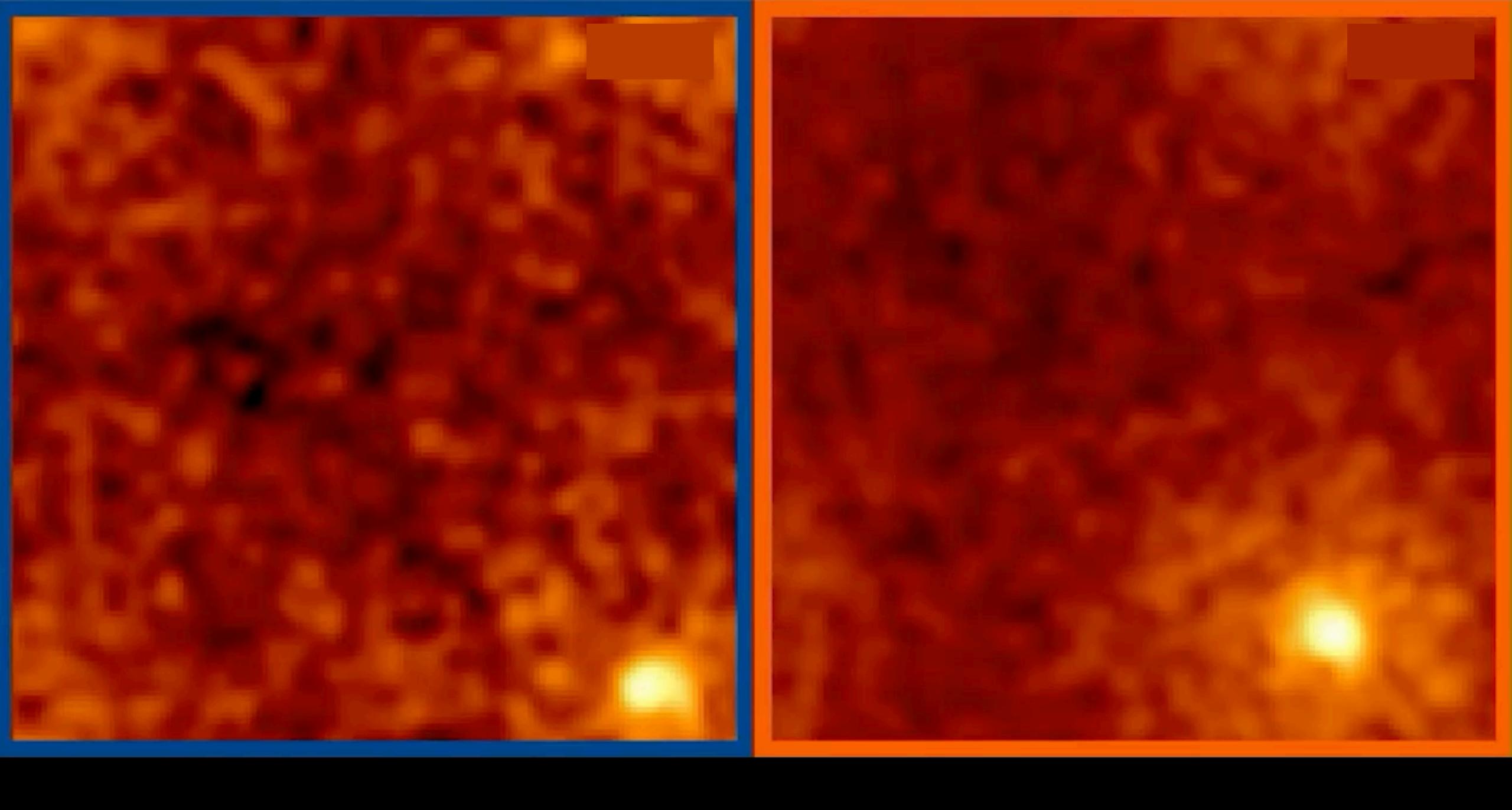




### can we probe the intrinsic spin of wave dark matter?



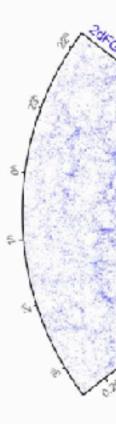


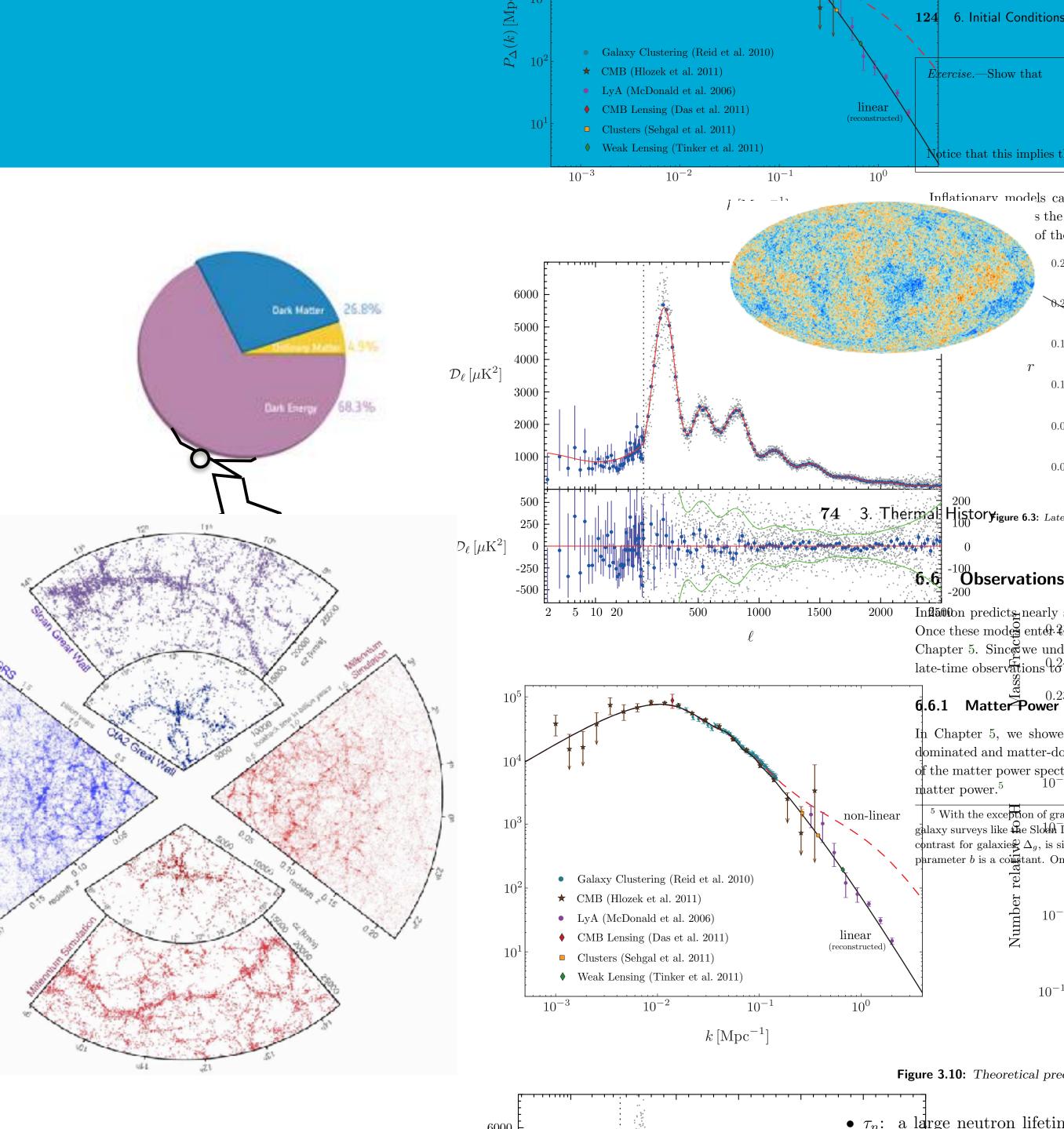


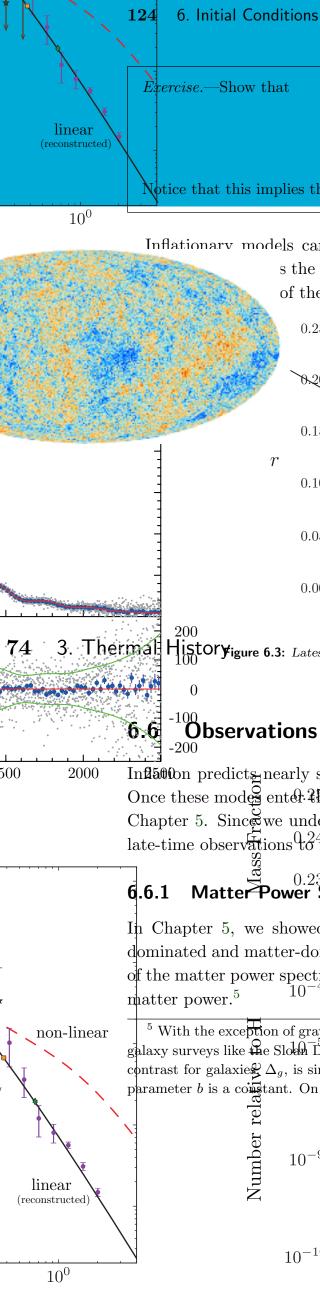
### motivation & introduction



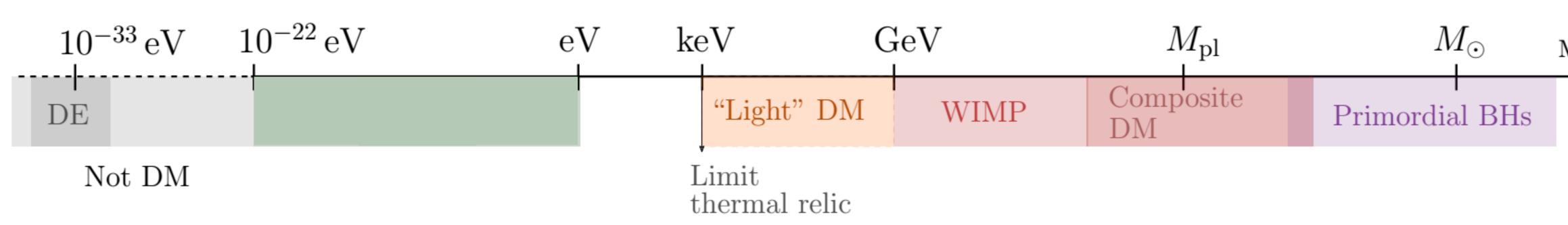
- dark matter exists
- gravitational interactions
- what is it: spin, mass?







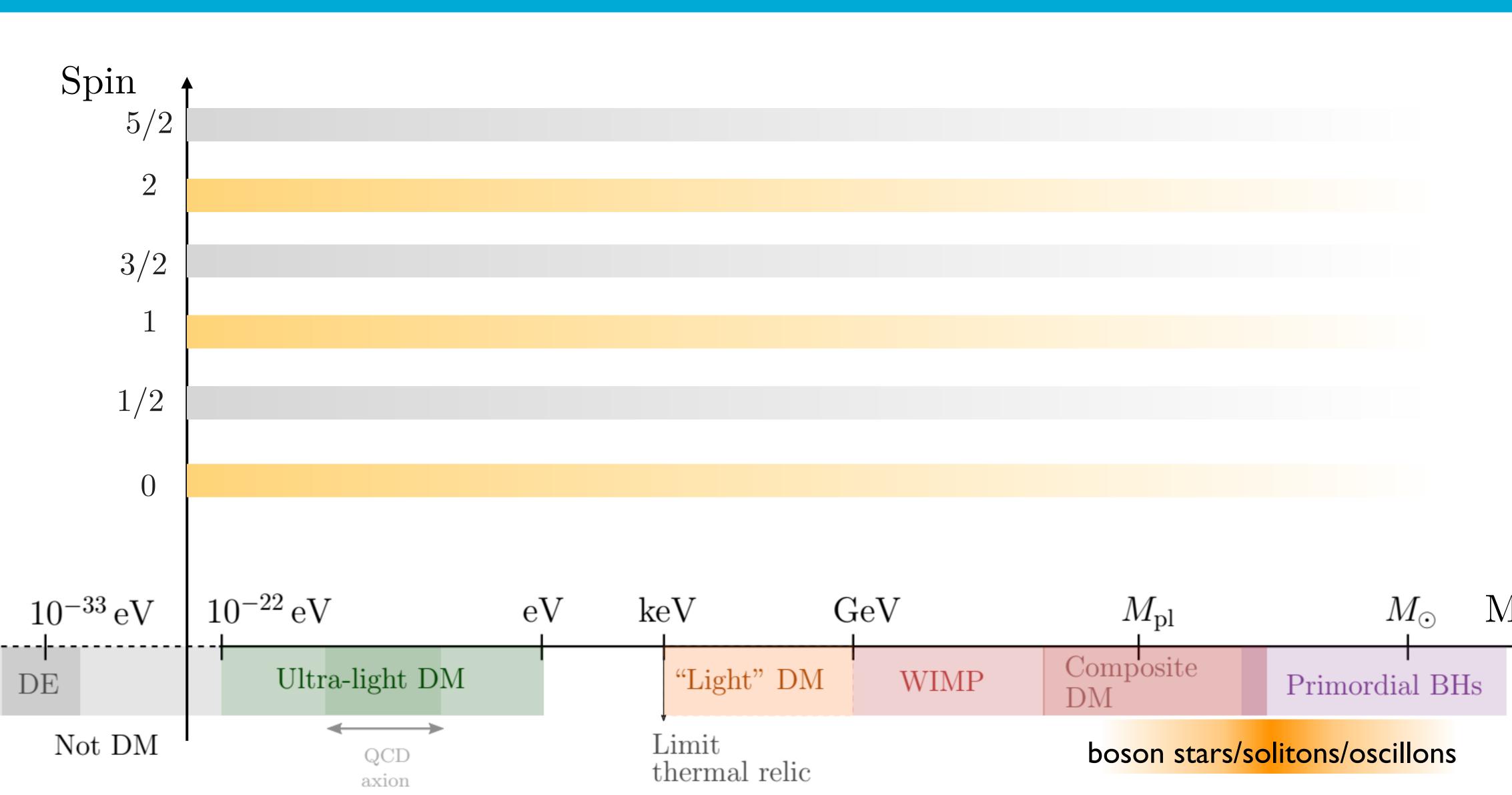
### dark matter mass ?



Modified version of image by E. Ferreira

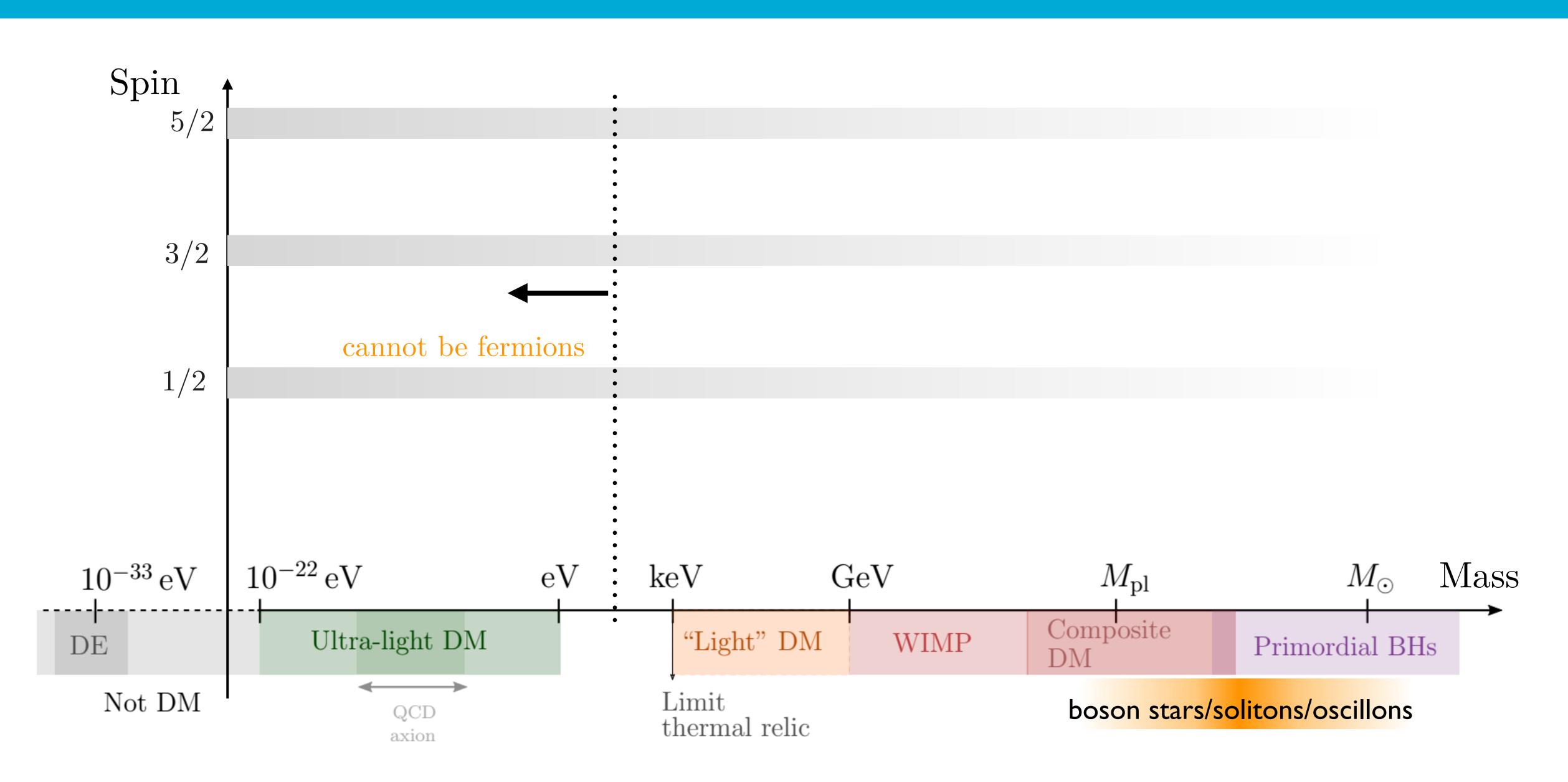


### dark matter spin?

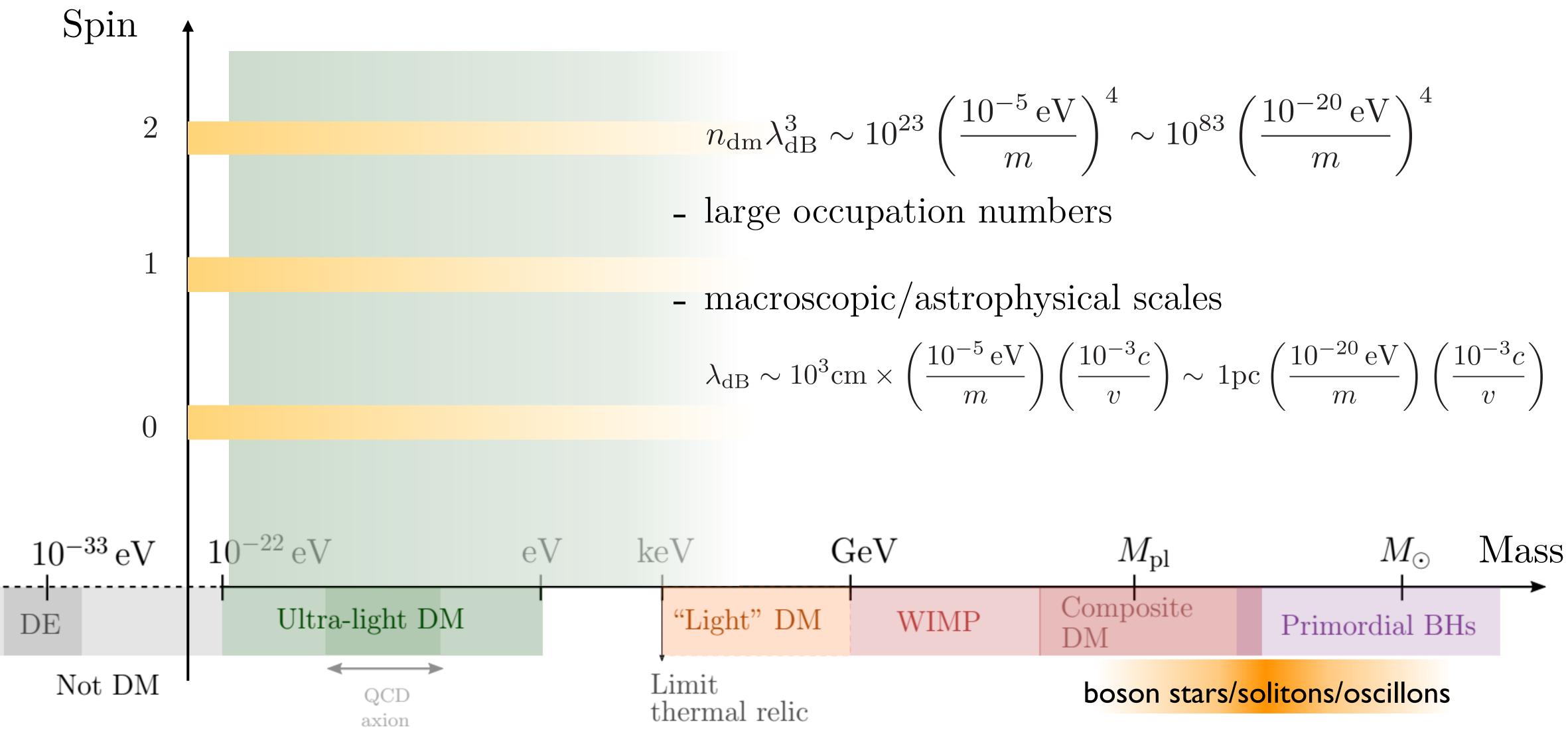




### dark matter spin ?

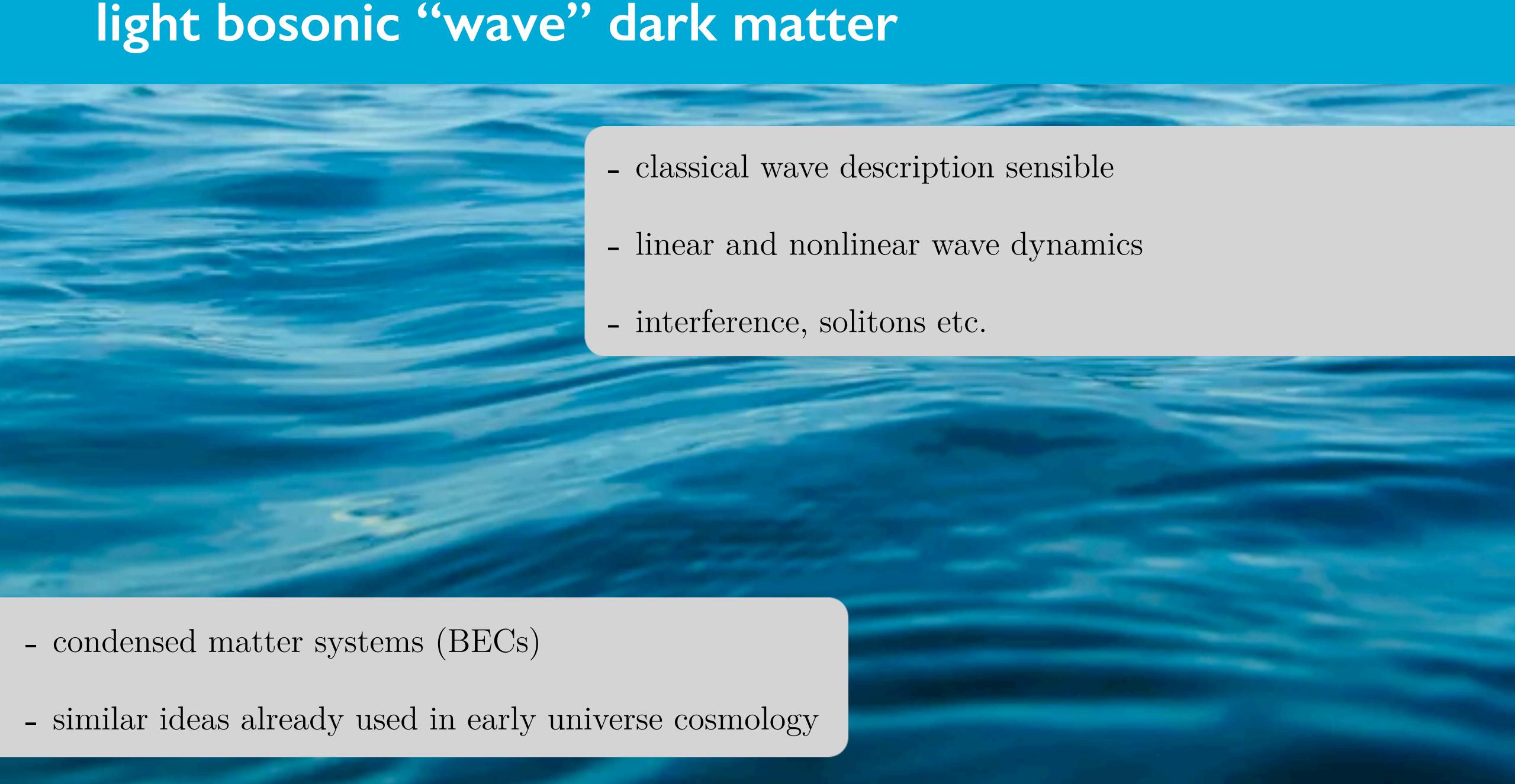


### light, bosonic wave dark matter



$$\lambda_{\rm dm}^3 \lambda_{\rm dB}^3 \sim 10^{23} \left(\frac{10^{-5} \,\mathrm{eV}}{m}\right)^4 \sim 10^{83} \left(\frac{10^{-20} \,\mathrm{eV}}{m}\right)^4$$

$$d_{\rm dB} \sim 10^3 {\rm cm} \times \left(\frac{10^{-5} {\rm eV}}{m}\right) \left(\frac{10^{-3} c}{v}\right) \sim 1 {\rm pc} \left(\frac{10^{-20} {\rm eV}}{m}\right) \left(\frac{10^{-3} c}{v}\right)$$









$$S = \int d^4x \sqrt{-g} \left[ -\frac{1}{4} g^{\mu\alpha} g^{\nu\beta} \mathcal{G}_{\mu\nu} \mathcal{G}_{\alpha\beta} + \frac{1}{2} \frac{m^2 c^2}{\hbar^2} g^{\mu\nu} W_{\mu} W_{\nu} + \frac{c^3}{16\pi G} R + \dots \right] + \text{non-grav, interactions}$$

$$\mathcal{G}_{\mu\nu} = \partial_{\mu} W_{\nu} - \partial_{\nu} W_{\mu}$$

$$\mathcal{G}_{\mu\nu} = \partial_{\mu}W_{\nu} - \partial_{\nu}W_{\mu}$$

#### non-relativistic limit

$$\boldsymbol{W}(t,\boldsymbol{x}) \equiv \frac{\hbar}{\sqrt{2mc}} \Re \left[ \boldsymbol{\Psi}(t,\boldsymbol{x})e^{-imc^{2}t/\hbar} \right]$$
 split in "fast" an  
$$\mathcal{S}_{nr} = \int \mathrm{d}t \mathrm{d}^{3}x \left[ \frac{i\hbar}{2} \boldsymbol{\Psi}^{\dagger} \dot{\boldsymbol{\Psi}} + \mathrm{c.c.} - \frac{\hbar^{2}}{2m} \nabla \boldsymbol{\Psi}^{\dagger} \cdot \nabla \boldsymbol{\Psi} + \frac{1}{8\pi G} \Phi \nabla^{2} \Phi - m \Phi \boldsymbol{\Psi}^{\dagger} \boldsymbol{\Psi} \right]$$

Recent work on non-relativistic case :

for scalar, see for example: Eby, Mukaida et. al (2018), Salehian, Zhang et. al (2021), for vector case, see Adshead & Lozanov (2021), For vectors with non-minimal coupling, see Zhang and Ling (2023). For potential trouble with self-interactions, see Mou and Zhang (2022)

id "slow" parts





### non-relativistic limit = multicomponent Schrödinger-Poisson

$$[\mathbf{\Psi}]_i = \psi_i \text{ with } i = 1, 2, 3 \quad \text{vector}$$
  
 $i\hbar \frac{\partial}{\partial t} \mathbf{\Psi} = -\frac{\hbar^2}{2m} \nabla^2 \mathbf{\Psi} + m \Phi \mathbf{\Psi}$ 

$$[\Psi]_i = \psi_i$$
 with  $i = 1$  scalar

at this level this is just 2s+1 equal mass scalar fields but not when non-gravitational interactions are included! For including non-grav. Interactions, see: Zhang, Jain and MA(2021), Jain (2022), Jain & MA(2022) and also non-min. coupling Zhang and Ling (2023)

#### case

)

### $\nabla^2 \Phi = 4\pi G m \, \Psi^\dagger \Psi$

#### case

$$N = \int d^{3}x \Psi^{\dagger} \Psi, \quad \text{and} \quad M = mN, \qquad \text{(particle number and rest mass)}$$

$$E = \int d^{3}x \Big[ \frac{\hbar^{2}}{2m} \nabla \Psi^{\dagger} \cdot \nabla \Psi - \frac{Gm^{2}}{2} \Psi^{\dagger} \Psi \int \frac{d^{3}y}{4\pi |\boldsymbol{x} - \boldsymbol{y}|} \Psi^{\dagger}(\boldsymbol{y}) \Psi(\boldsymbol{y}) \Big], \qquad \text{(energy)}$$

$$\boldsymbol{S} = \hbar \int d^{3}x \, i \Psi \times \Psi^{\dagger}, \qquad \text{(spin angular momentum)}$$

$$\boldsymbol{L} = \hbar \int d^{3}x \, \Re \left( i \Psi^{\dagger} \nabla \Psi \times \boldsymbol{x} \right). \qquad \text{(orbital angular momentum)}$$

$$[\mathbf{\Psi}]_i = \psi_i \text{ with } i =$$

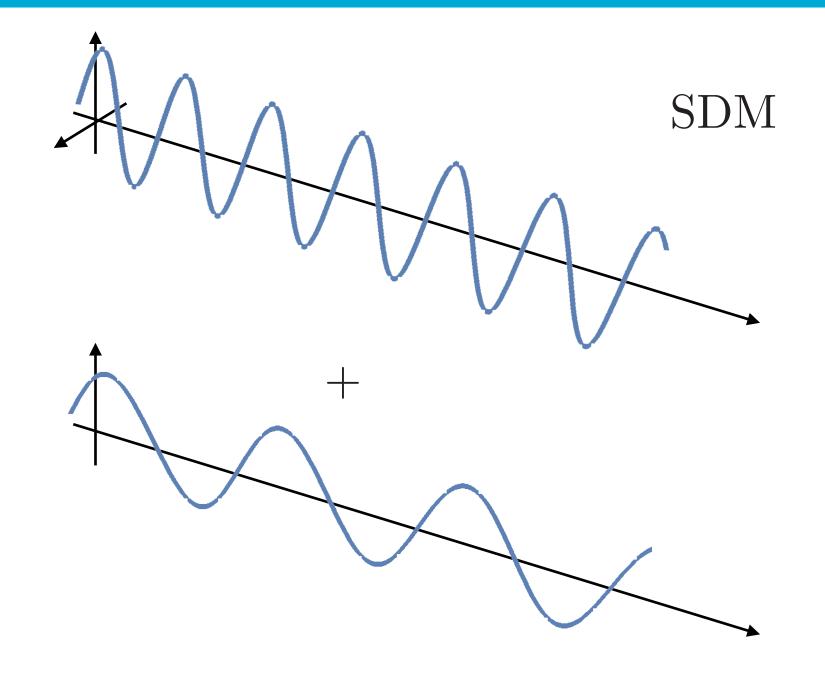


### vector vs. scalar DM: 3 phenomenon

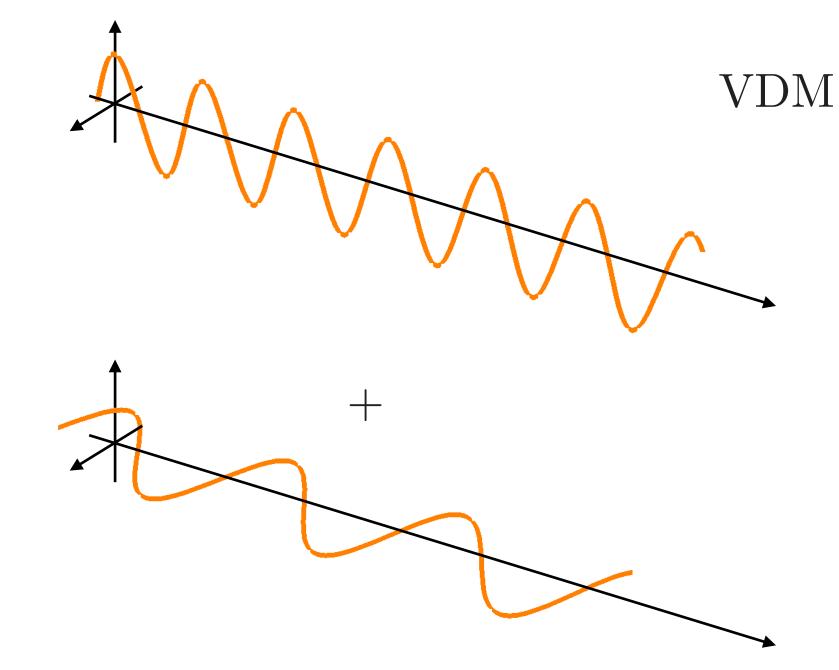
interference condensation times polarized solitons



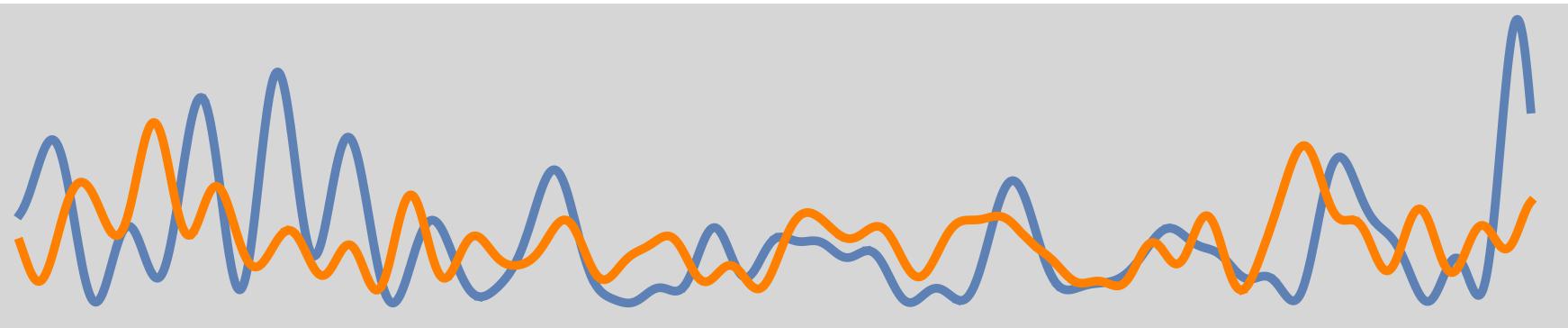
### wave interference



 $|\Psi_a(\boldsymbol{x}) + \Psi_b(\boldsymbol{x})|^2 \neq |\Psi_a(\boldsymbol{x})|^2 + |\Psi_b(\boldsymbol{x})|^2$ 

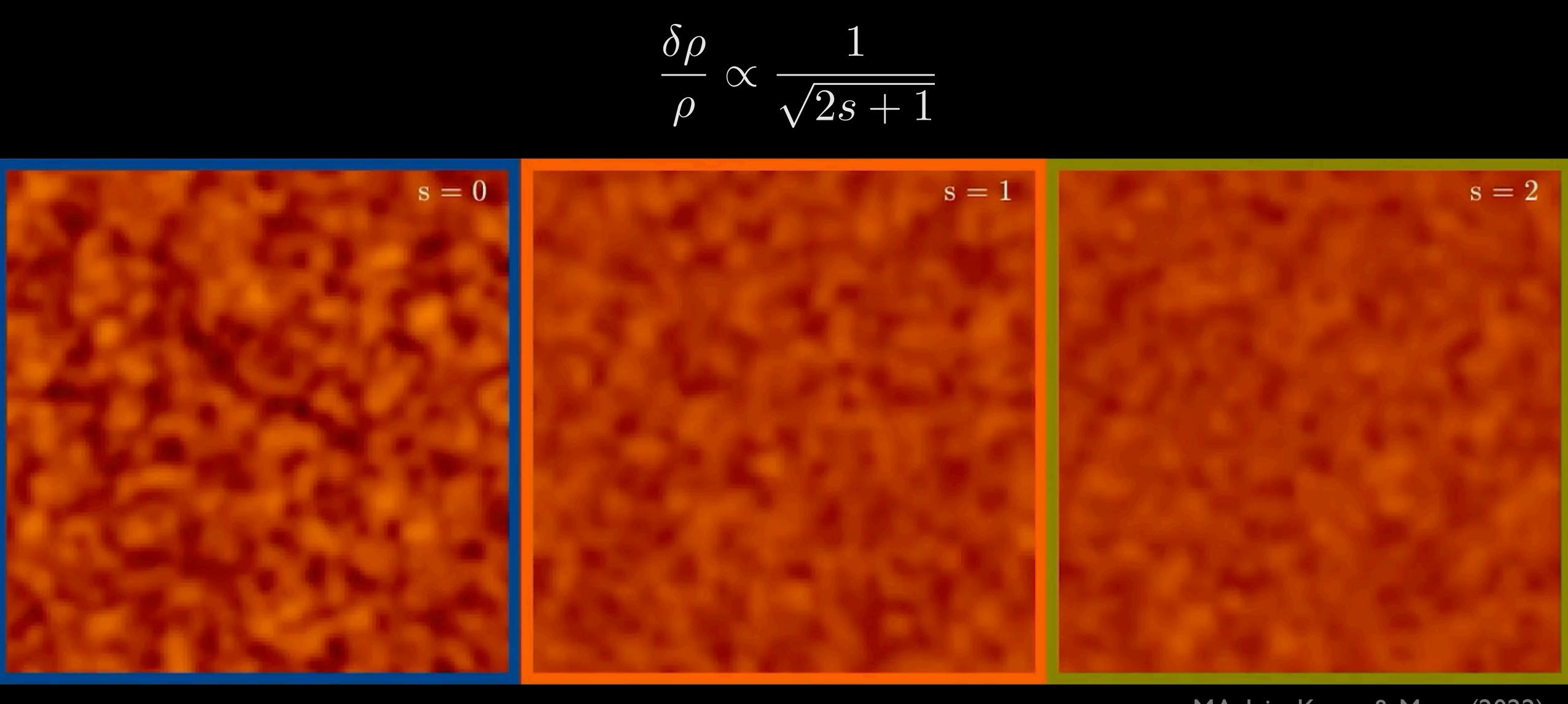


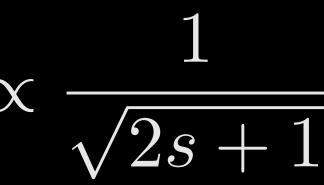
 $|\Psi_a(\boldsymbol{x}) + \Psi_b(\boldsymbol{x})|^2 = |\Psi_a(\boldsymbol{x})|^2 + |\Psi_b(\boldsymbol{x})|^2$ 

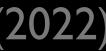


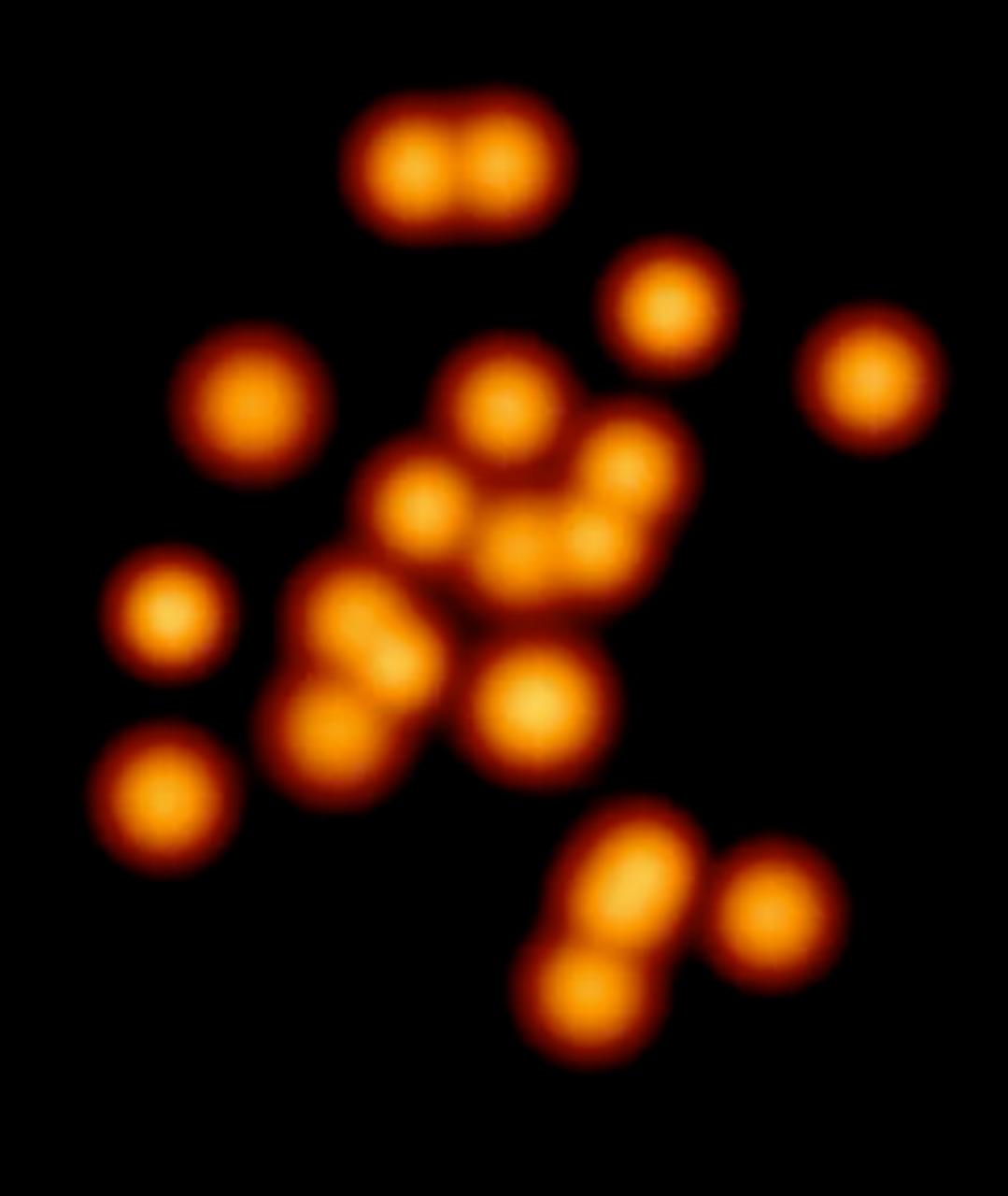


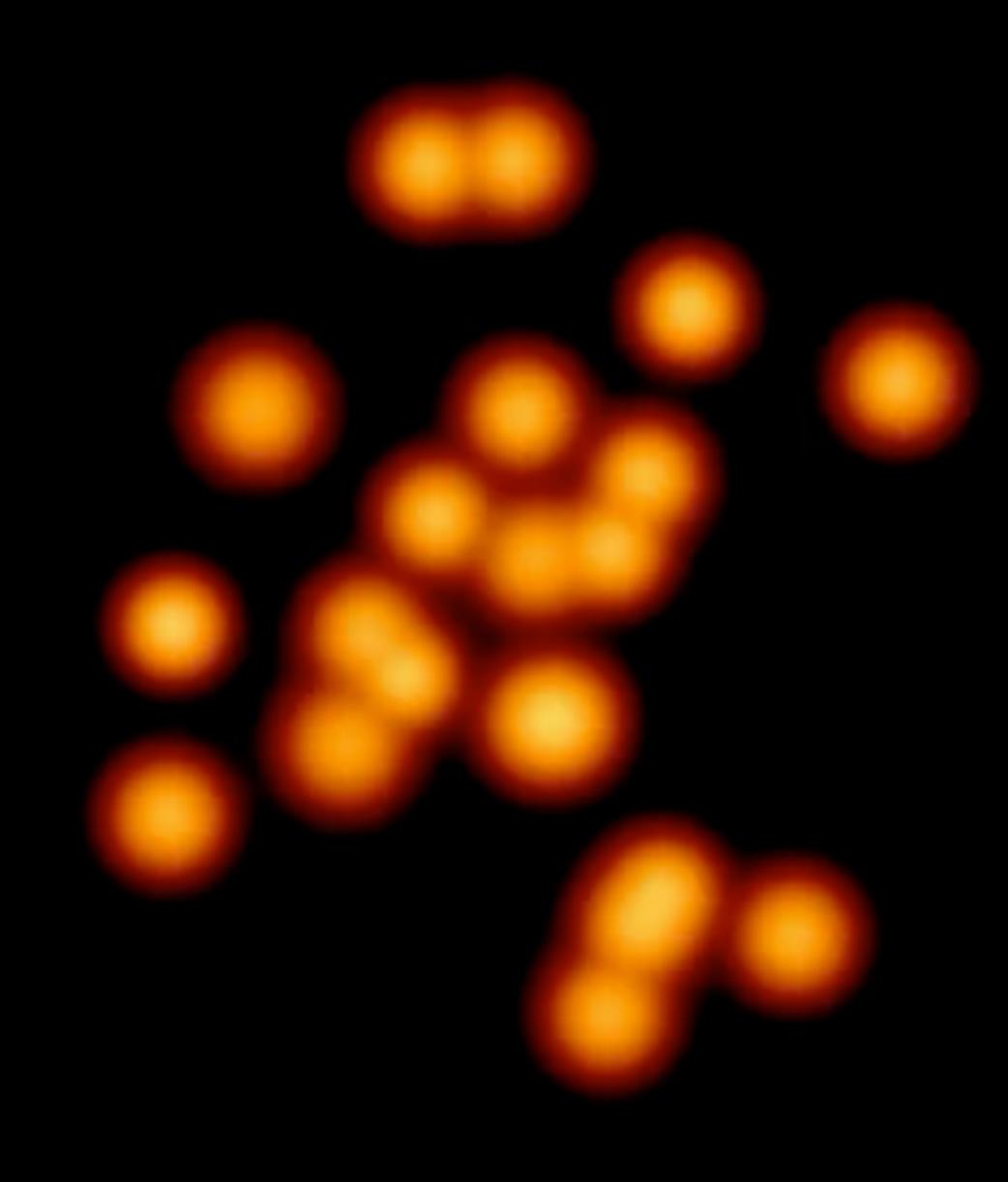
### reduced interference



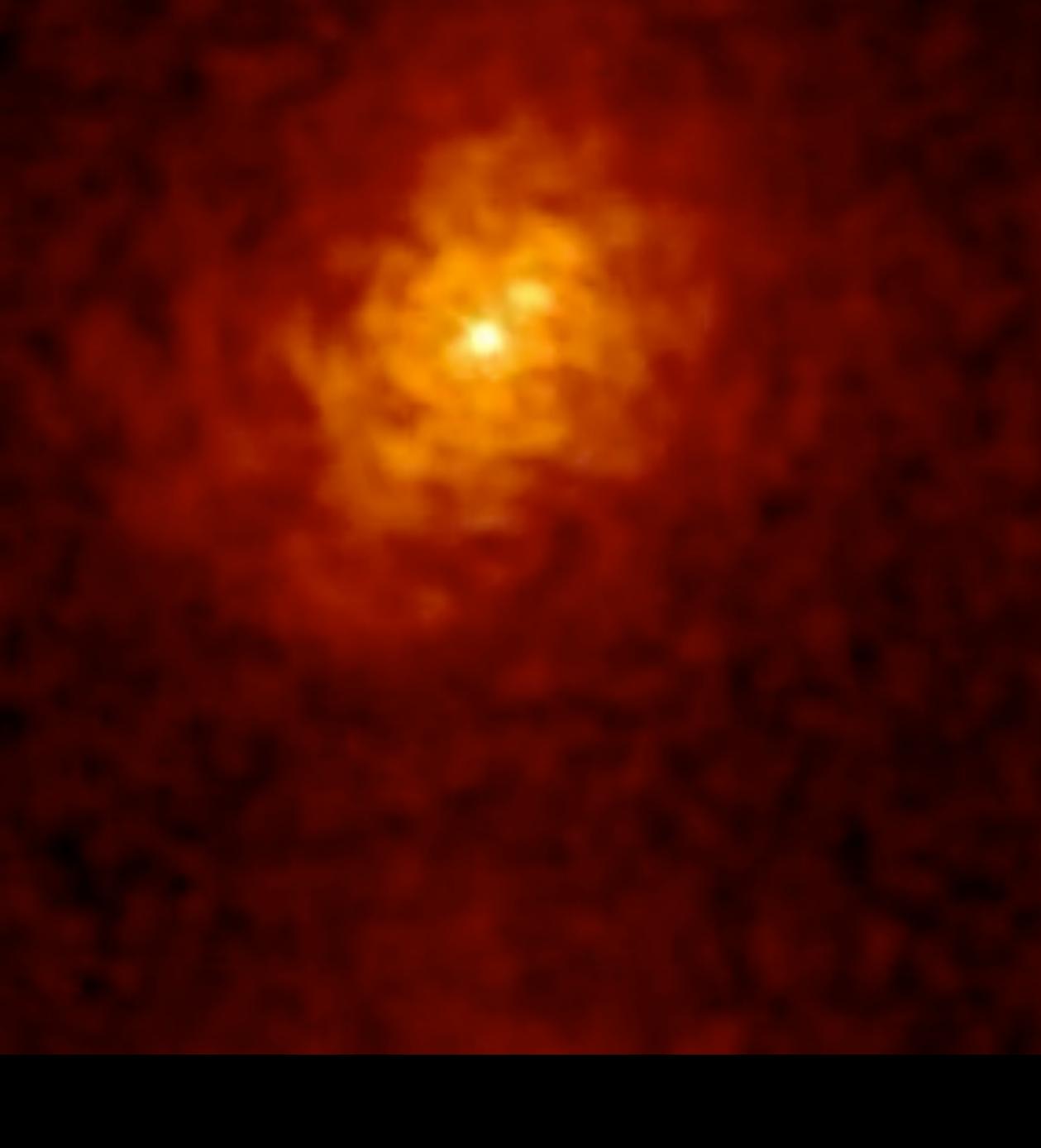




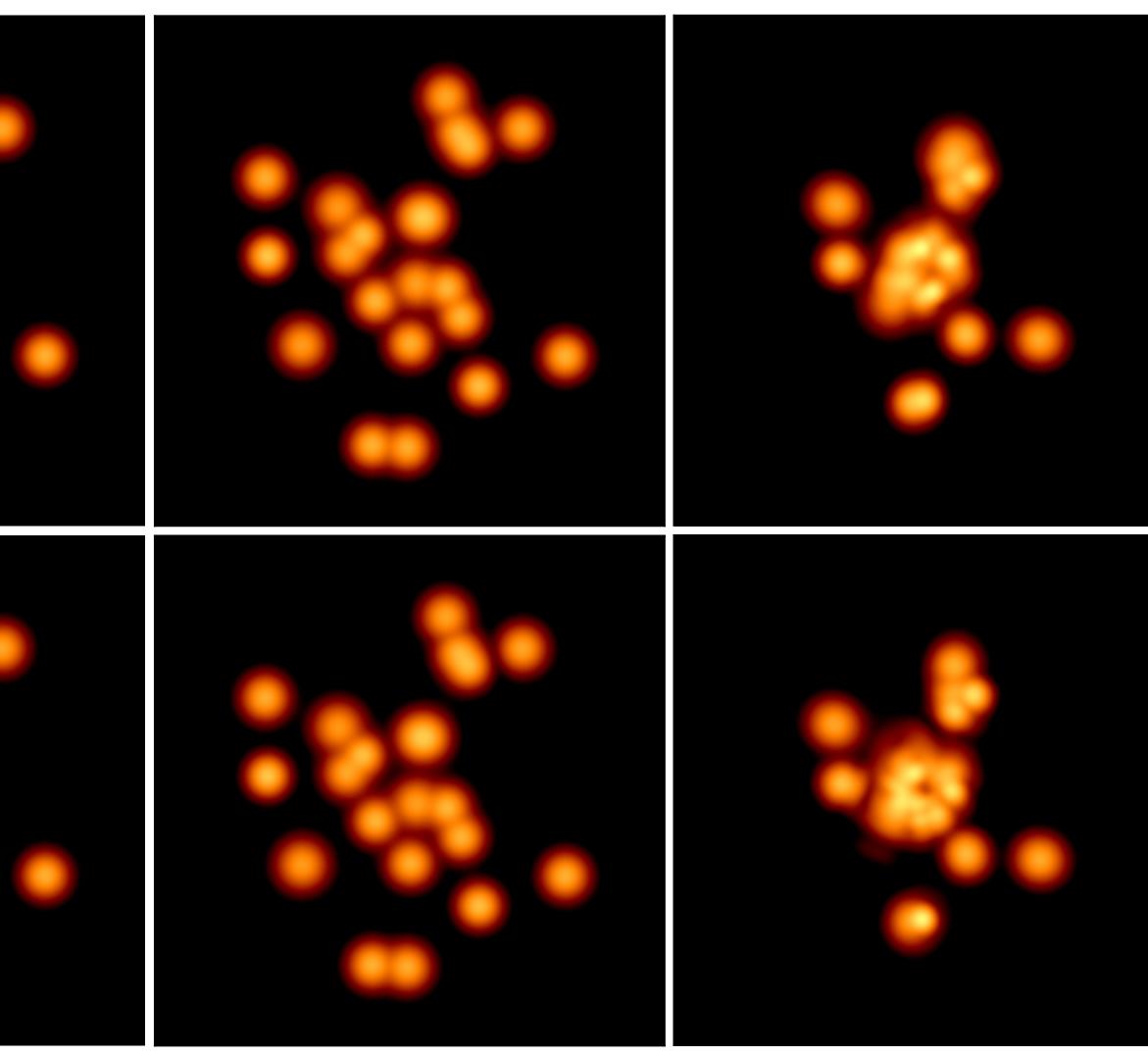




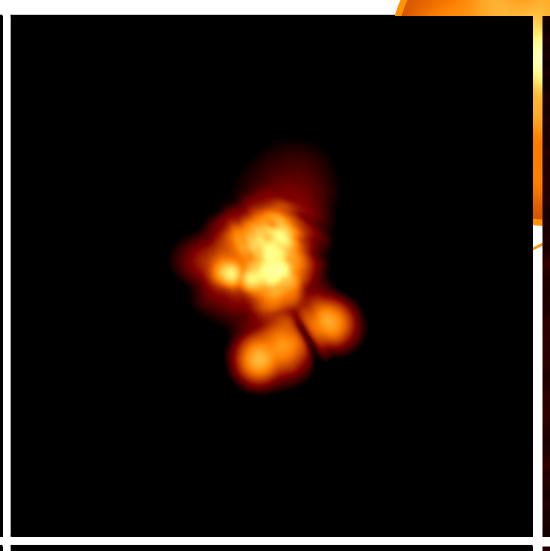


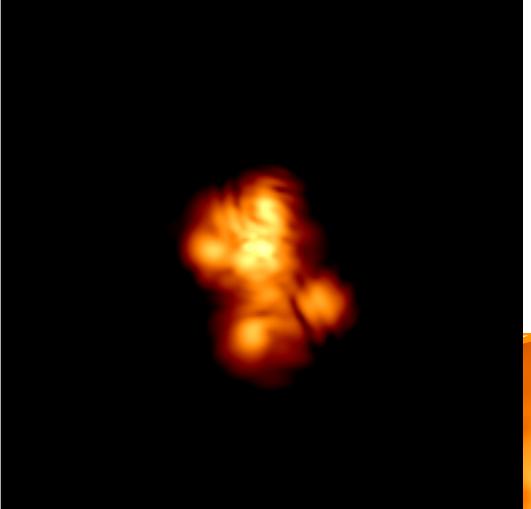






0.34  $t/t_{\rm dyn} \longrightarrow$ 



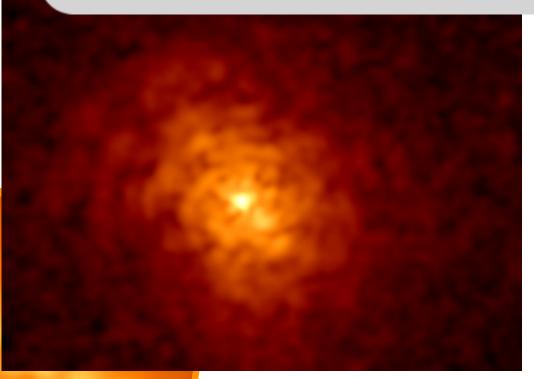


1.36



#### Difference between

#### Vector & Scalar Dark Matter

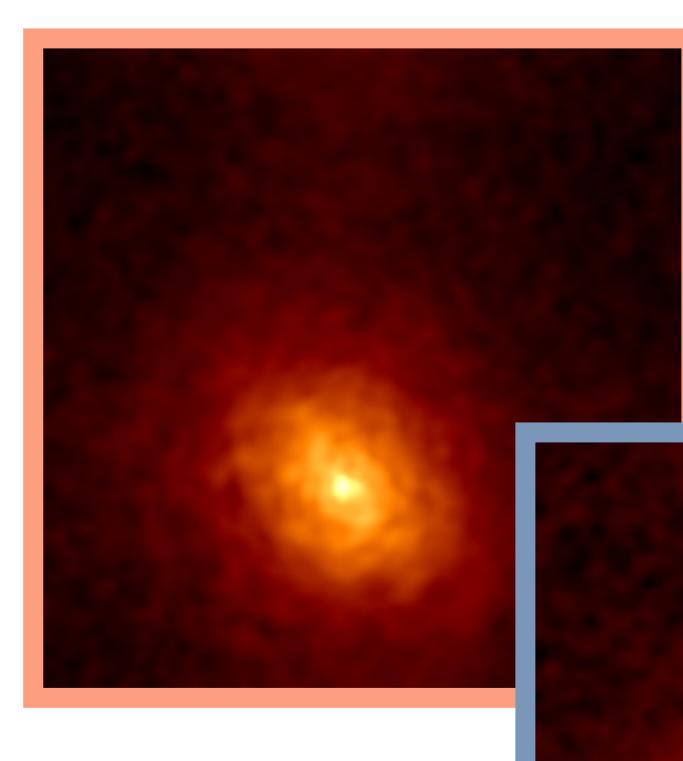






### gravitational implications (examples)

## - dynamical heating of stars $m \gtrsim \frac{1}{(2s+1)^{1/3}} \left[ 3 \times 10^{-19} \text{eV} \right]$ Dalal & Kratsov (2022)

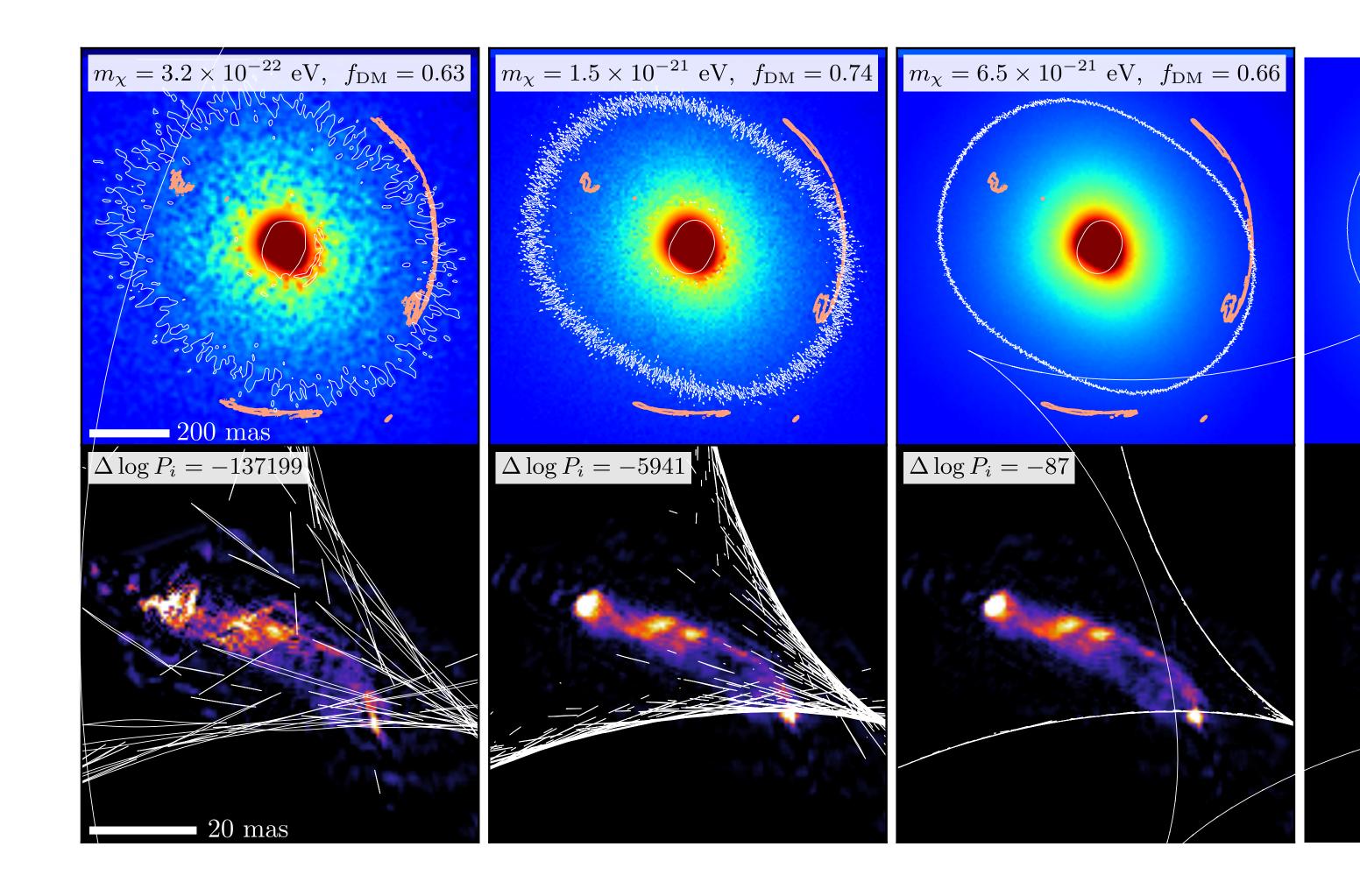




## gravitational implications (examples)

# - lensing $m \gtrsim \frac{1}{(2s+1)} \left[ 4.4 \times 10^{-21} \,\mathrm{eV} \right]$

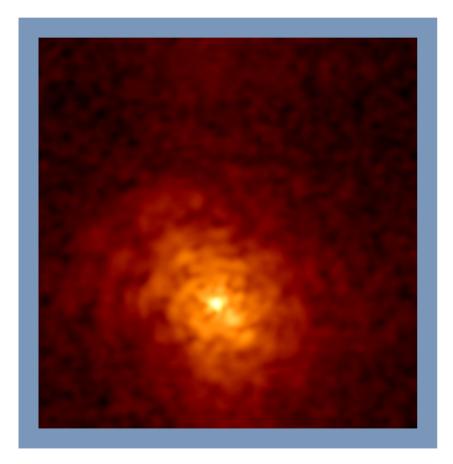
Powell et. al (2023)

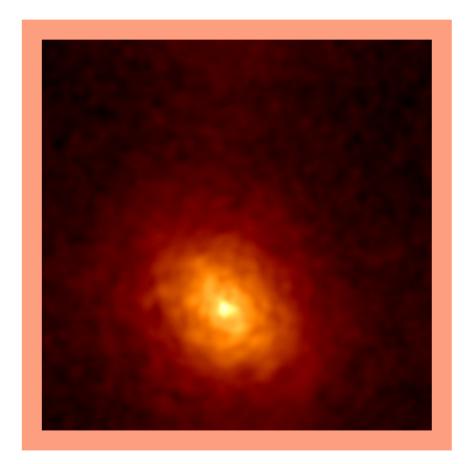


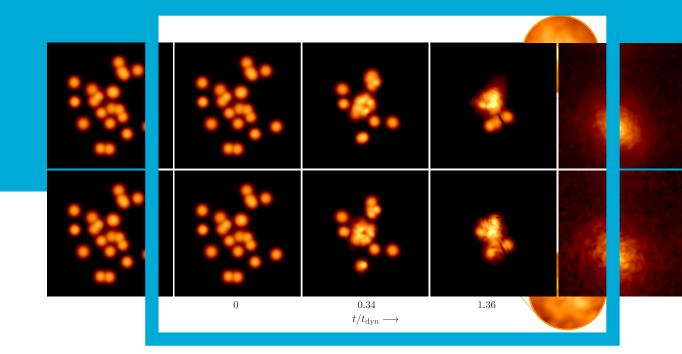
### radial density profiles

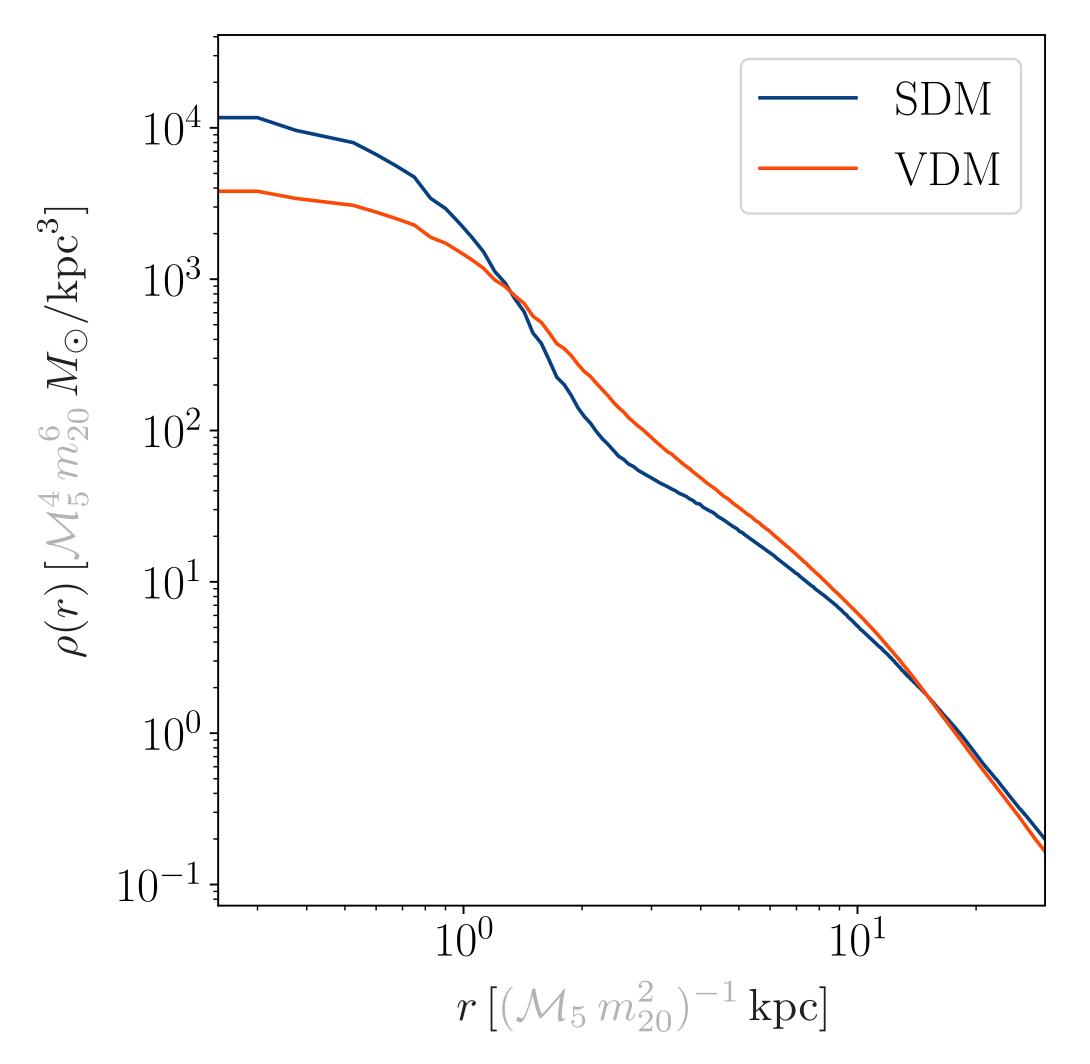
#### scalar vs. vector dark matter

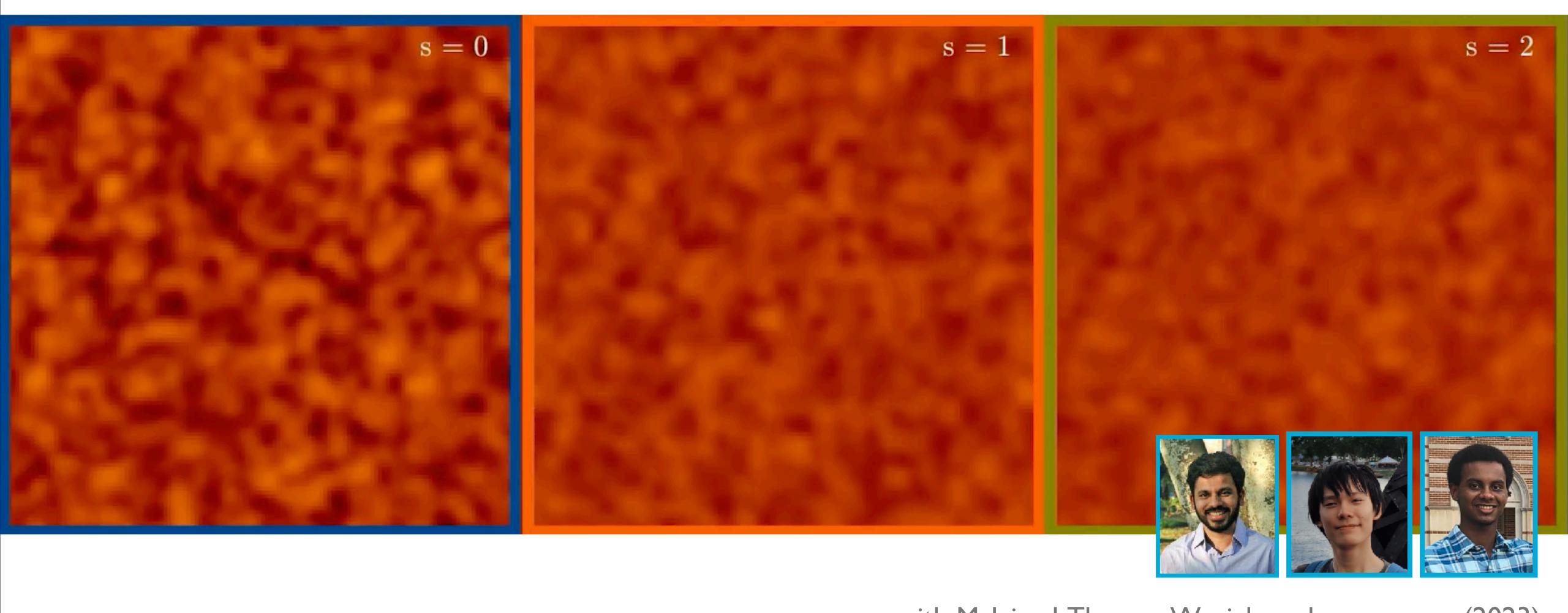
- less dense & broader core
- smoother transition to  $r^{-(2-3)}$  tail

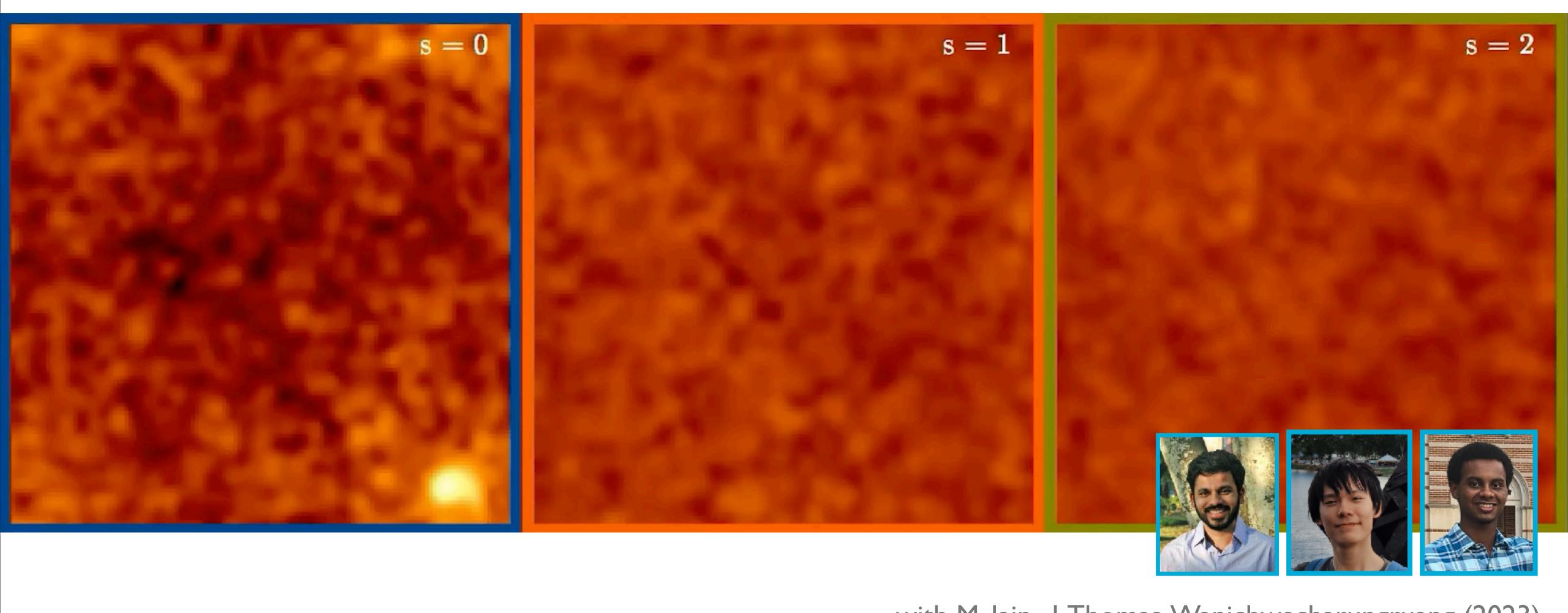


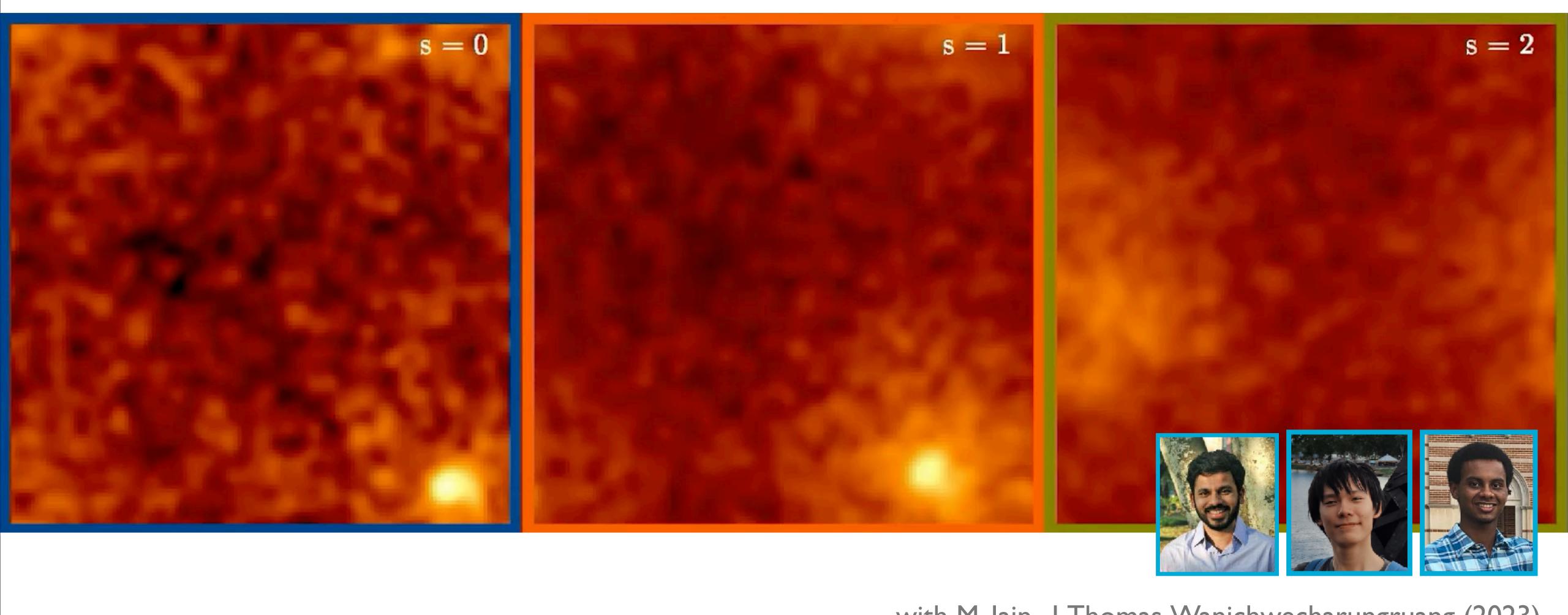


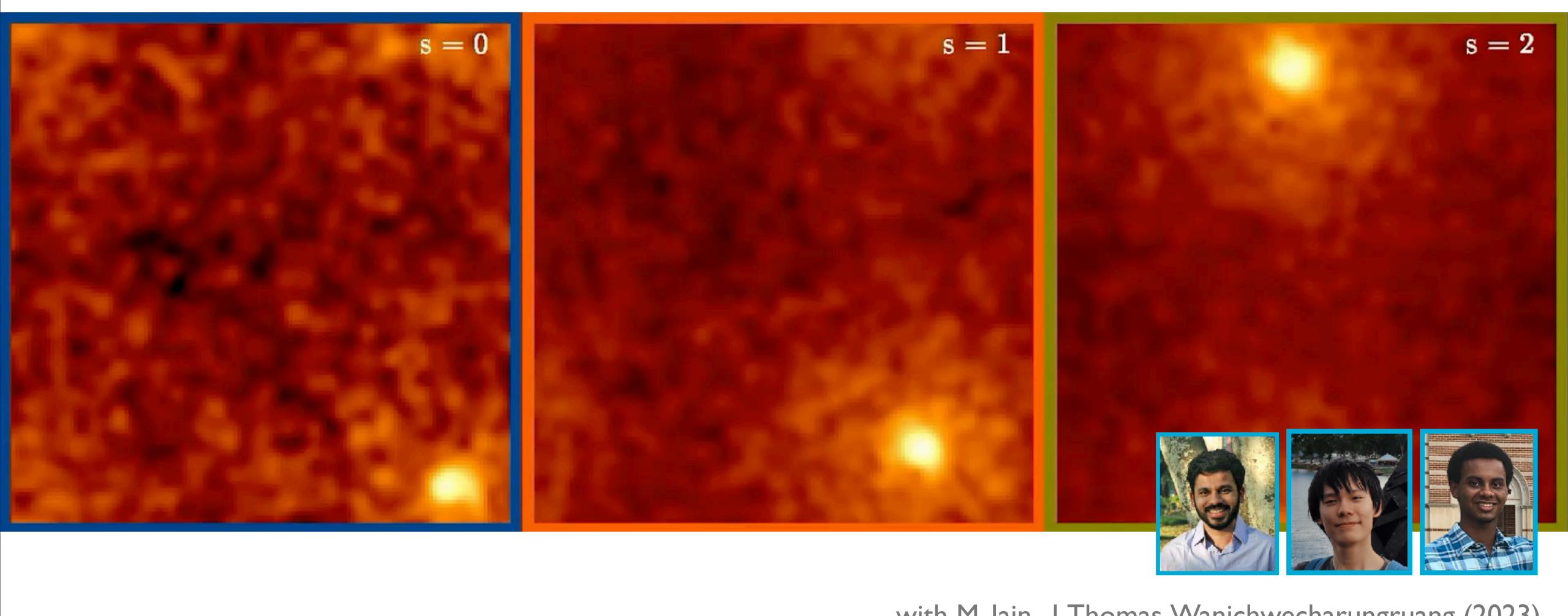






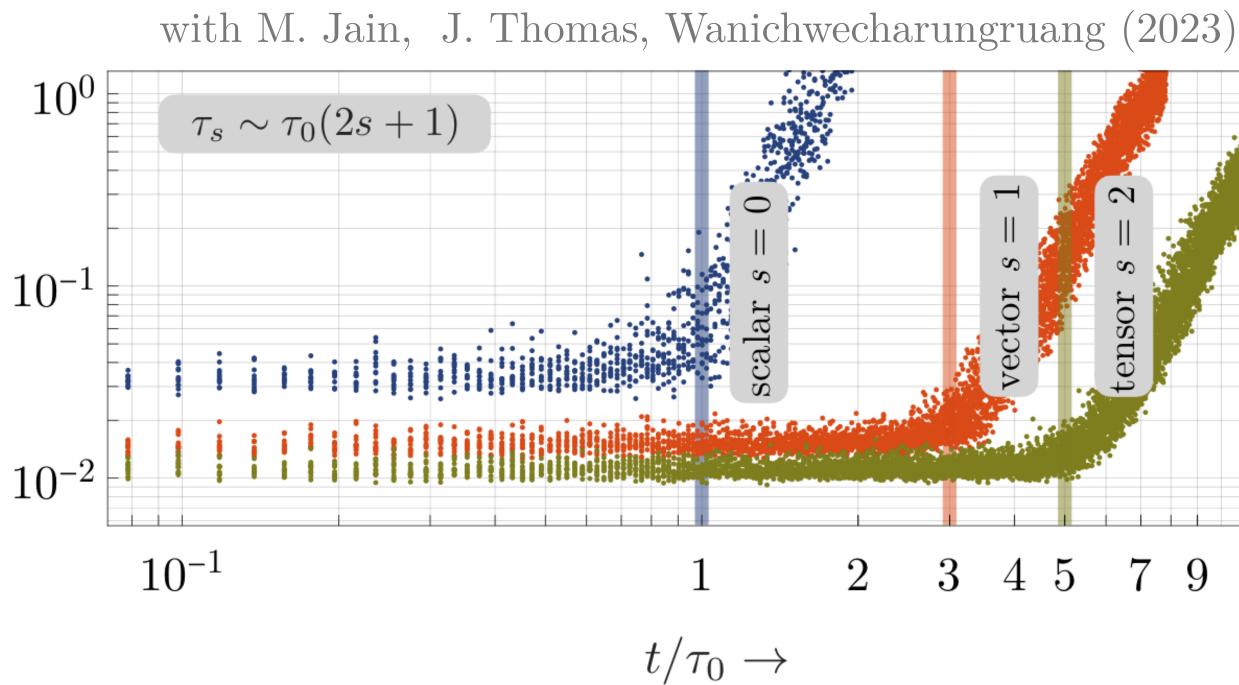




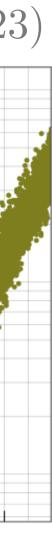


### - nucleation time scale $au_{\rm s} \sim (2s+1) au_{\rm s=0}$

$$\tau_{s=0} = \left[ n\sigma_{\rm gr} v \mathcal{N} \right]^{-1}$$
$$\sigma_{\rm gr} \sim (Gm/v^2)^2, \qquad \mathcal{N} \sim n\lambda_{\rm dB}^3$$



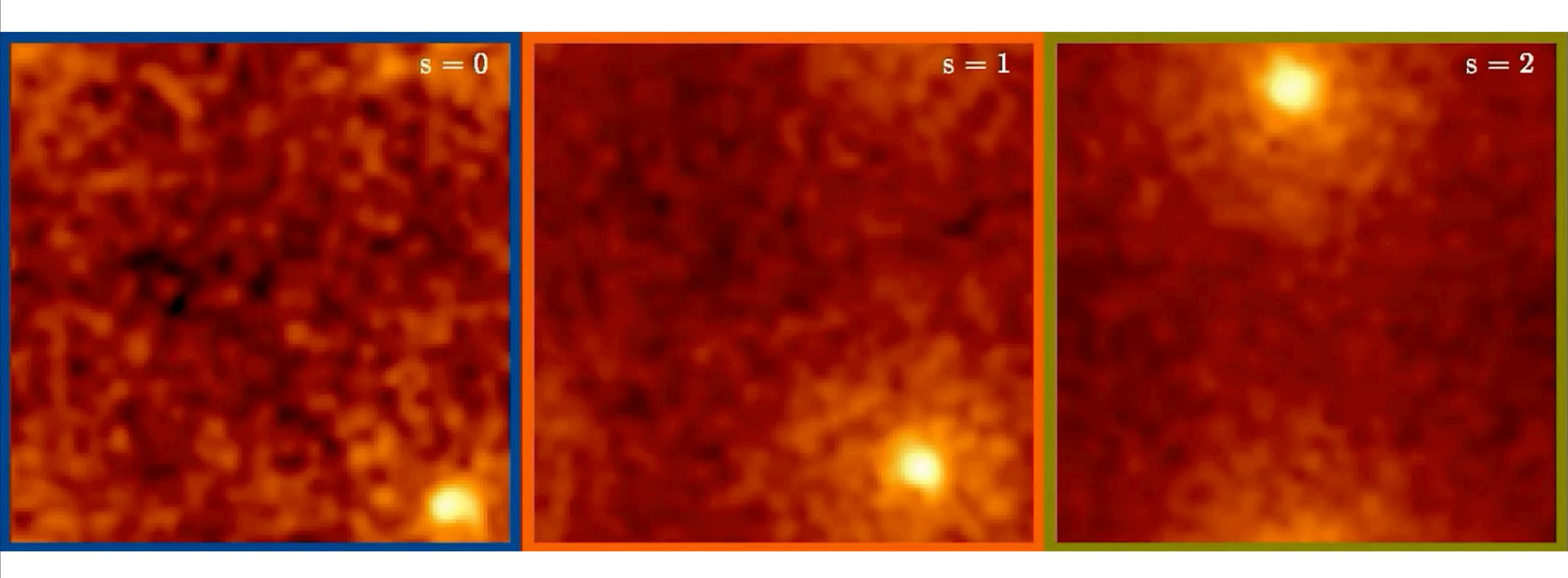
$$\tau_0 \sim \left(\frac{m}{10^{-22} \,\mathrm{eV}}\right)^3 \left(\frac{\sigma}{100 \,\mathrm{km} \, s^{-1}}\right)^6 \left(\frac{10^8 M_{\odot} \mathrm{kpc}^{-3}}{\bar{\rho}^3}\right)^2 \times \mathrm{see \ Levkov \ et. \ al \ (2018) \ for \ scala}$$





ar case

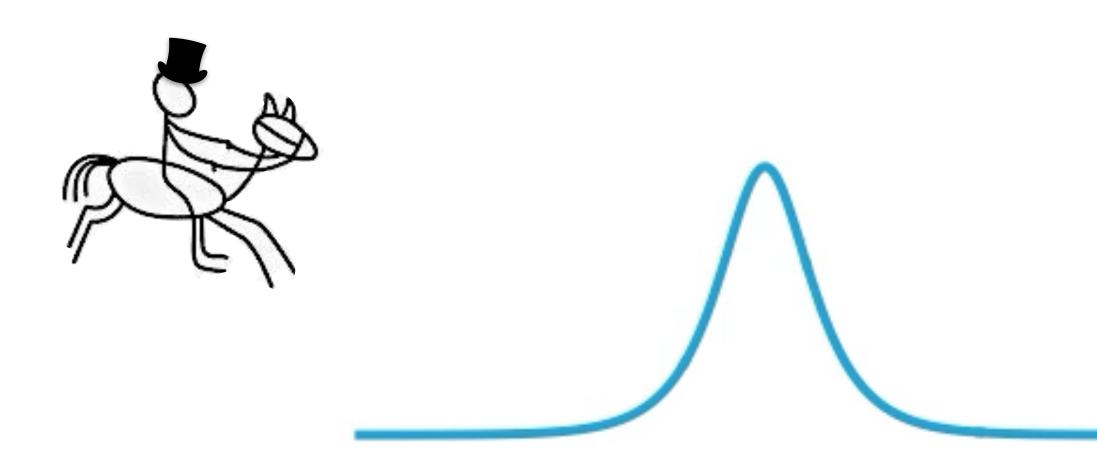
### what are these blobs?







# very-long lived, dynamical excitation in a field, with nonlinearities balancing dispersion



- discovered in nonlinear waves in water in canals (John Scott Russell, 1834)
- optics, hydrodynamics, BECs, high energy physics, and cosmology

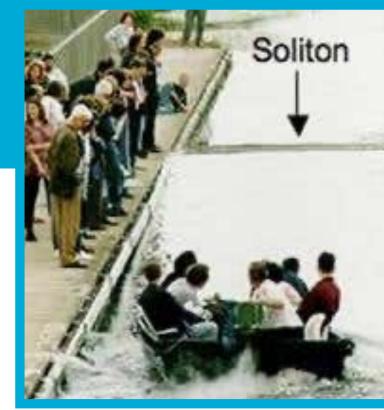


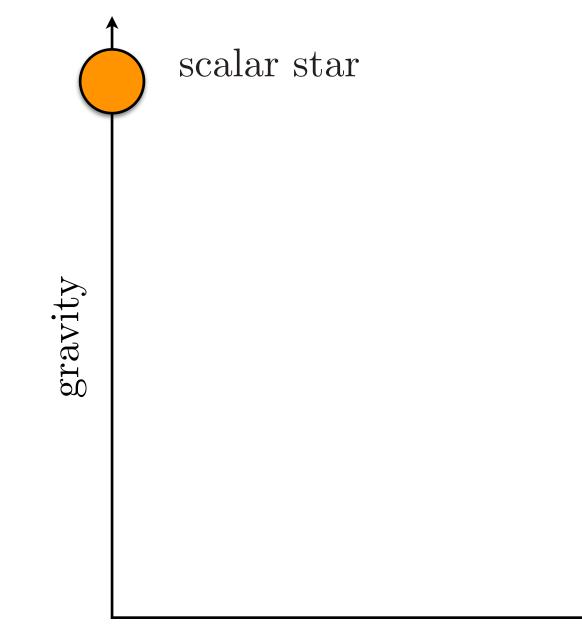
Image Credit: Heriot-Watt University

water

(John Scott Russell, 1834) and cosmology

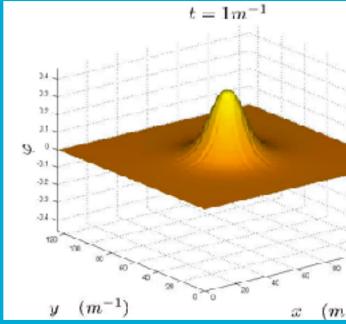


#### non-topological "solitons" (real-valued) spatially localized, coherently oscillating, long-lived



self-interaction

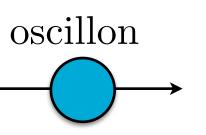
For complex-valued fields, see Q-ball lit (ask V. Takhistov about it)



spatially localized

coherently oscillating (components)

exceptionally long-lived





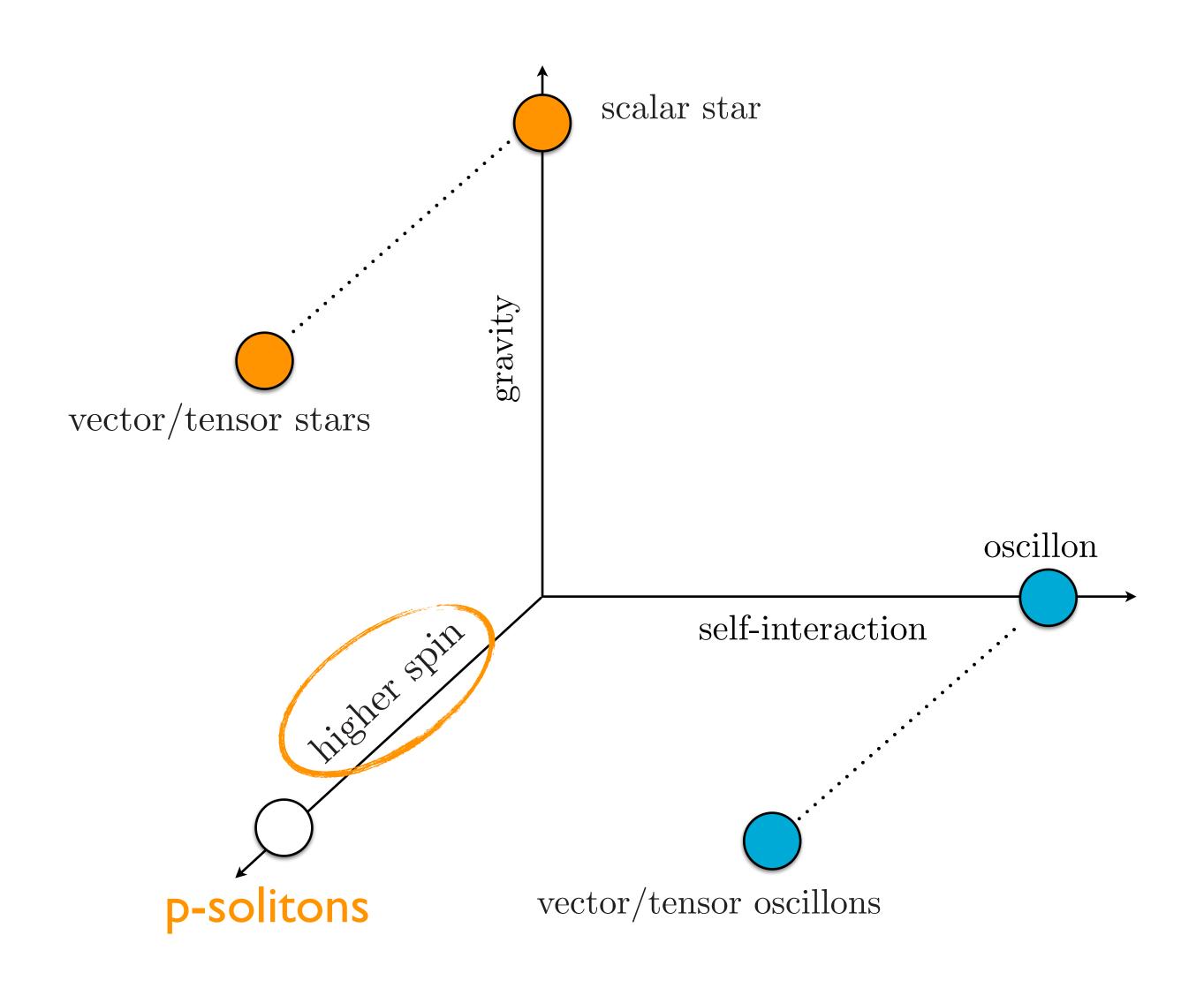
Makhanakov, Bolglubovsky, Kruskal & Seagur Seidel & Sun .... Gleiser, Copeland, Muller, Graham ... Hindmarsh, Salmi... Kasuya, Kawasaki, Takahashi, ... MA & Shirokoff Mukaida, Takimoto, Yamada Zhang, MA, Copeland, Lozanov & Saffin

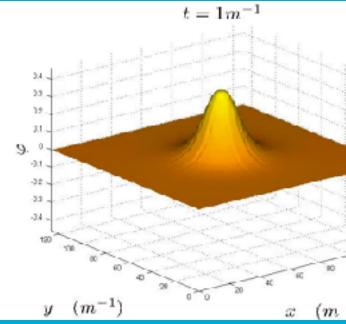
|            | 100   | -1.     |             |
|------------|-------|---------|-------------|
|            |       |         |             |
|            |       | 10.00   |             |
| · · ·      |       |         |             |
|            | 1     |         |             |
|            | 1.0   |         |             |
|            |       | 1 A.    |             |
|            |       | 1.11    |             |
|            | 18.   |         |             |
|            | 1     |         |             |
|            |       |         |             |
|            |       | 124     |             |
|            | See   |         |             |
|            |       |         |             |
| -          |       | 14.00   |             |
|            |       |         |             |
|            |       |         |             |
|            |       |         |             |
|            |       |         |             |
|            |       |         |             |
|            |       |         |             |
|            |       | March 1 |             |
| _          |       |         |             |
|            |       | 1 1     |             |
|            | 12.00 |         |             |
|            |       | 19. A.  |             |
| 100        |       | 1.000   |             |
|            | 10.0  |         |             |
|            |       |         |             |
|            |       |         |             |
|            | 1     | 24      |             |
| ·          | 1     | Sec.    |             |
| ·          | 1     | 100     |             |
| ·          | 1     | 100     |             |
| -          | 1     |         |             |
| 144<br>240 | 1     |         |             |
| 744<br>240 | 1     |         |             |
| 144<br>246 | 1     |         |             |
|            | 1     |         | and and and |
| 14 A 44    | 1     |         | - int       |
|            | -4-4  |         | A.L.L.      |
|            | -4-4  |         | - int       |
| -          | -4-1  |         | A.L.L.      |
| 10         | -4-4  |         | A.L.L.      |
| -          | -4-4  |         | A.L.L.      |
| 10         | -4-1  |         | A.L.L.      |





#### non-topological solitons spatially localized, coherently oscillating, long-lived





spatially localized

coherently oscillating (components)

exceptionally long-lived



Jain & MA (2021) Zhang, Jain & MA (2021)

|        |           | 1.00     |        |     |
|--------|-----------|----------|--------|-----|
|        |           | 1.000    |        |     |
|        | ÷         |          | 12.0.  |     |
|        | · · · ·   |          |        |     |
|        |           | 1.0      |        |     |
|        |           |          |        |     |
|        | ·         |          |        |     |
|        |           |          |        |     |
|        |           | 20.00    |        |     |
|        |           |          |        |     |
|        |           |          |        |     |
|        |           |          | 1.00   |     |
|        |           |          |        |     |
|        |           | 1.0      | C 42.  |     |
|        |           |          |        |     |
|        |           |          |        |     |
|        |           |          |        |     |
|        |           |          | 100    |     |
|        |           |          |        |     |
|        |           |          |        |     |
|        |           |          |        |     |
|        |           | -        |        |     |
|        | _         |          |        |     |
|        |           | 1.00     |        |     |
|        |           |          | - 14 L |     |
|        |           |          |        |     |
|        |           | 10.      |        |     |
|        |           |          |        |     |
|        |           |          |        |     |
|        |           |          |        |     |
| Star M |           | CPA      |        |     |
| Star M |           | 12.000   |        |     |
| ST W   | · · · · · | 12       |        |     |
| - M    |           |          | 1.000  |     |
| - M    |           |          |        |     |
| - M    |           | A. 4 1 1 |        |     |
| in M   |           |          | 1.000  |     |
| 100    |           |          |        |     |
| 100    |           | 100      | -      | 1.6 |
| 10     | -         |          | 00     |     |
| 10     | ·         |          |        |     |
|        | 100       |          |        |     |
|        |           |          |        |     |
|        |           |          |        |     |
|        |           |          |        |     |
|        |           |          |        |     |
|        |           |          |        |     |







$$S_{\rm sol} = i(\boldsymbol{\epsilon} \times \boldsymbol{\epsilon}^{\dagger}) \frac{M_{\rm sol}}{m} \hbar$$

macroscopic spin

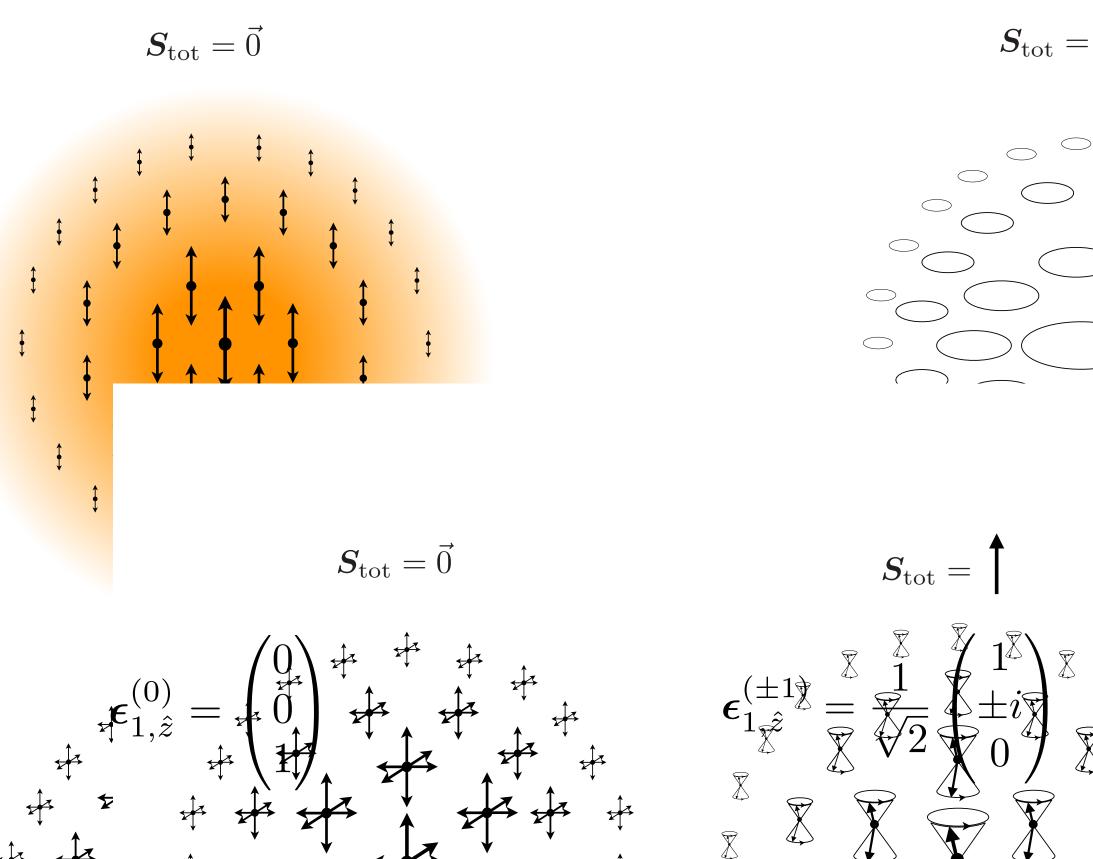
$$S_{\rm tot}/\hbar = \lambda N \hat{z}$$

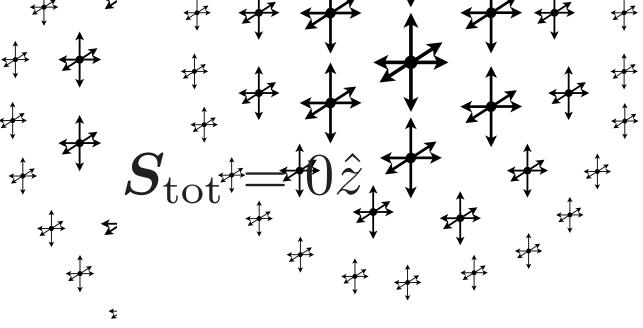
N = # of particles in soliton

tensor

$$s = 2^s$$

 $S_{\rm tot}/\hbar = \lambda N \hat{z}$ 



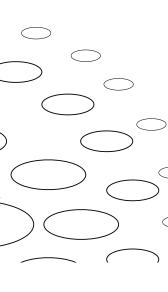


 $\lambda = 0 \quad \overleftrightarrow$ 



 $\nabla$ 

 $S_{\mathrm{tot}}$ 











### "polarized" vect

macroscopic spin

$$S_{\rm tot} = \hbar \frac{M_{\rm sol}}{m} \hat{z}$$

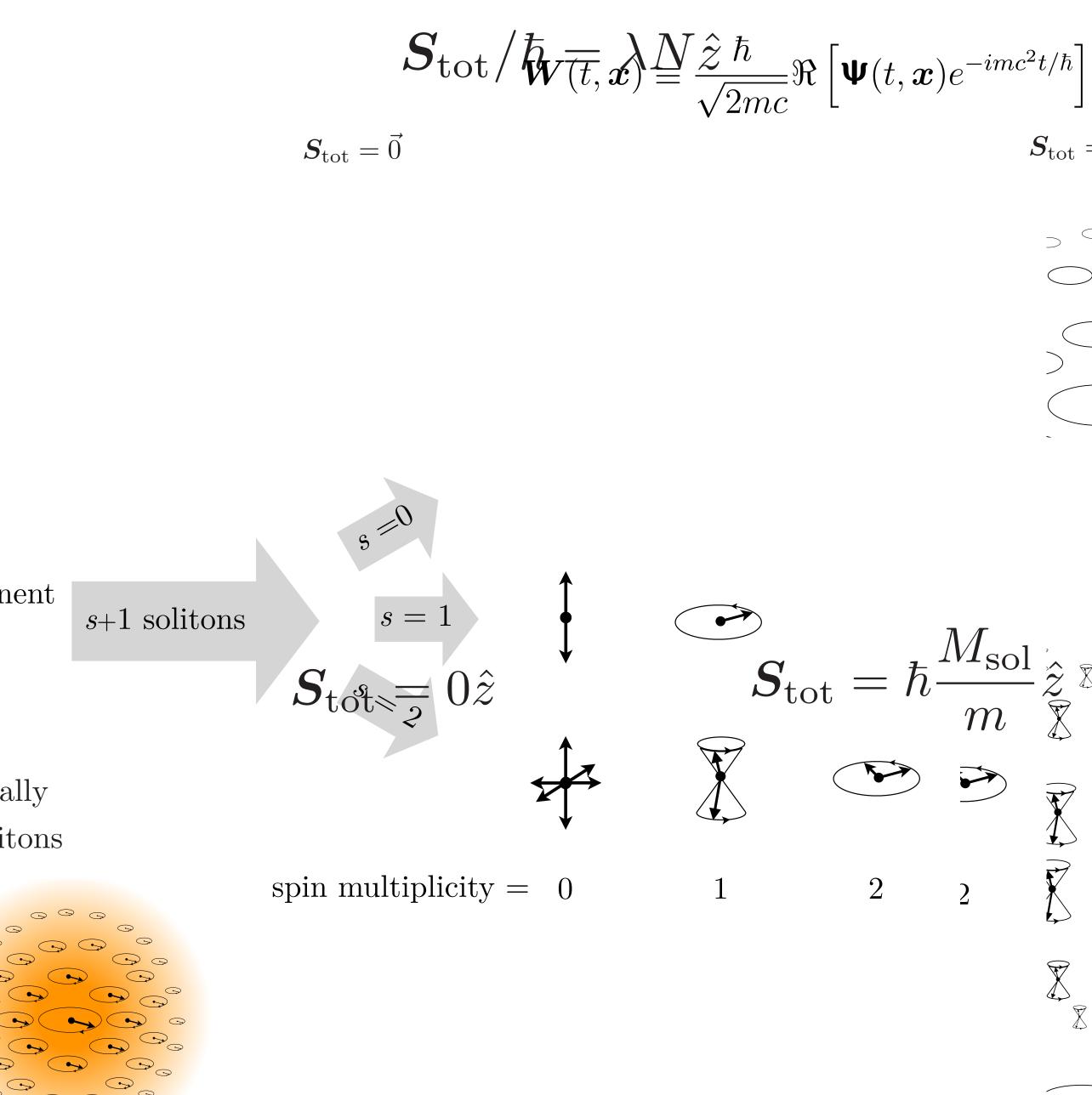
- all lowest energy for fixed M
- bases for partially-polarized solitons

Poisson 2s+1 component Einste non-relativistic limit + Proca (s=1)Schrödinger Fierz-Pauli (s=2)

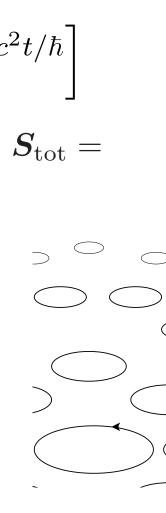
$$S_{\text{tot}} / \hat{O} \cong \hat{N} \hat{S}_{\text{tot}} | \leq \frac{M_{\text{sol}}}{\mathcal{M}_{\text{F}}} \hbar \qquad s \neq 1 \text{ extrema polarized solid}$$

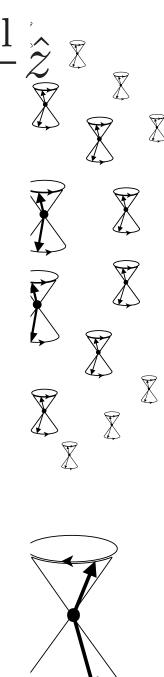
$$C_{0} = \frac{1}{10} + C_{1} \qquad C_{0} \qquad C_{0} = \frac$$

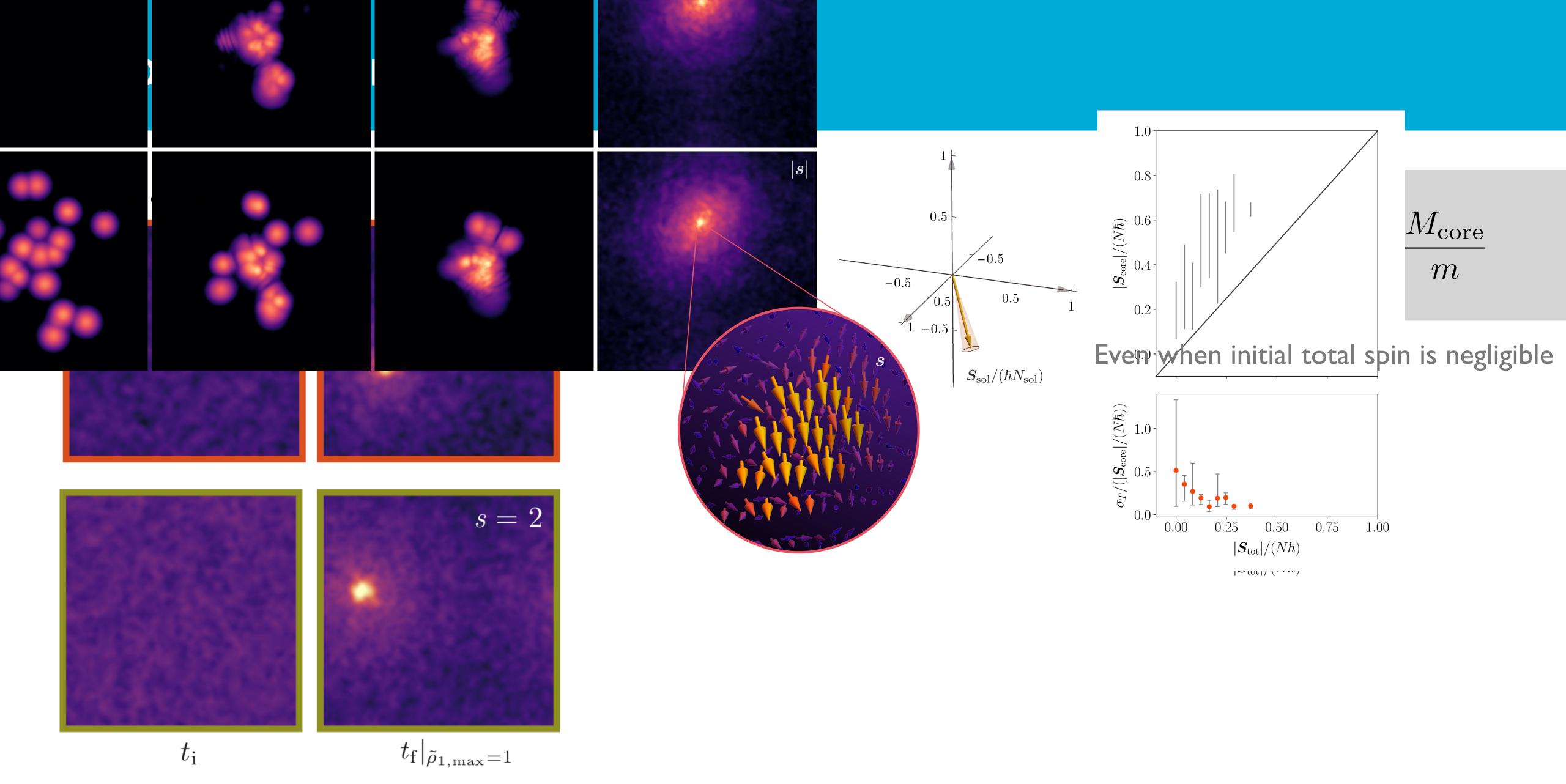
Also see: Aoki et. al (2017 for massive tensors geons), Adshead & Lozanov (2021), Jain & MA (2021)



 $\bigcirc$ 



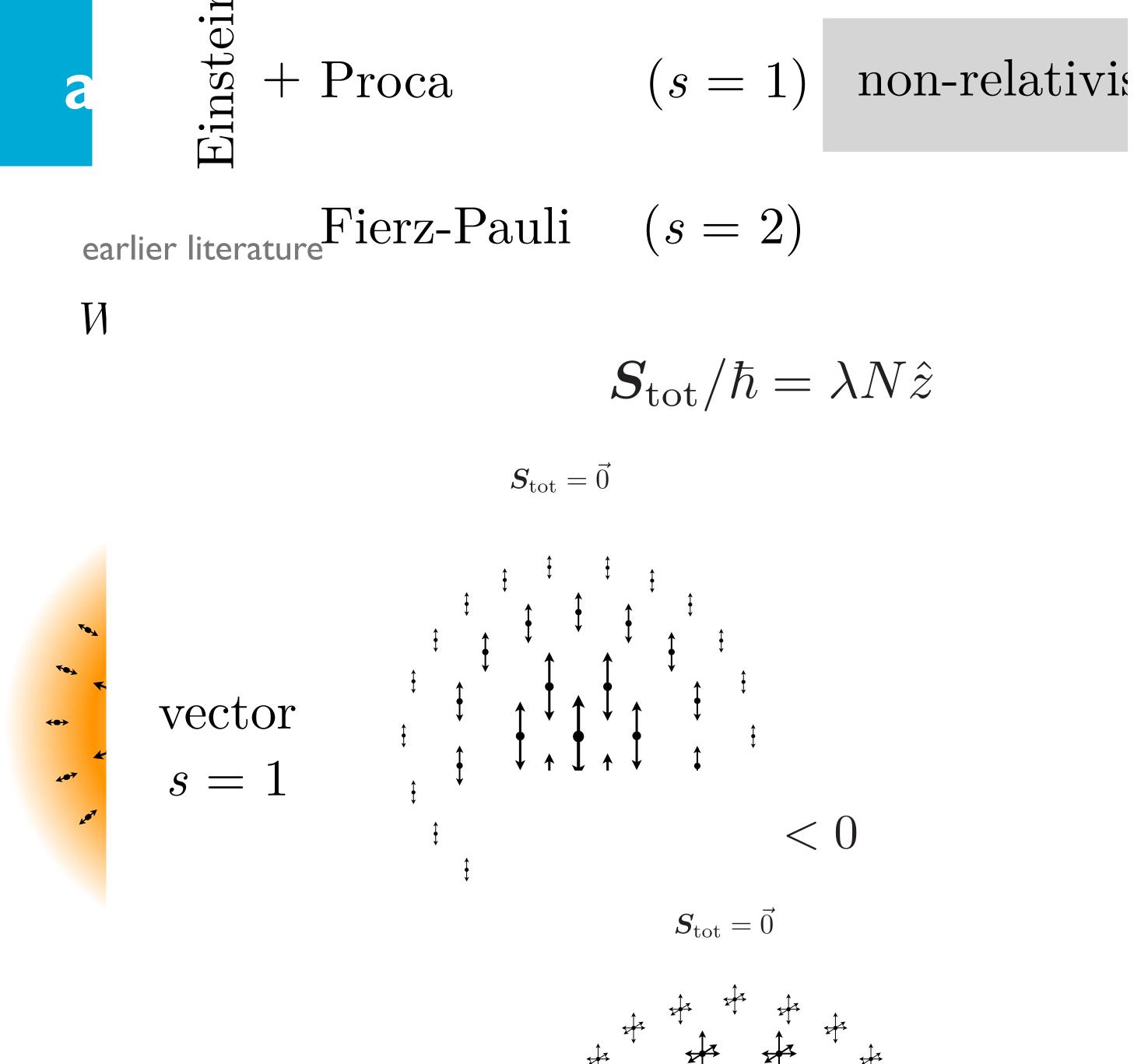




MA, Jain, Karur & Mocz(2022)

Jain, MA, Thomas, Wanichwecharungruang (2023)

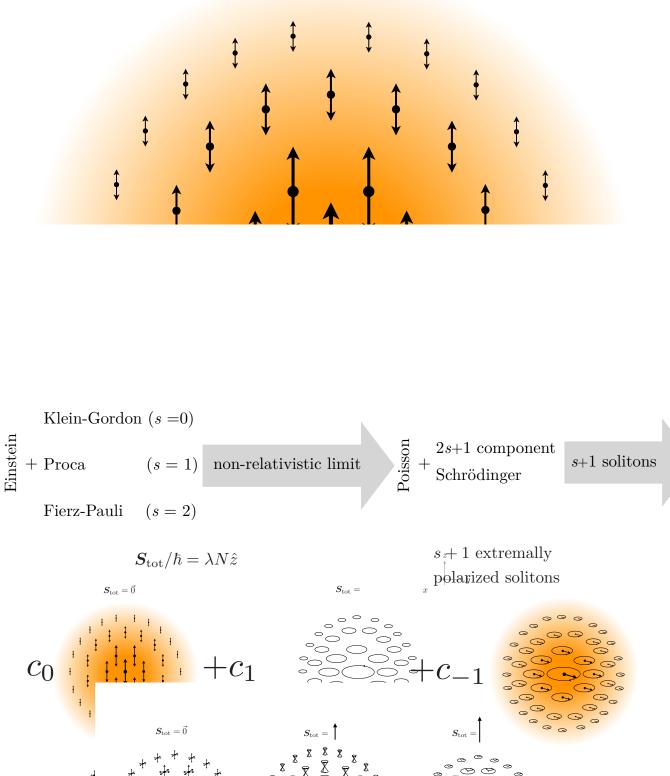
### 2022) 2023)



#### Einste (s = 1)+ Proca

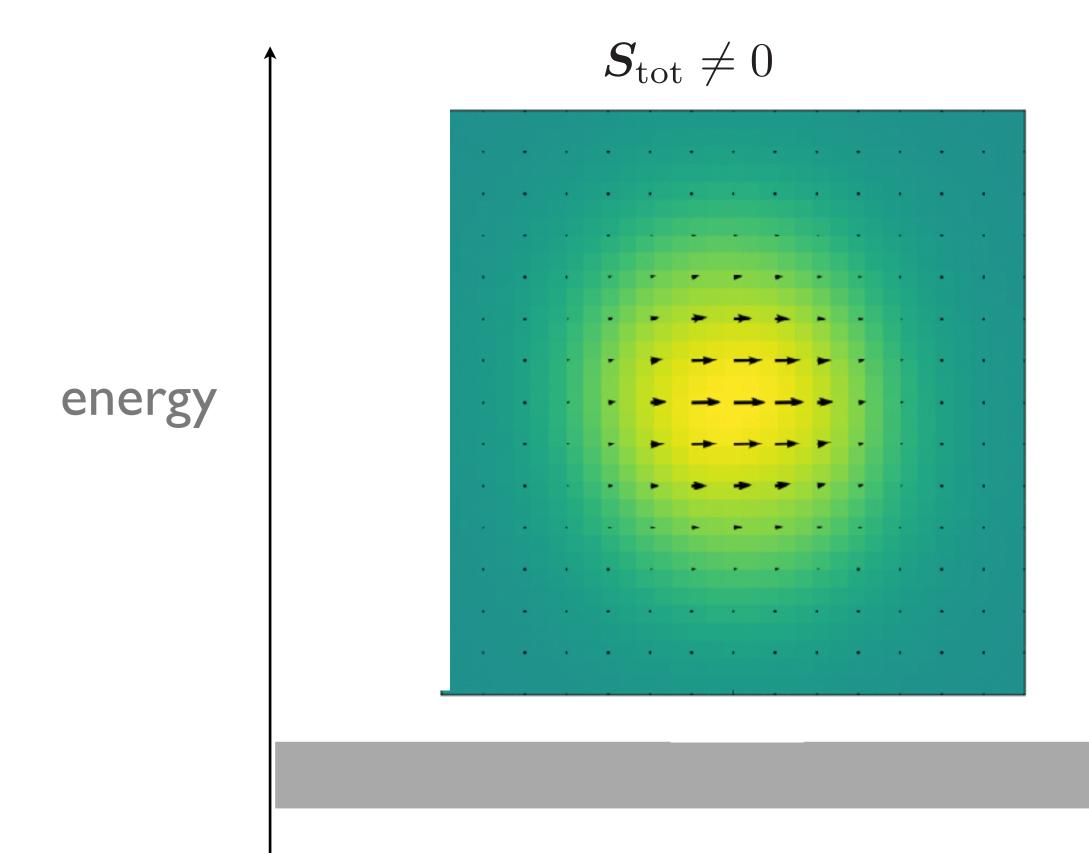
Fierz-Pauli (s = 2)

> $S_{
> m tot}/\hbar=\lambda\Lambda$  at least when non-relativistic Lozanov & Adshead (2021)  $S_{\text{tot}} = 0$



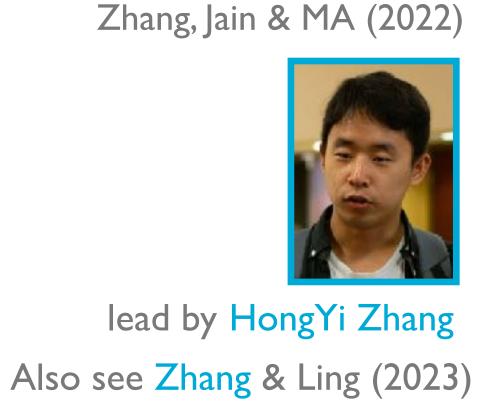


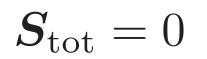
## attractive non gravitational self-interactions

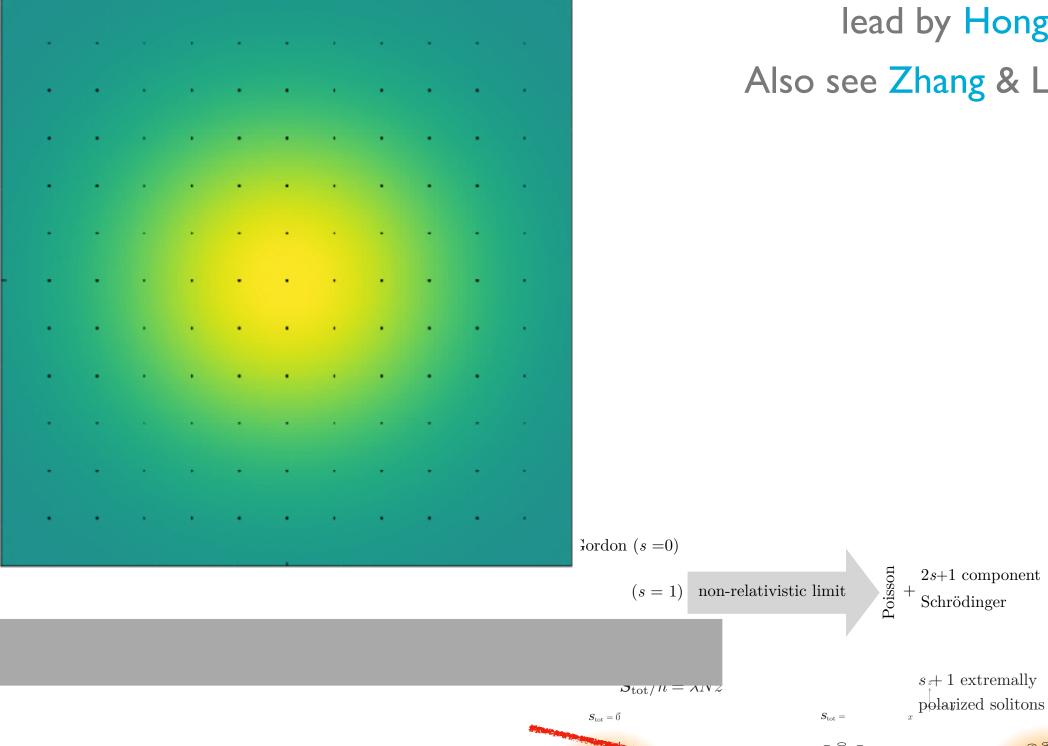


Also Jain (2021)









 $c_0$ 

 $+C_1$ 

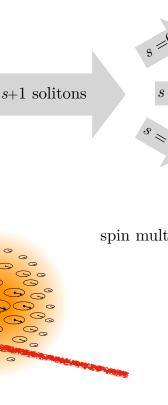
 $S_{
m tot} =$ 

Z Z Z Z Z

 $S_{tot} = \vec{0}$ 

 $+C_{-}$ 

 $oldsymbol{S}_{ ext{tot}} =$ 



#### i-SPin: An integrator for multicomponent Mudit Jain & Mustafa Amin

#### Schrodinger-Poisson systems with self-interactions

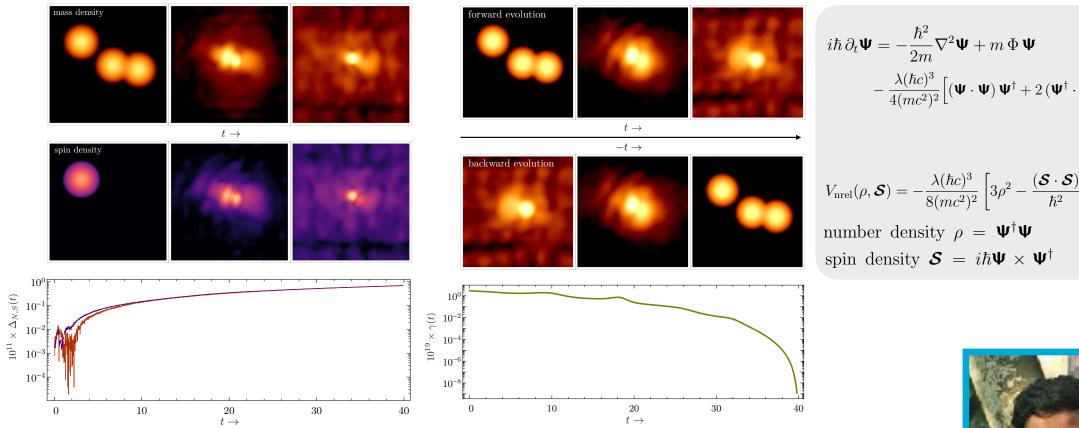
**i-SPin:** An algorithm (and publicly available code) to numerically evolve multicomponent Schrodinger-Poisson (SP) systems, including attractive/repulsive self-interactions + gravity

problem: If SP system represents the non-relativistic limit of a massive vector field, nongravitational self-interactions (in particular, *spin-spin* type interactions) introduce new challenges related to mass and spin conservation which are not present in purely gravitational systems.

solution: Above challenges addressed with a novel analytical solution for the non-trivial 'kick' step in the algorithm (sec 4.3.2)

features: (i) second order accurate evolution (ii) spin and mass conserved to machine precision (iii) reversible

generalizations: *n*-component fields with SO(n) symmetry, an expanding universe relevant for cosmology, and the inclusion of external potentials relevant for laboratory settings



#### **i-SPin 2**: An integrator for general spin-s Gross-Pitaevskii systems

i-Spin 2: An algorithm for evolving general spin-s Gross-Pitaevskii / non-linear Schrodinger systems carrying a variety of interactions, where the 2s+1 components of the 'spinor' field represent the different spin-multiplicity states.

Allowed interactions: Nonrelativistic interactions up to quartic order in the Schrodinger field (both short and long-range, and spin-dependent and spin-independent interactions), including explicit spin-orbit couplings. The algorithm allows for spatially varying external and/ or self-generated vector potentials that couple to the spin density of the field.

Applications: (a) Laboratory systems such as spinor Bose-Einstein condensates (BECs). (b) Cosmological/astrophysical systems such as self-interacting bosonic dark matter.

Numerical features: Our symplectic algorithm is second-order accurate in time, and is extensible to the known higher-order accurate methods.

$$x = 0$$

$$egin{split} \mathcal{S}_{\mathrm{nr}} &= \int \mathrm{d}t\,\mathrm{d}^3x \Bigg[ rac{i}{2} \psi_n^\dagger \dot{\psi}_n + \mathrm{c.c.} - rac{1}{2\mu} 
abla \psi_n^\dagger \cdot 
abla \psi_n \ &- \mu 
ho V(oldsymbol{x}) - \gamma\,oldsymbol{\mathcal{S}} \cdot oldsymbol{ar{B}}(oldsymbol{x},t) - V_{\mathrm{nn}} \ &- rac{\xi}{2} rac{1}{(2s+1)} |\psi_n\, \hat{A}_{nn'}\psi_{n'}|^2 \ &+ i\,g_{ij}\,\psi_n^\dagger\, [\hat{S}_i]_{\mathrm{nn'}}\,
abla_j\,\psi_n \Bigg], \end{split}$$

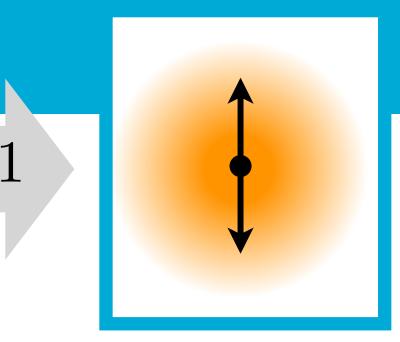
with  $\bar{\boldsymbol{B}}(\boldsymbol{x},t) = f(t)\boldsymbol{B}(\boldsymbol{x})$ , and

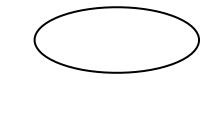
$$V_{
m nrel}(
ho, oldsymbol{\mathcal{S}}) = -rac{1}{2\mu^2} \left[\lambda 
ho^2 + lpha \left(oldsymbol{\mathcal{S}}\cdotoldsymbol{\mathcal{S}}
ight)
ight]$$

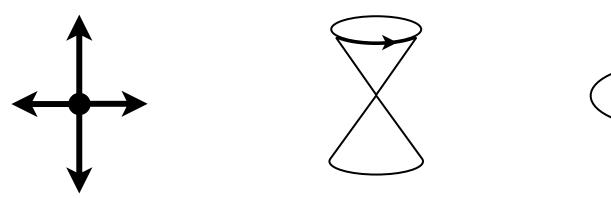
number density  $\rho = \psi_n^{\dagger} \psi_n$  $oldsymbol{\mathcal{S}}=\psi_n^*\,\hat{oldsymbol{S}}_{nn'}\,\psi_{n'}$ spin density

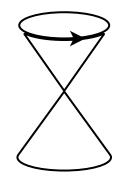


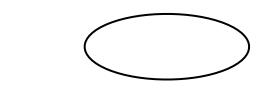
## intrinsic spin

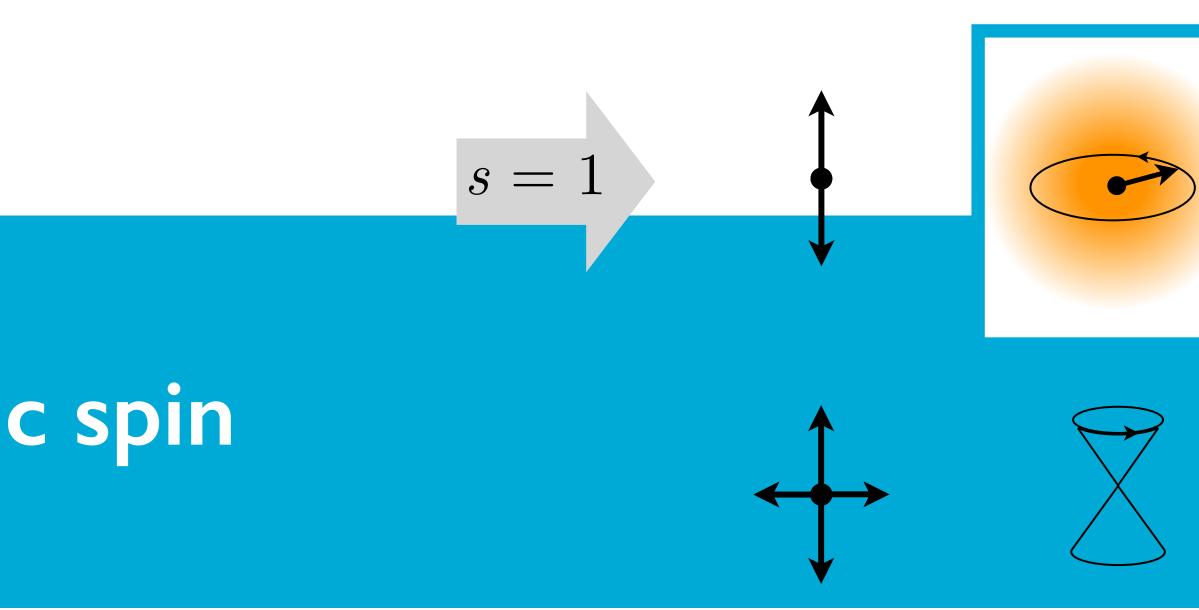












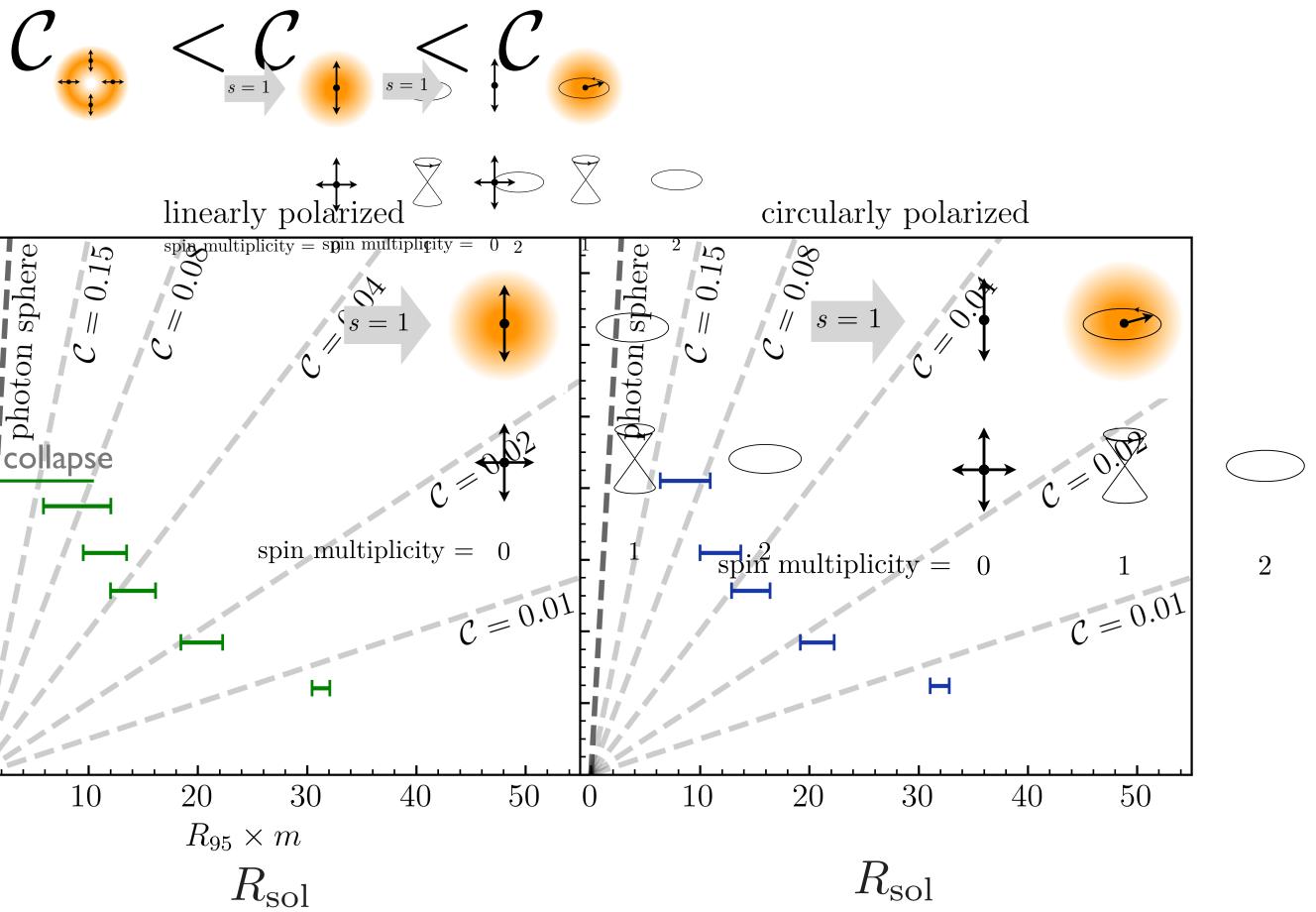
#### spin multiplicity = 01

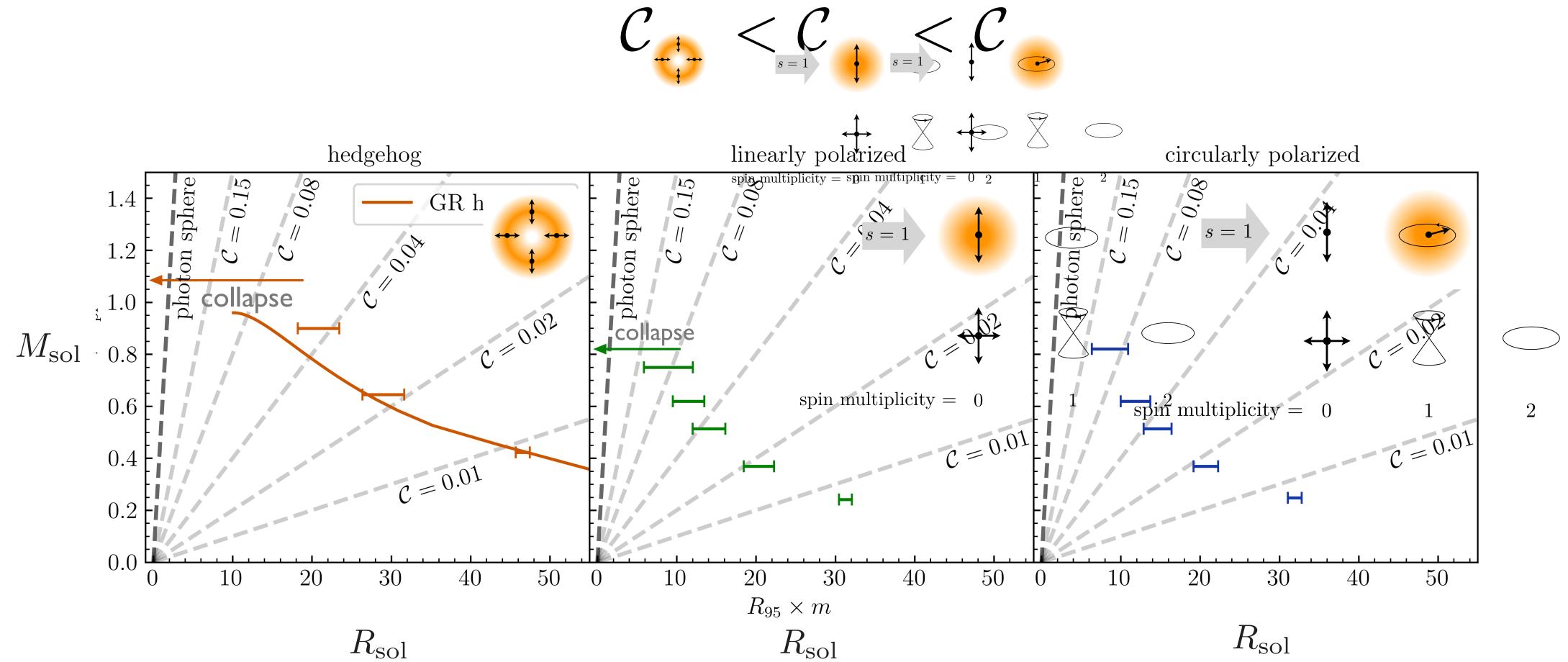




### compactness of polarized solitons

#### more resistance to collapse to BH for circularly polarized stars





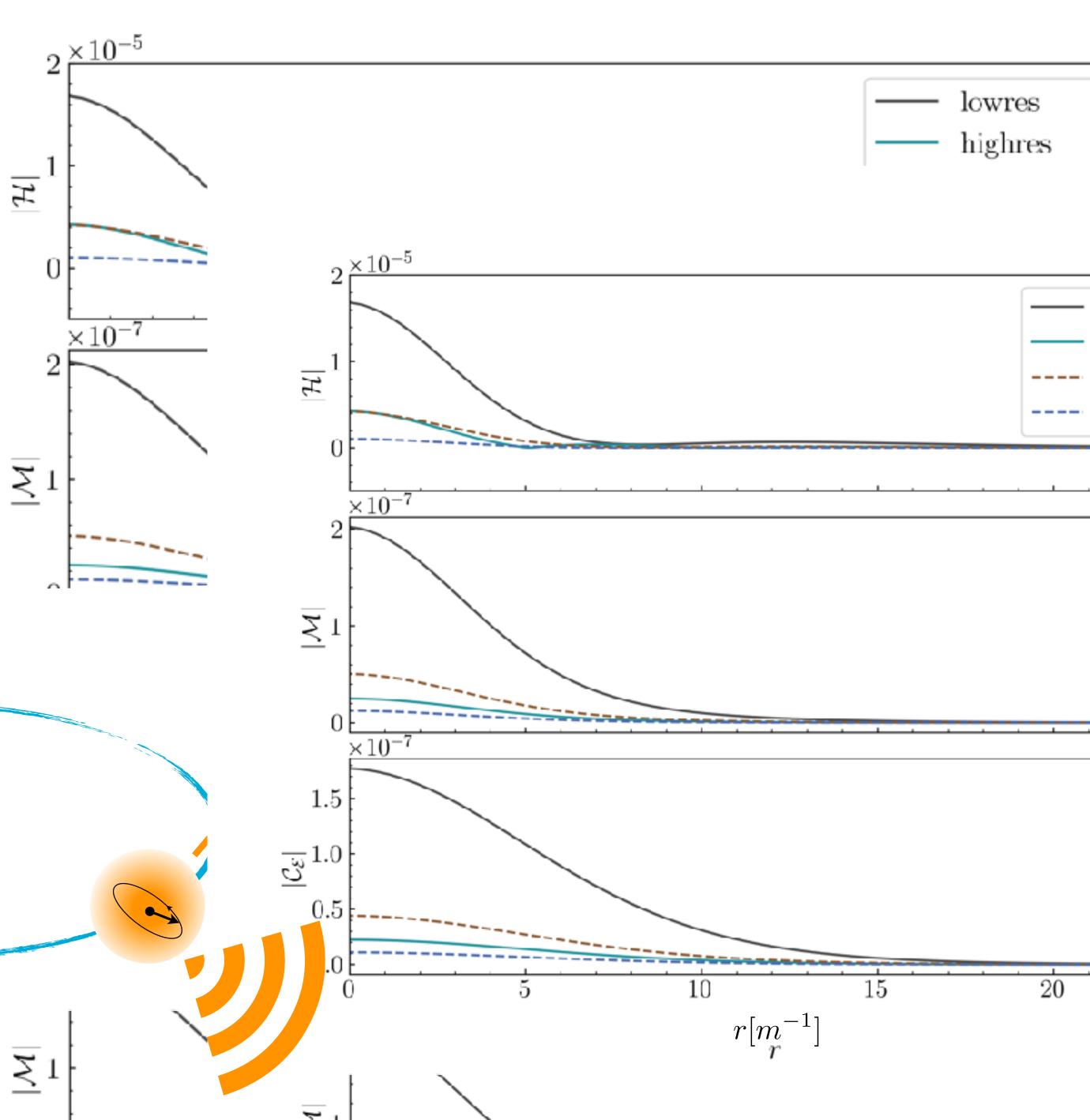
 $\mathcal{C} = GM/Rc^2$ 

with Thomas Helfer & Zipeng Wang (soon, 2023)



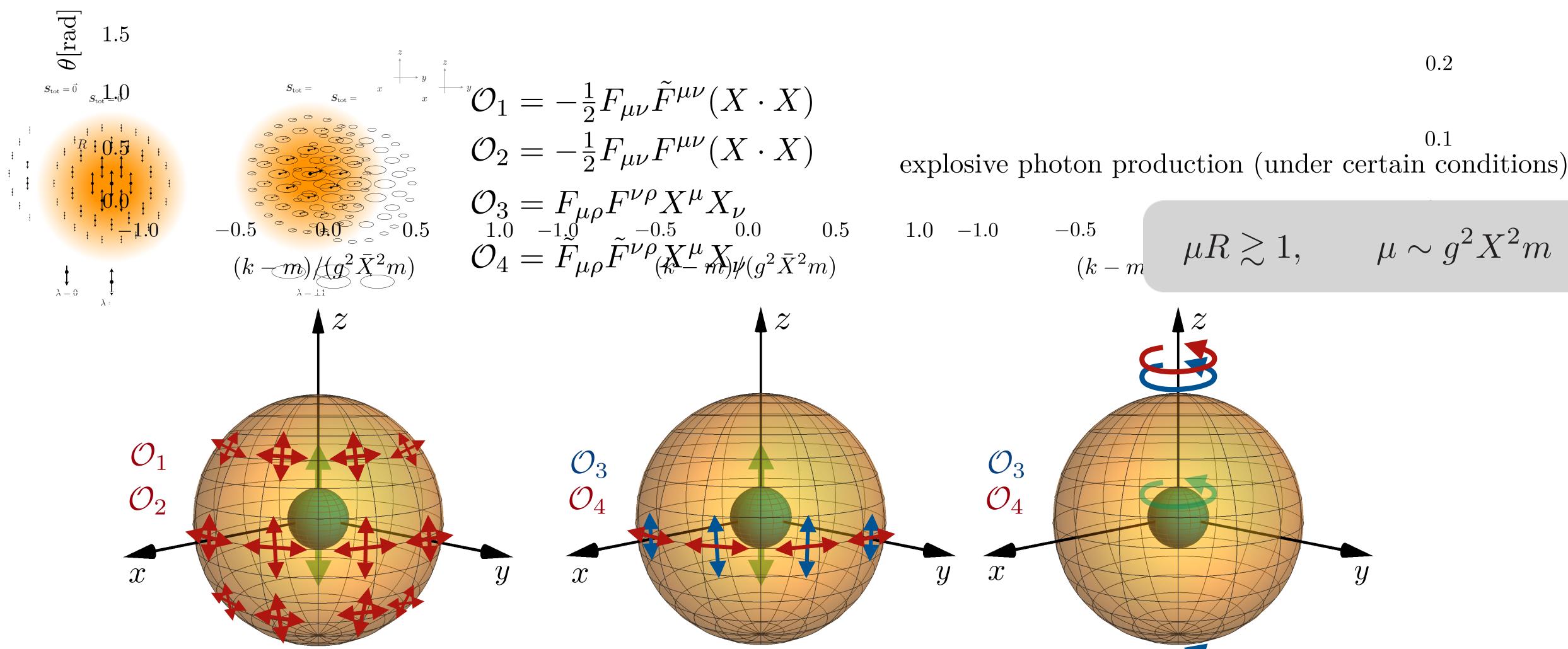
## gravitational waves and s

$$V = -\frac{GM_1M_2}{r} \left[ 1 + \mathcal{O}(v^2/c^2) - \frac{2}{rc} [\hat{r}] + \frac{1}{r^2c^2} \left\{ \frac{S_1}{M_1} \cdot \frac{S_2}{M_2} - 3\left(\frac{S_1}{M_1} \cdot \hat{r}\right) \right\} \right]$$



3.0

### spit of soliton & polarization of photons 2.0





0.3

with Schiappacasse & Long (2022)



# early universe formation mechanism: initial power spectrum — nonlinear structure

## gravitational particle production to nonlinear structures

cannot easily do ultralight dark photons  

$$\Omega_{\rm vdm} \sim 0.3 \left(\frac{m}{10^{-5} \, {\rm eV}}\right)^{1/2} \left(\frac{H_{\rm inf}}{10^{14} \, {\rm GeV}}\right)$$
  
Graham, Mardon, Rajendran (2016)  
Ahmed, Grzadkowski, Socha (2020)

Kolb & Long (2020)

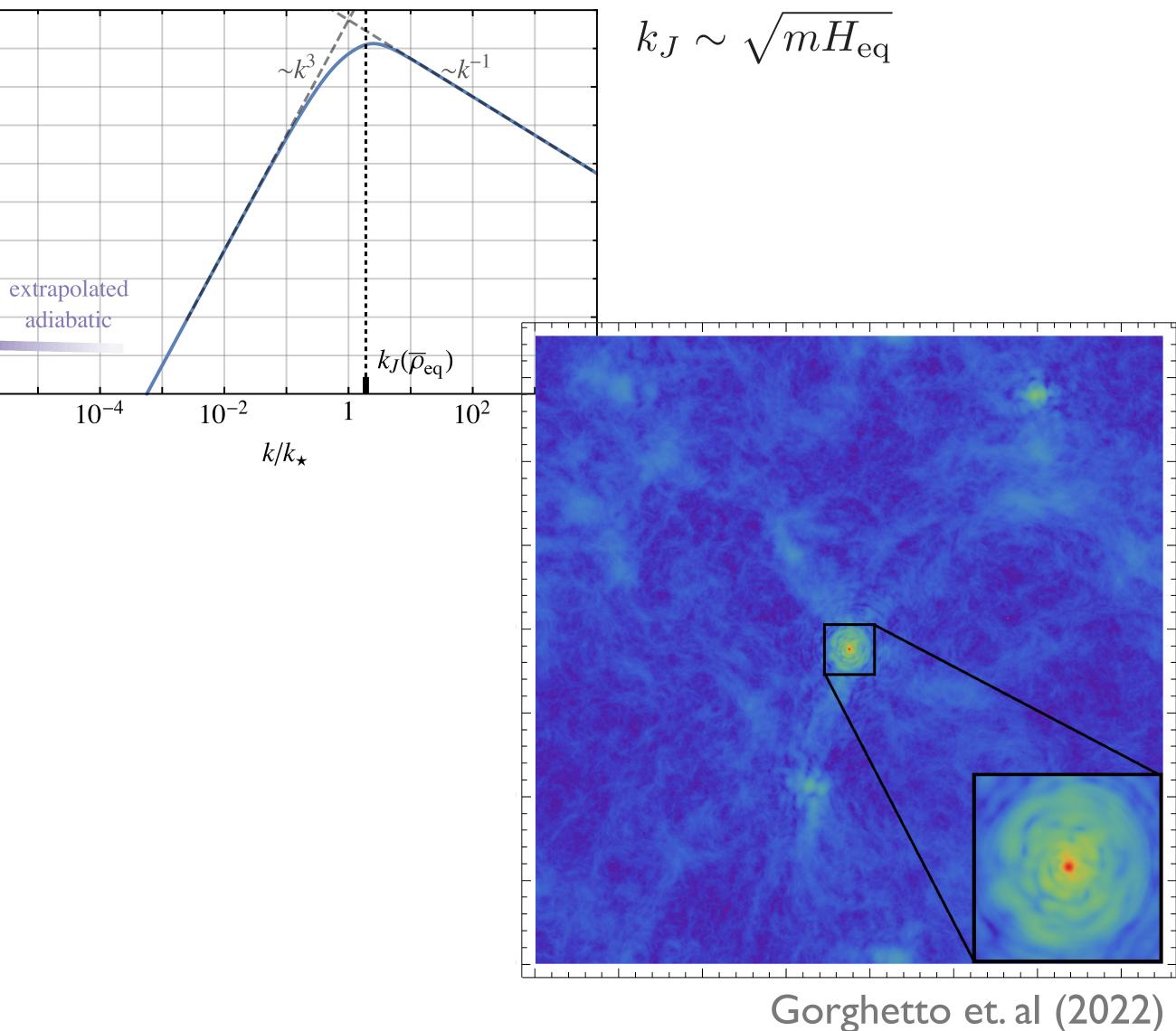
early derivation of action for longitudinal mode: Himmetoglu, Contaldi & Peloso (2008)

$$M_{\rm sol}(a) \sim 10^{-23} M_{\odot} \left(\frac{a_{\rm eq}}{a}\right)^{3/4} \left(\frac{{\rm eV}}{m}\right)^{3/2}$$
  
 $R_{\rm sol}(a) \sim 10^4 \,{\rm km} \left(\frac{a}{a_{\rm eq}}\right)^{3/4} \left(\frac{{\rm eV}}{m}\right)^{1/2}$ 

 $10^{-2}$   $10^{-4}$   $10^{-6}$   $10^{-8}$   $10^{-10}$  $10^{-6}$ 

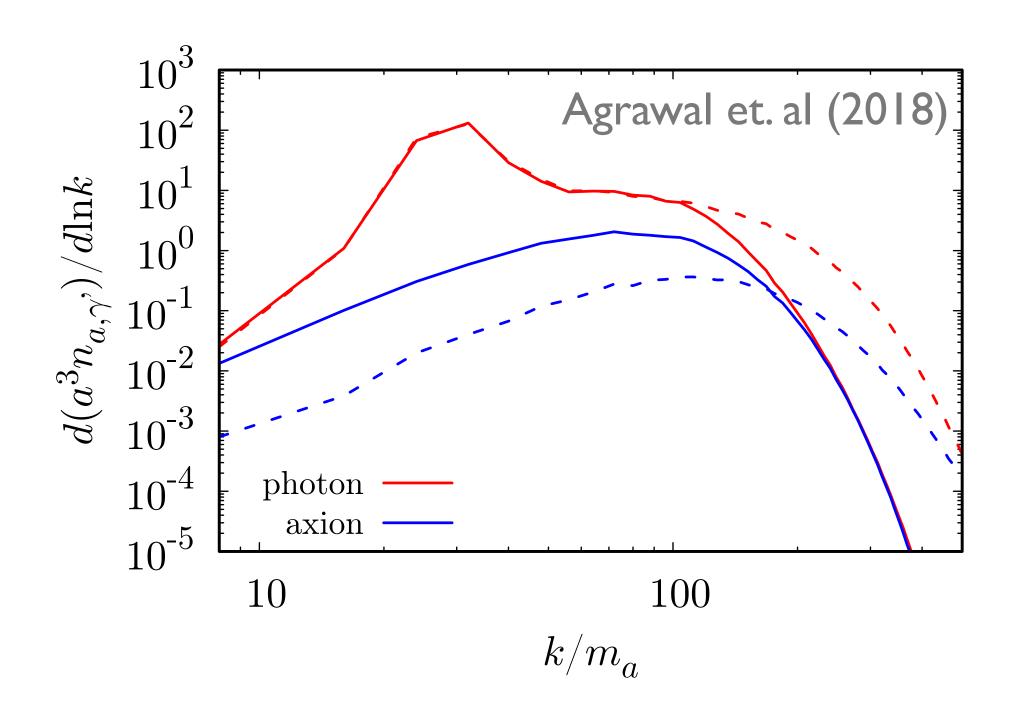
4

 $\mathcal{P}_{\delta}(k)$ 



## non-gravitational post-inflationary dark production?

$$\ddot{\mathbf{A}}_{\mathbf{k},\pm} + H\dot{\mathbf{A}}_{\mathbf{k},\pm} + \left(m_{\gamma'}^2 + \frac{k^2}{a^2} \mp \frac{k}{a}\frac{\beta\dot{\phi}}{f_a}\right)\mathbf{A}_{\mathbf{k},\pm} = 0$$



Co, Pierce, Zhang, and Zhao (2018) Dror, Harigaya, and Narayan (2018) Bastero-Gil, Santiago, Ubaldi, Vega-Morales (2018)

Also see: Long & Wang for production from strings and Co et. al for production from axion rotations

## lower bound on mass ? can do ultralight dark photons

Also see: Adshead, Lozanov and Weiner (2023) Nakai, Namba and Obata (2023)





## A lower bound on dark matter mass Mustafa A. Amin RICE

with Mehrdad Mirbabayi (ICTP Trieste)

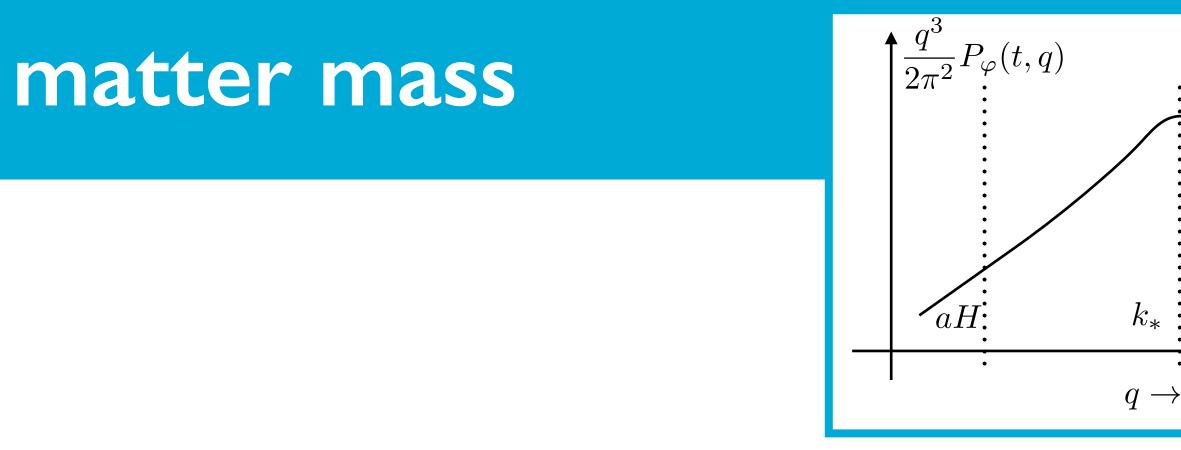


arXiv:2211.09775

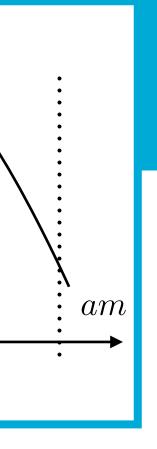


## a lower bound on dark matter mass

# Dark matter density dominated by sub-Hubble field modes $\implies m \gtrsim 10^{-18} \,\mathrm{eV}$



MA & Mirbabayi (2022)





### our argument

Dark matter density dominated by sub-Hubble field modes

1. white-noise isocurvature excess in isocurvature density pert.

2. [free-streaming] suppression in adiabatic density pert.

1. and 2. not seen for  $k < k_{\rm obs} \sim 10 \,{\rm Mpc}^{-1}$ 



$$10^{-18} \,\mathrm{eV}$$

MA & Mirbabayi (2022)





"model independent" -- applies to all gravitationally interacting, non-relativistic fields (scalar, vector, tensor ...) "loophole" — inflationary production with infrared spectra (not sub-Hubble) for vectors (and tensors?), even inflationary production leads to sub-Hubble spectra

$$k_{\rm fs} \ll k_J \sim a\sqrt{mH} \Longrightarrow {\rm stronger bo}$$

 $m_{\rm bound} \propto k_{\rm obs}^2 \Longrightarrow \text{look at MW satellites}$ 

ound

with Nadler and Wechsler



## comparison with literature

$$\begin{split} m \gtrsim 2 \times 10^{-21} \,\mathrm{eV} & \Pi \\ m \gtrsim 3 \times 10^{-21} \,\mathrm{eV} & \Pi \\ m \gtrsim 3 \times 10^{-19} \,\mathrm{eV} & \Pi \\ m \gtrsim 4 \times 10^{-21} \,\mathrm{eV} & \Pi \\ m \gtrsim 10^{-18} \,\mathrm{eV} \end{split}$$

\*Above are model independent constraints, stronger constraints exist for particular models (Irsic, Xiao & McQuinn, 2020)

- Irsic et. al (2017) Ly $\alpha$
- Nadler et. al (2021) MW satellites
- Dalal & Kravtsov (2022) dynamical heating of stars
- Powell et. al (2023) lensing

MA & Mirbabayi (2022)

## some details

\*to us, results were "intuitively convincing" but quantitative calculation is non-trivial \*analytic calculation of density spectra, see appendix of MA & Mirbabayi (2022)



## average density from field

 $arphi(t,oldsymbol{x})$ 



### light, but non-relativistic scalar field during rad. dom.

## average density from field

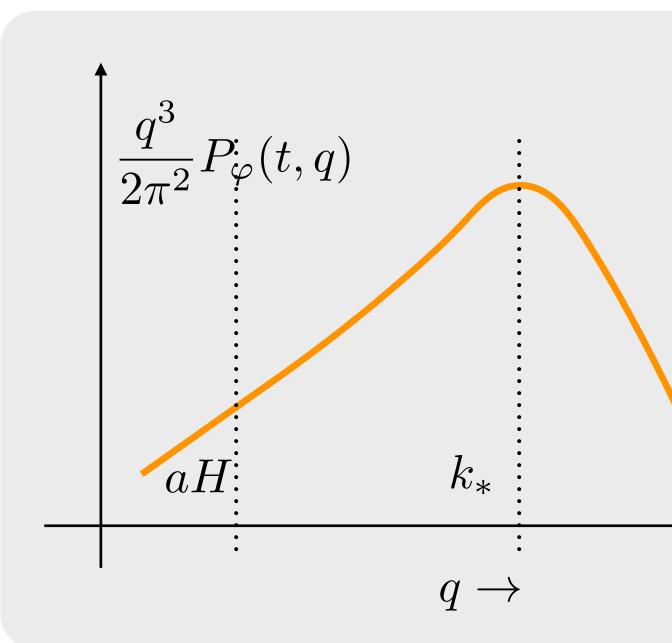
 $arphi(t,oldsymbol{x})$ 

 $\bar{\rho}(t) \approx m^2 \int d\ln q \, \frac{q^3}{2\pi^2} P_{\varphi}(t,q)$ 



light, but non-relativistic scalar field during rad. dom.

dark matter density close to matter radiation eq.





## average density from field

 $\varphi(t, \boldsymbol{x})$ 

 $\bar{\rho}(t) \approx m^2 \int d\ln q \, \frac{q^3}{2\pi^2} P_{\varphi}(t,q)$ 

 $\frac{q^3}{2\pi^2} P_{\varphi}(t,q)$ 

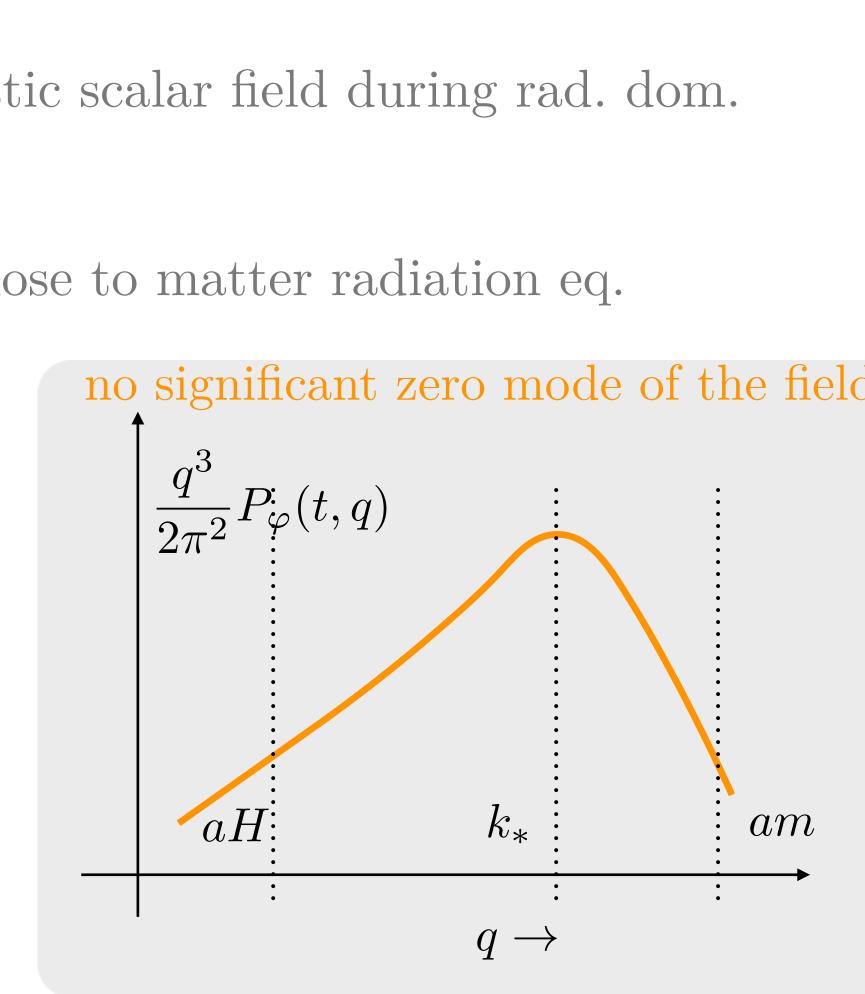
power spectrum of field, peaked at  $k_*$  $a(t)H(t) \ll k_*$  holds for field produced after inflation eventually non-relativistic to be DM  $k_* \ll a(t)m$ 

Such spectra are seen in Graham, Mardon & Rajendran (2015); Agrawal et.al (2018); Adshead, Lozanov & Weiner (2023); Nakai, Namba & Obata (2023) and others ... generally true for "causal" production mechanisms [early examples include axions with PQ breaking after inflation]



light, but non-relativistic scalar field during rad. dom.

dark matter density close to matter radiation eq.



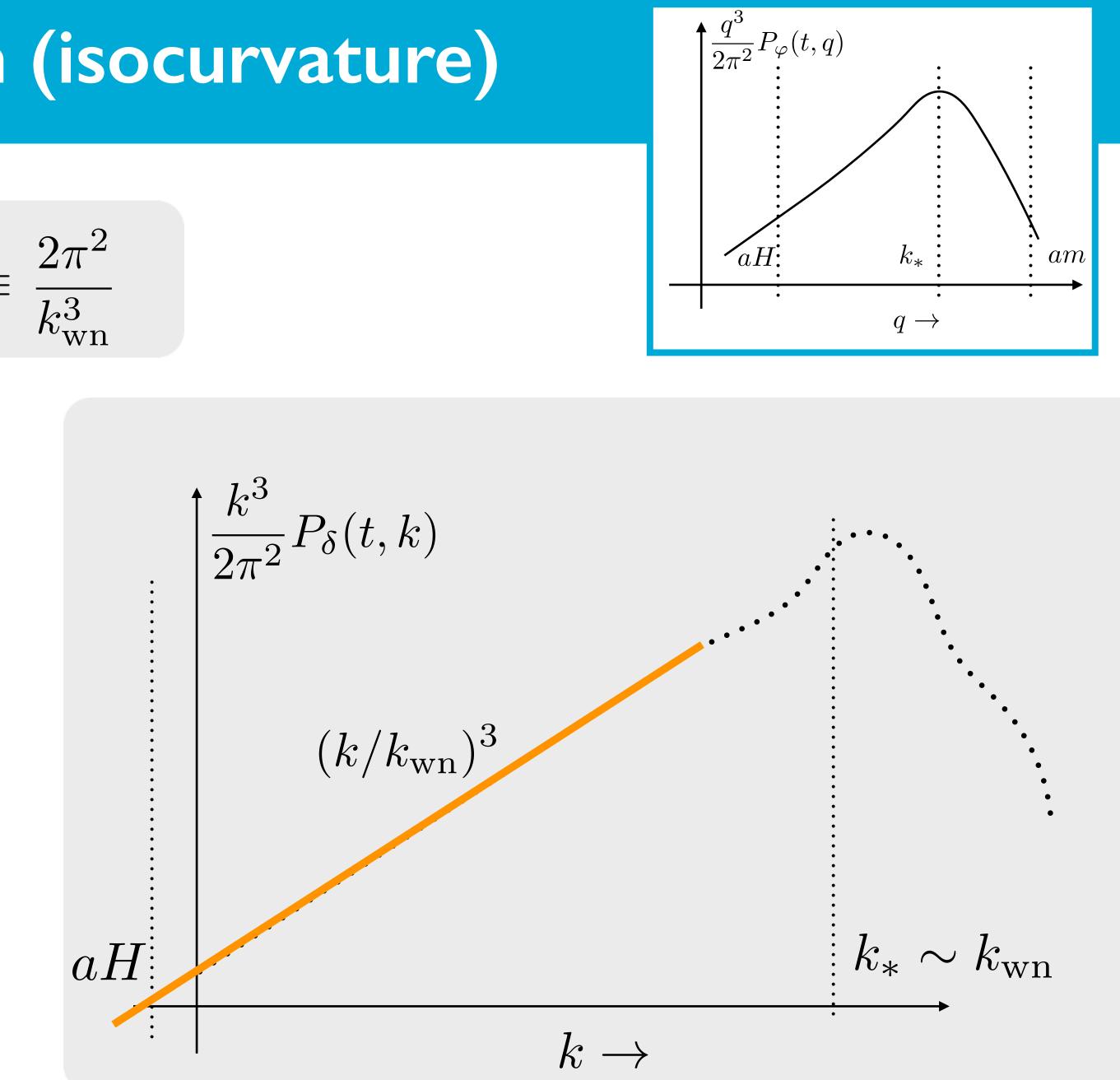
## density power spectrum (isocurvature)

$$P_{\delta}^{(\text{iso})}(t,k) \approx \frac{m^4}{\bar{\rho}^2(t)} \int d\ln q \, \frac{q^3}{2\pi^2} \left[ P_{\varphi}(q,t) \right]^2 \equiv$$

independendent of k for  $k \ll k_*$ 

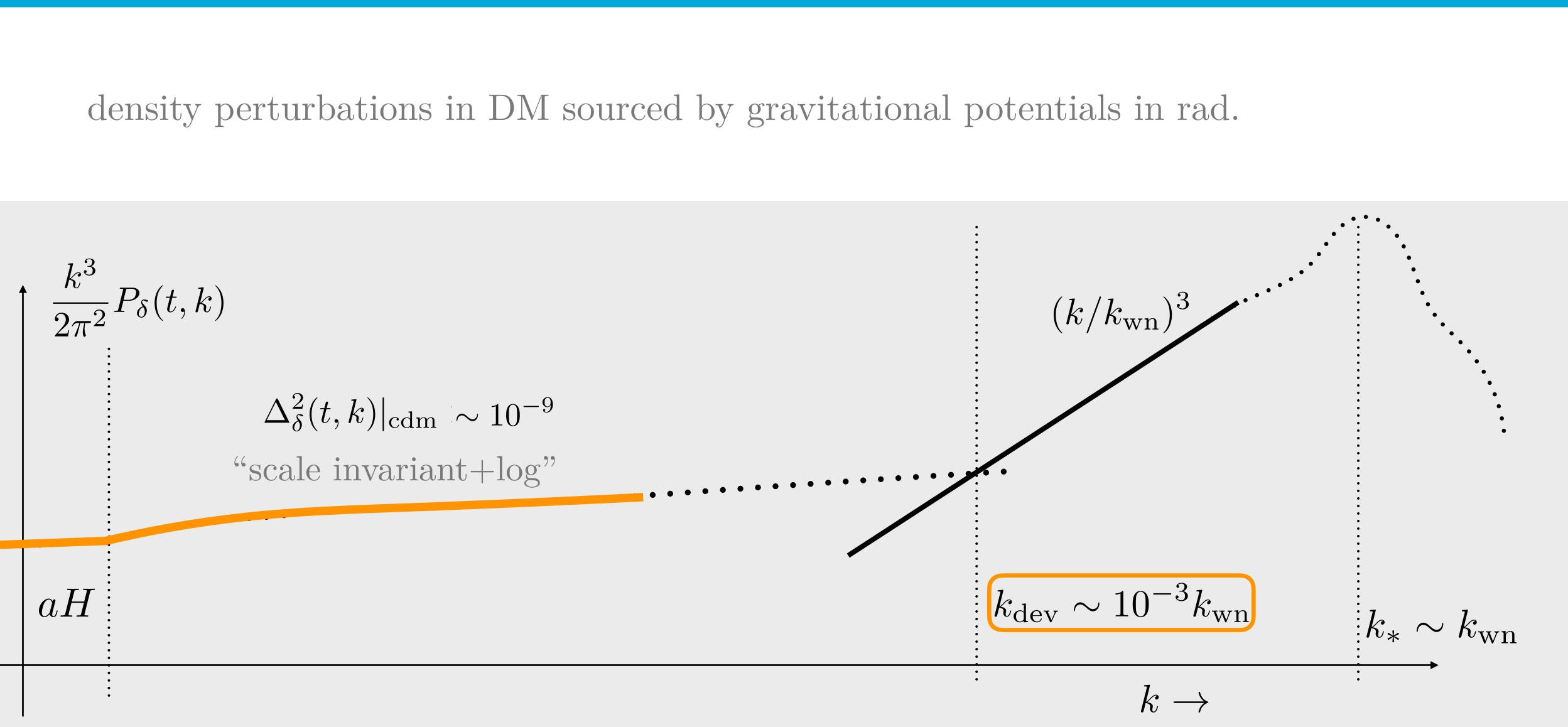
 $k_{\rm wn}$  is defined by the above relation



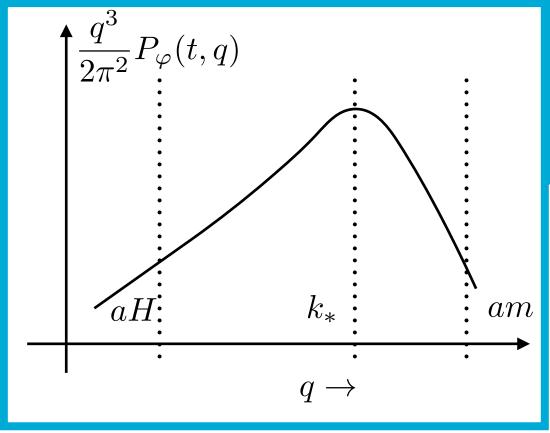


\*ignore gravitational potentials on these scales during radiation domination

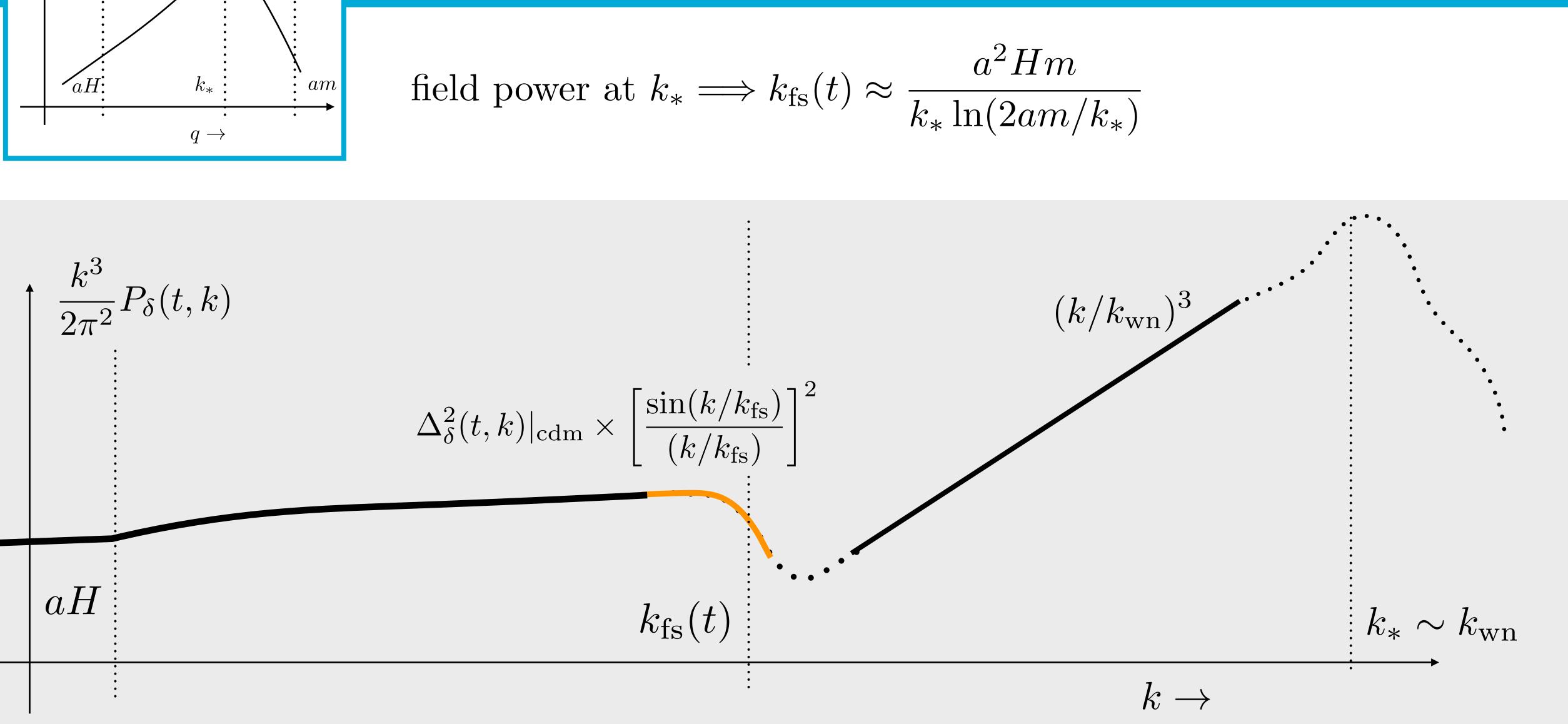
## density power spectrum (adiabatic)







## free streaming !





## our argument — quantitative

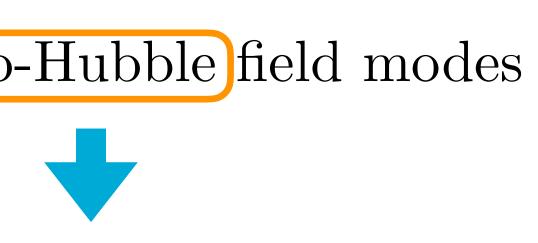
Dark matter density dominated by sub-Hubble field modes

2. free-streaming suppression in adiabatic density pert.

1. and 2. not seen for  $k < k_{obs} \sim 10 \,\mathrm{M}$ 

 $k_{\rm dev}, k_{\rm fs} \gtrsim k_{\rm obs}$ 

 $m \geq$ 



1. white-noise isocurvature excess in isocurvature density pert.  $k_{\rm dev} \approx 10^{-3} k_*$  $k_{\rm fs}(t) \approx \frac{a^2 Hm}{k_* \ln(2am/k_*)}$ 

$$fpc^{-1}$$
 e.g.  $[Ly\alpha]$   
 $10^{-18} eV$ 

Note that we did not need to know  $k_*!$ 









"model independent" -- applies to all gravitationally interacting, non-relativistic fields (scalar, vector, tensor ...) "loophole" — inflationary production with infrared spectra (not sub-Hubble) for vectors (and tensors?), even inflationary production leads to sub-Hubble spectra

$$k_{\rm fs} \ll k_J \sim a\sqrt{mH} \Longrightarrow {\rm stronger bo}$$

 $m_{\rm bound} \propto k_{\rm obs}^2 \Longrightarrow \text{look at MW satellites}$ 

ound

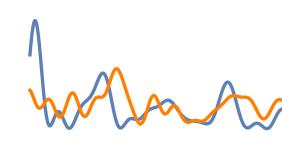
with Nadler and Wechsler





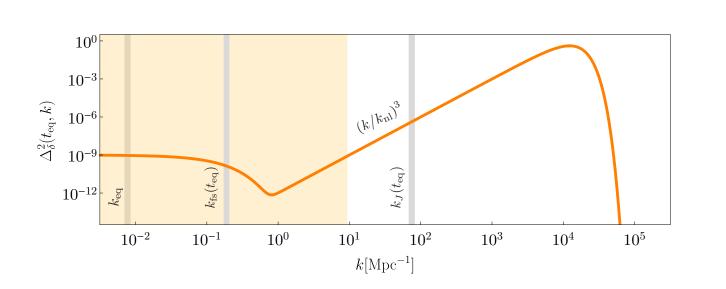
### Phenomenology

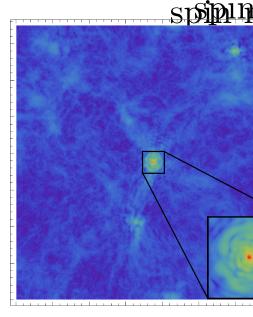
- reduced interference

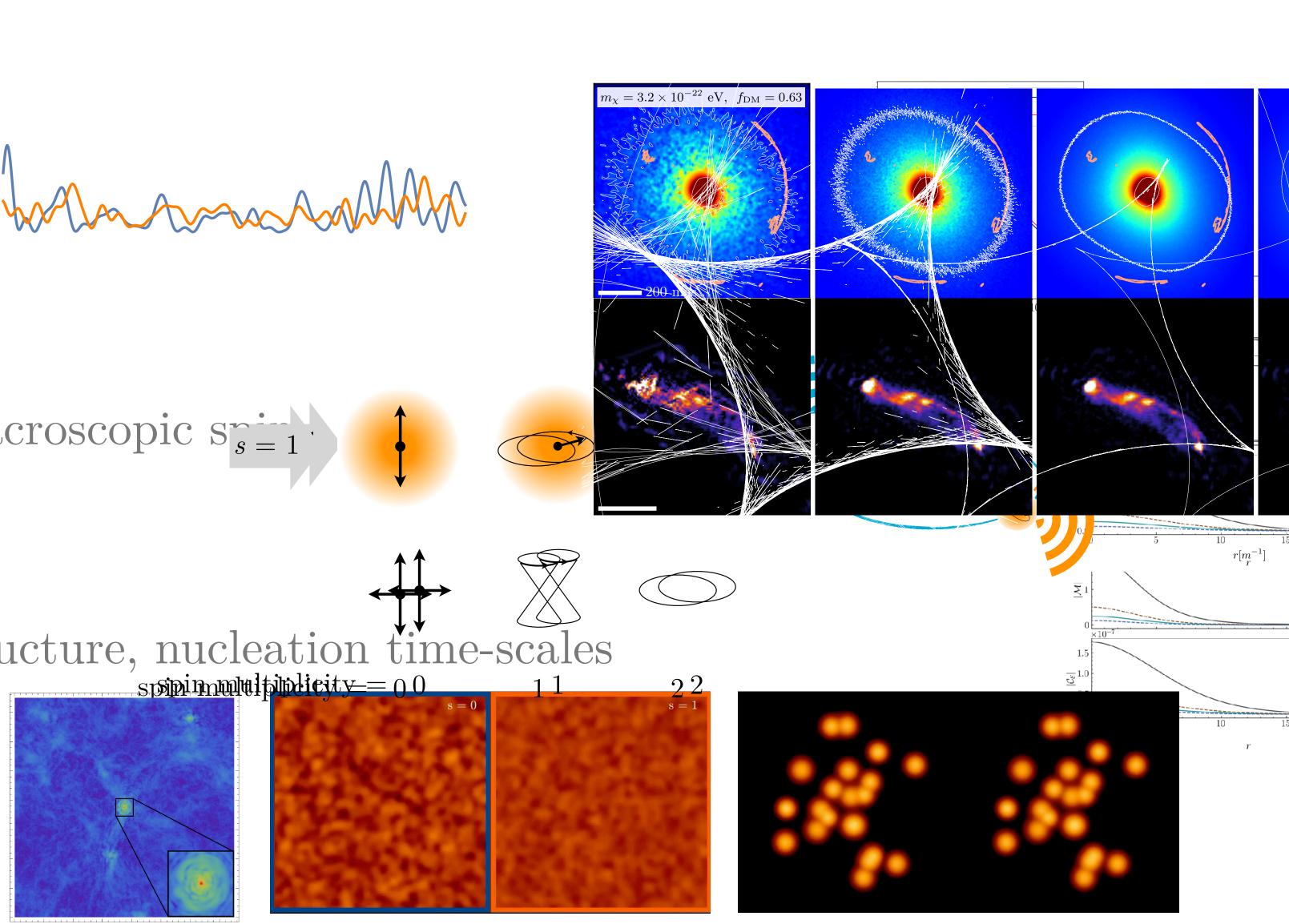


- polarized solitons, with macroscopic  $s_{s=1}^{-1}$ .

- Mass bound, growth of structure, nucleation time-scales









MA, Jain, Karur & Mocz (2022)

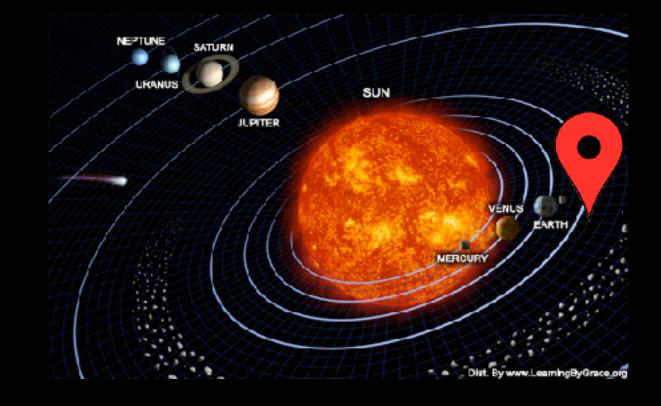


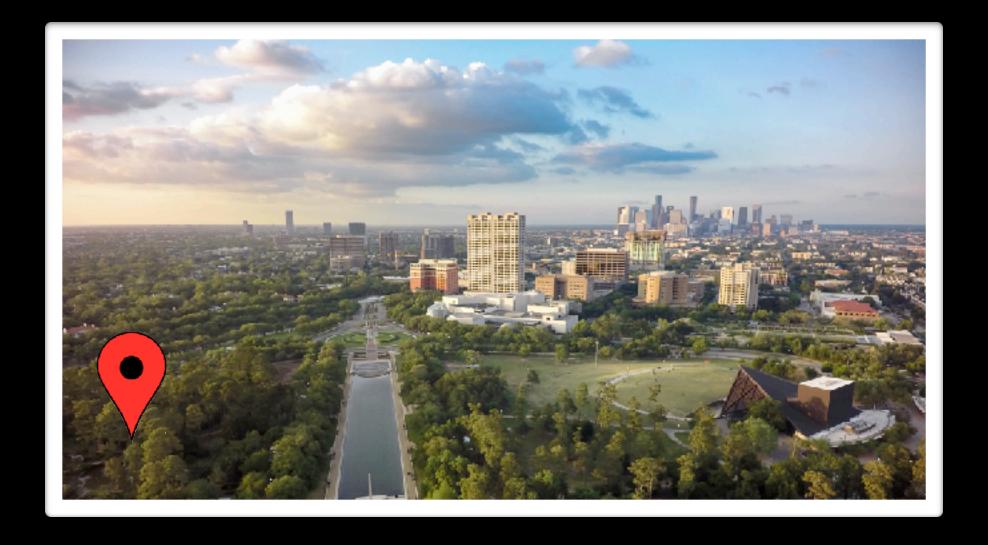


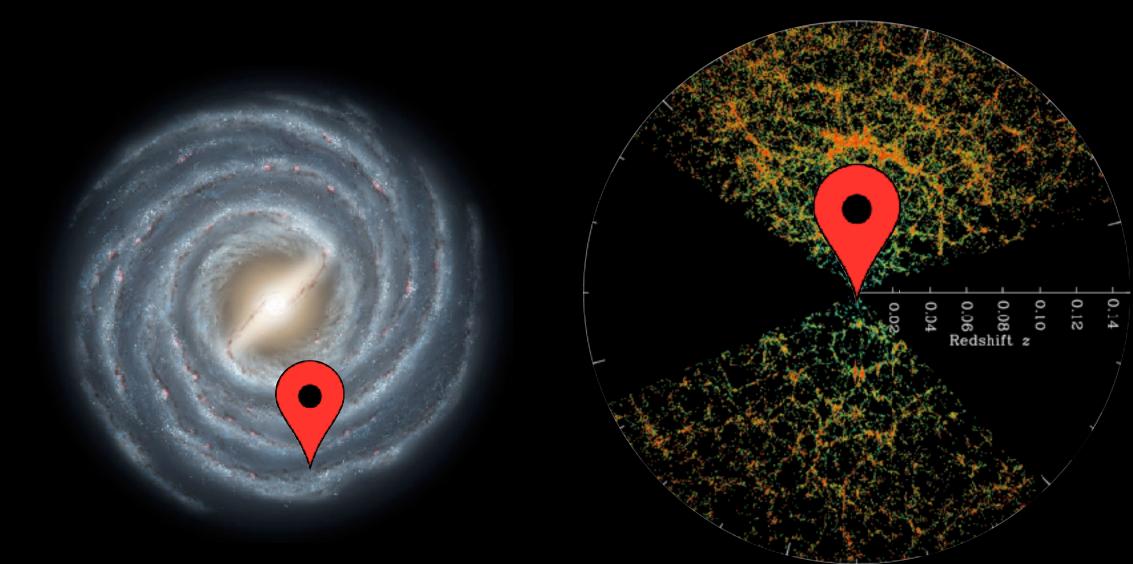














#### Astrophysics of Star and Planet Formation

LEARN MORE

#### Atomic, Molecular and Optical Physics

Nuclear and Particle Physics

A BERNARD

LEARN MORE

#### **Condensed Matter Physics**

LEARN MORE



LEARN MORE



#### Space Plasma Physics

LEARN MORE >

#### **Biological Physics**

LEARN MORE

EARN MORE

#### Relativistic Astrophysics and Cosmology

### RICE NATURAL SCIENCES Department of Physics and Astronomy

- $\sim 40$  faculty
- $\sim 25$  postdocs
- $\sim 110$  grad students

