

A Spin on Wave Dark Matter Mustafa A. Amin RICE

A Spin on Wave Dark Matter

A lower bound on dark matter mass

15 min

Spin of wave DM from astrophysics?

10 min

with Jain Jain, Zhang Jain, Karur, Mocz Jain Long, Schiappacasse Jain, Thomas, Wanischarungarung

with Mehrdad Mirbabayi

2211.09775

2109.04892 2111.08700 2203.11935 2211.08433 2301.11470 2304.01985

dark matter mass?

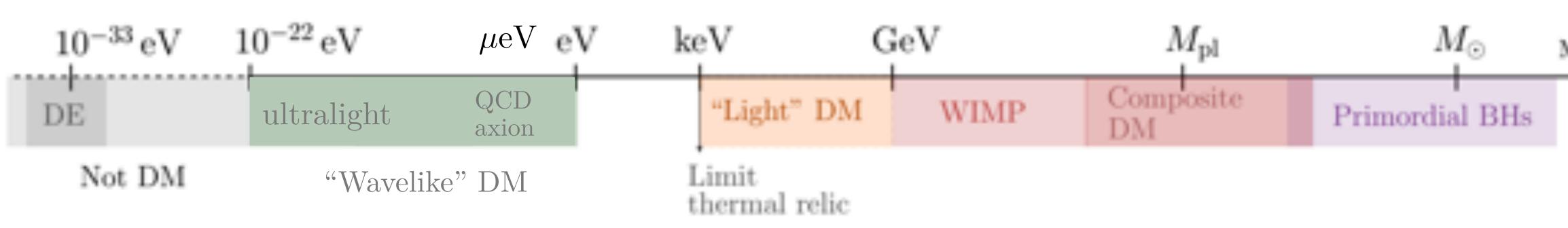
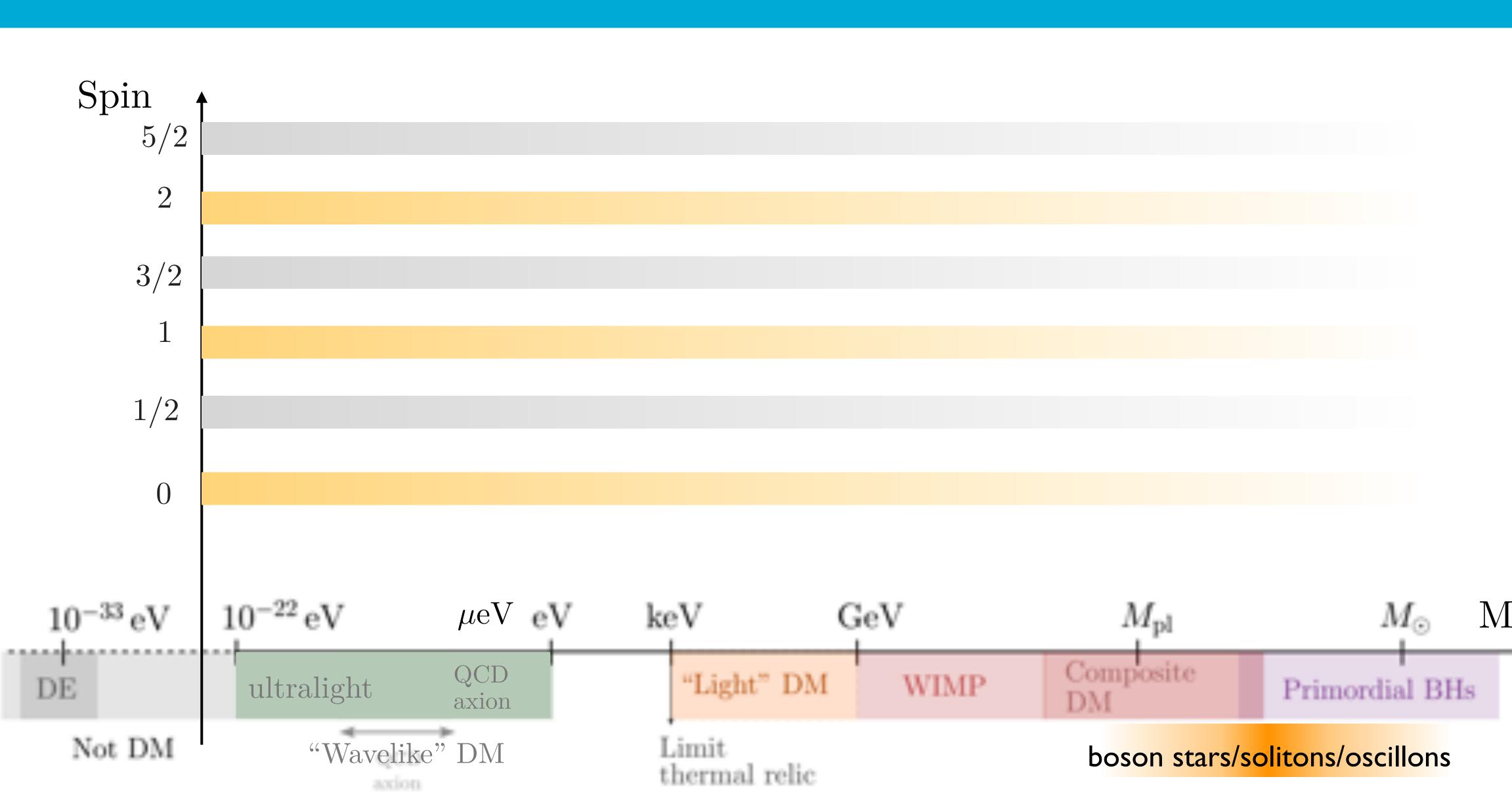
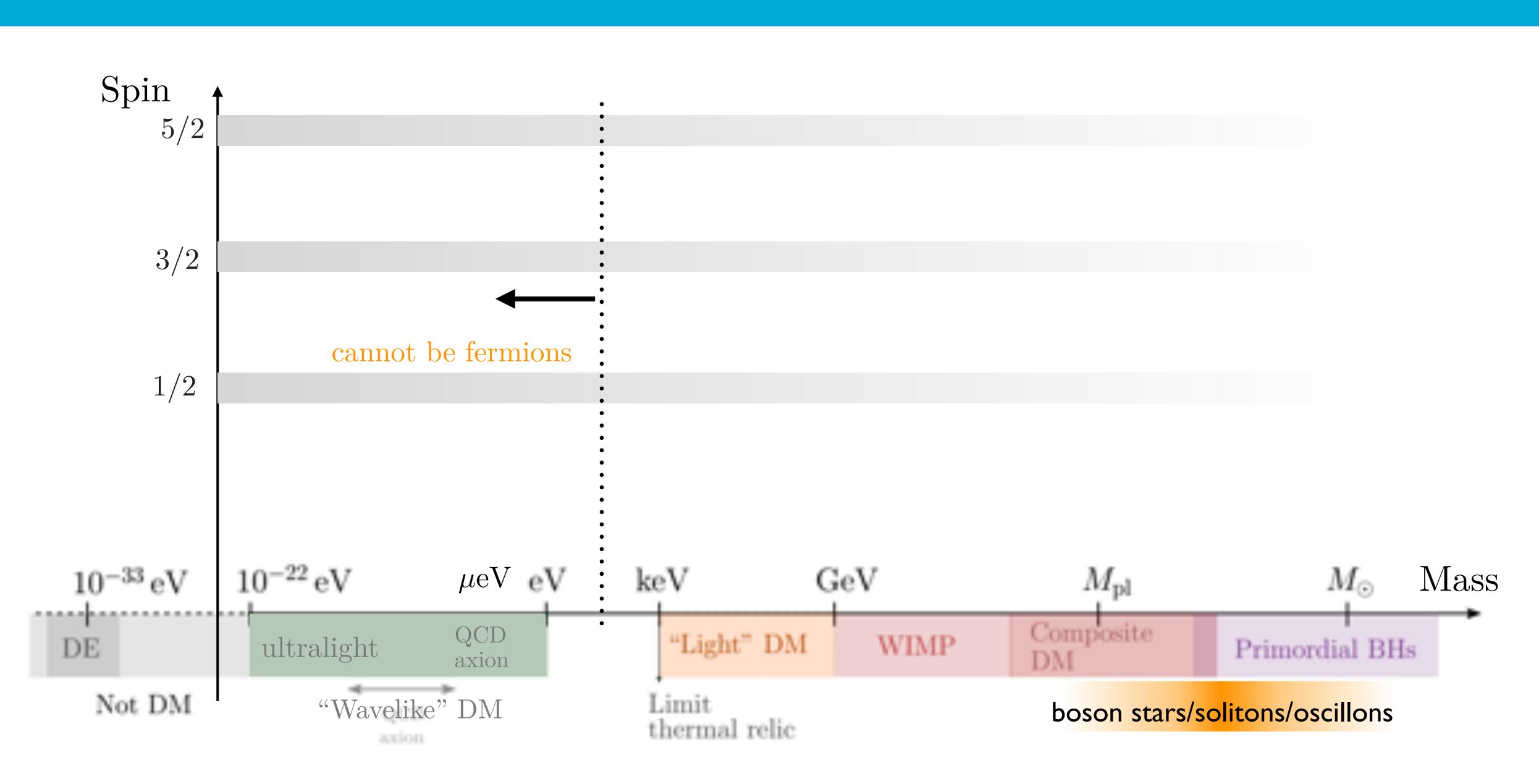


Image credit E. Ferreira (I have modified it for my purpose)

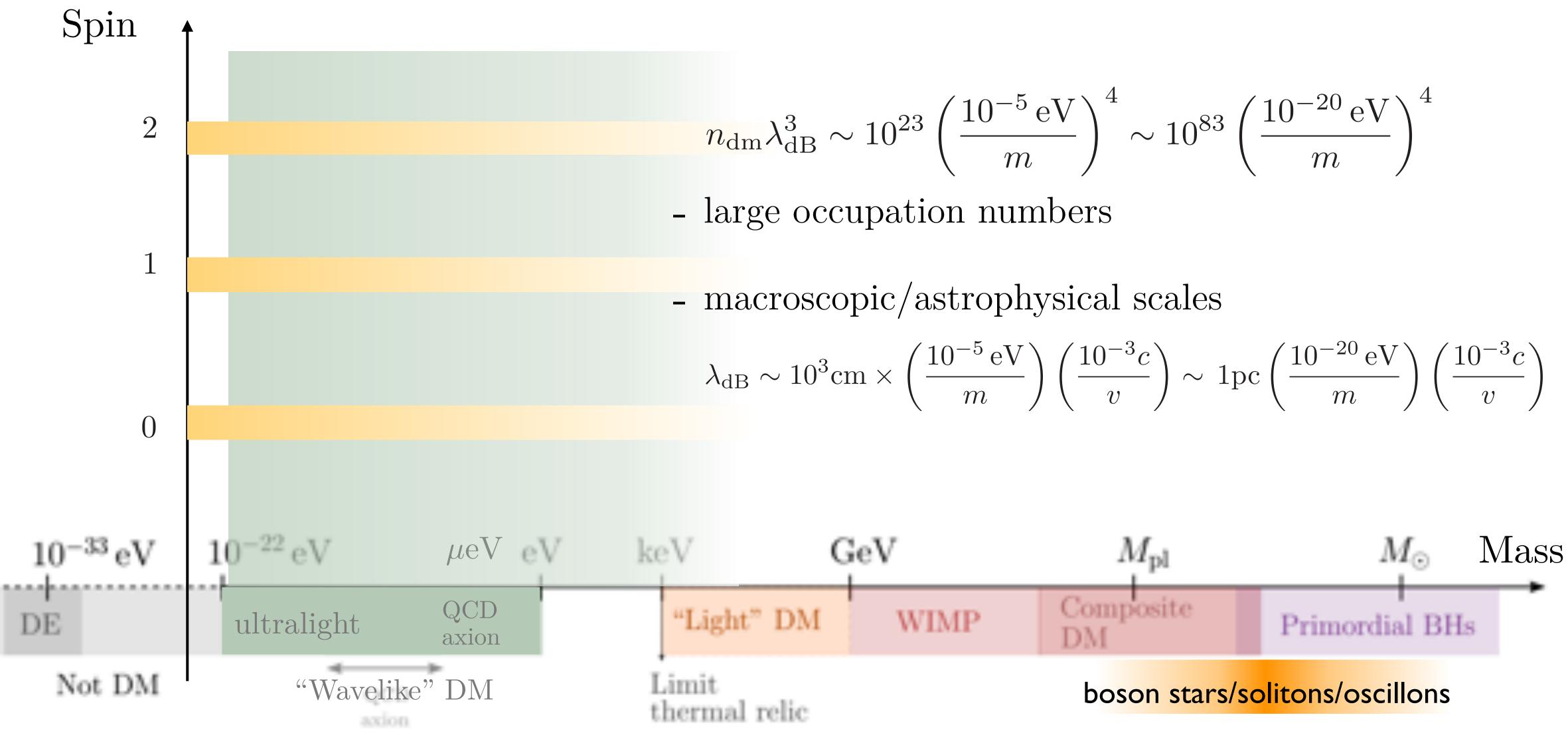
dark matter spin ?



dark matter spin ?



light, bosonic wave dark matter



$$n_{\rm dm} \lambda_{\rm dB}^3 \sim 10^{23} \left(\frac{10^{-5} \,\mathrm{eV}}{m}\right)^4 \sim 10^{83} \left(\frac{10^{-20} \,\mathrm{eV}}{m}\right)^4$$

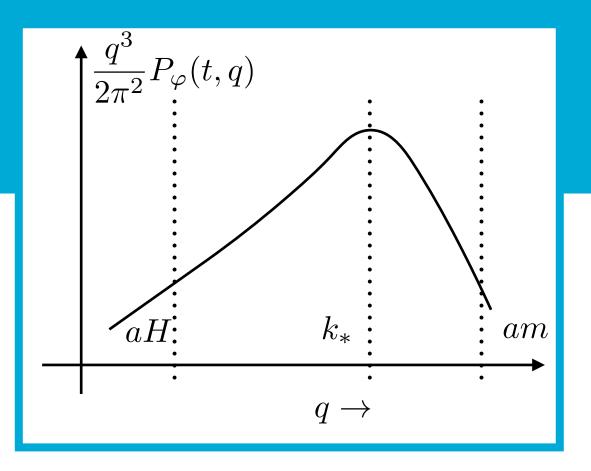
$$d_{\rm dB} \sim 10^3 {\rm cm} \times \left(\frac{10^{-5} {\rm eV}}{m}\right) \left(\frac{10^{-3} c}{v}\right) \sim 1 {\rm pc} \left(\frac{10^{-20} {\rm eV}}{m}\right) \left(\frac{10^{-3} c}{v}\right)$$

A lower bound on dark matter mass Mustafa A. Amin RICE

with Mehrdad Mirbabayi (ICTP Trieste)

arXiv:2211.09775

Dark matter density dominated by sub-Hubble field modes $\implies m \gtrsim 10^{-18} \,\mathrm{eV}$



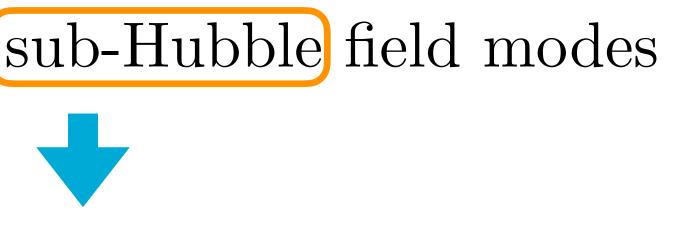
our argument

Dark matter density dominated by sub-Hubble field modes

1. [white-noise] excess in isocurvature density pert.

2. [free-streaming] suppression in adiabatic density pert.

1. and 2. not seen for $k < k_{\rm obs} \sim 10 \,{\rm Mpc}^{-1}$



$$10^{-18} \,\mathrm{eV}$$

comparison with literature

$$\begin{split} m \gtrsim 2 \times 10^{-21} \,\mathrm{eV} & \Pi \\ m \gtrsim 3 \times 10^{-21} \,\mathrm{eV} & \Pi \\ m \gtrsim 3 \times 10^{-19} \,\mathrm{eV} & \Pi \\ m \gtrsim 4 \times 10^{-21} \,\mathrm{eV} & \Pi \\ m \gtrsim 10^{-18} \,\mathrm{eV} \end{split}$$

*Above are model independent constraints, stronger constraints exist for particular models (Irsic, Xiao & McQuinn, 2020)

- Irsic et. al $(2017) Ly\alpha$
- Nadler et. al (2021) MW satellites
- Dalal & Kravtsov (2022) dynamical heating of stars
- Powell et. al (2023) lensing

MA & Mirbabayi (2022)

some details

*to us, results were "intuitively convincing" but quantitative calculation is non-trivial *analytic calculation of density spectra, see appendix of MA & Mirbabayi (2022)

average density from field

 $arphi(t,oldsymbol{x})$

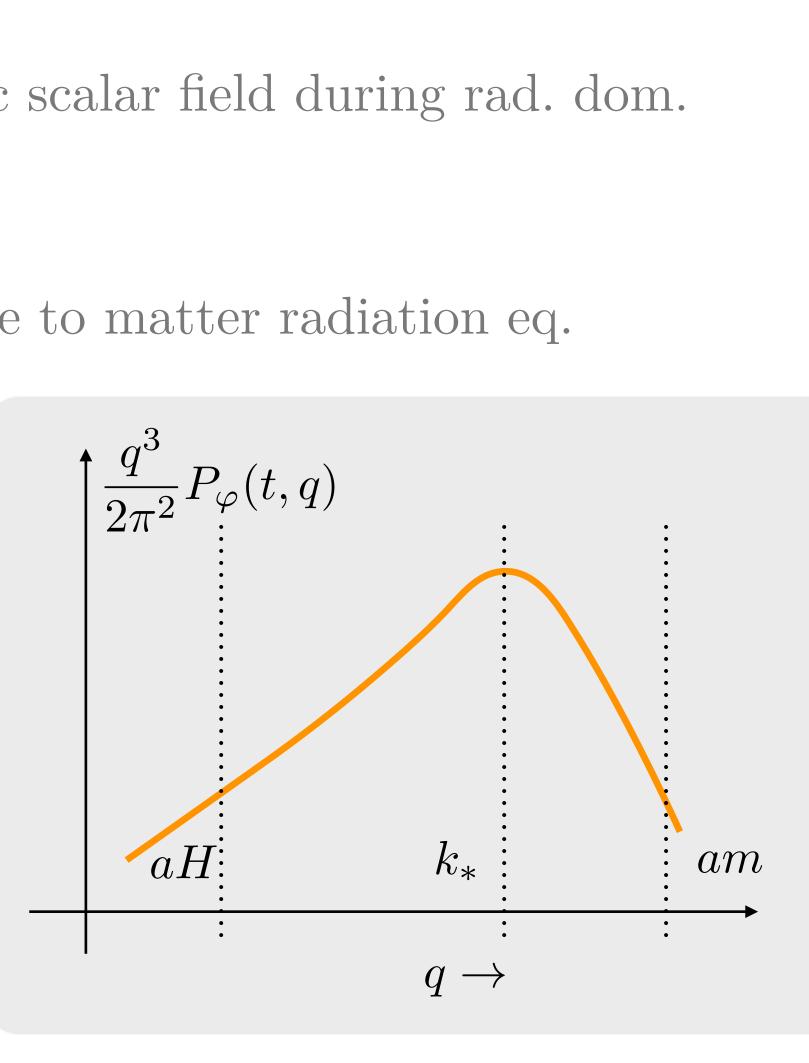
$$\bar{\rho}(t) \approx m^2 \int d\ln q \, \frac{q^3}{2\pi^2} P_{\varphi}(t,q)$$

$$\frac{q^3}{2\pi^2} P_{\varphi}(t,q)$$

power spectrum of field, peaked at k_* $a(t)H(t) \ll k_*$ holds for field produced after inflation $k_* \ll a(t)m$ eventually non-relativistic to be DM

light, but non-relativistic scalar field during rad. dom.

dark matter density close to matter radiation eq.



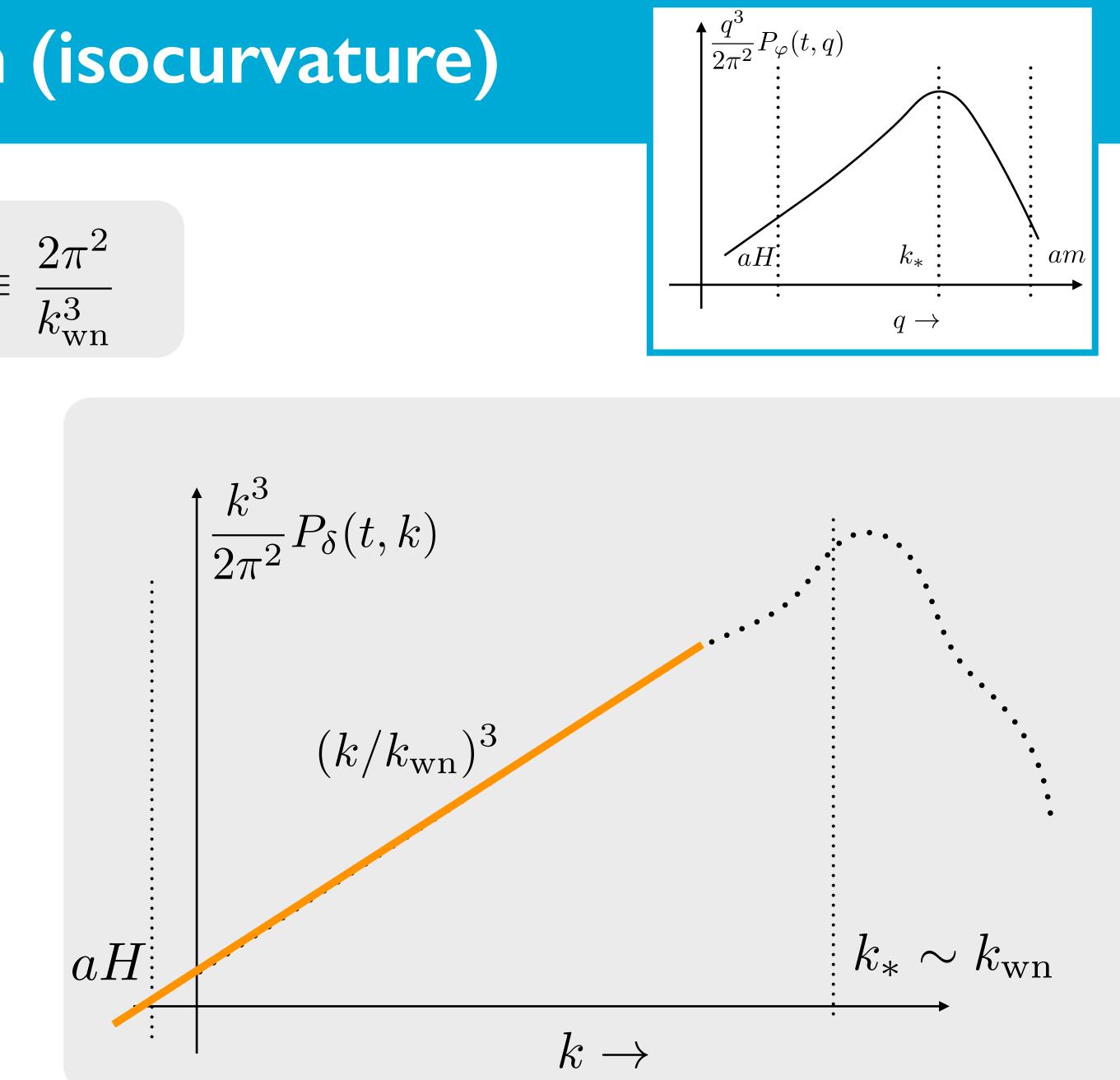
Note: no significant zero mode of the field

density power spectrum (isocurvature)

$$P_{\delta}^{(\text{iso})}(t,k) \approx \frac{m^4}{\bar{\rho}^2(t)} \int d\ln q \, \frac{q^3}{2\pi^2} \left[P_{\varphi}(q,t) \right]^2 \equiv$$

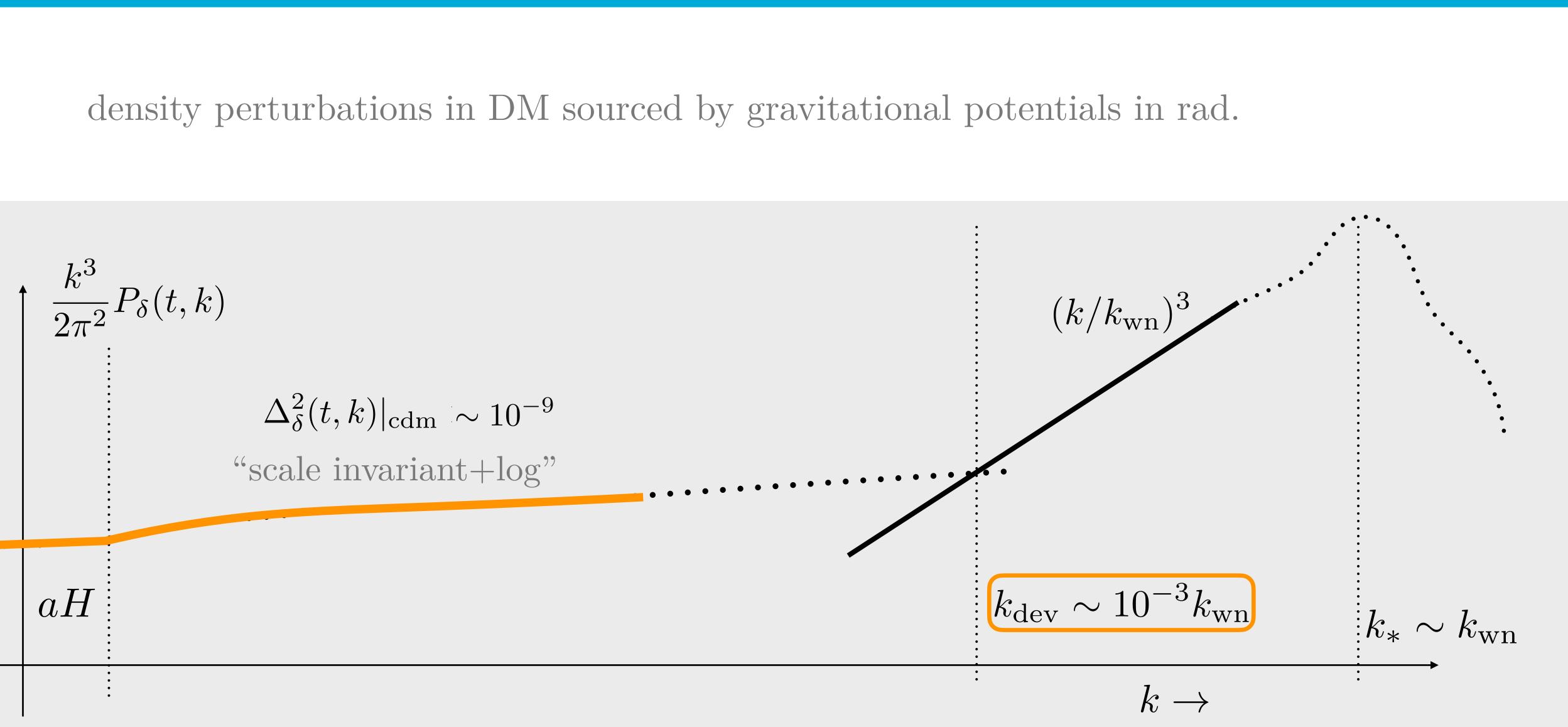
independendent of k for $k \ll k_*$

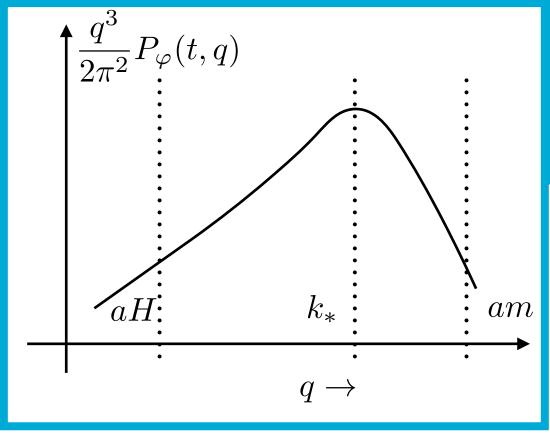
 $k_{\rm wn}$ is defined by the above relation



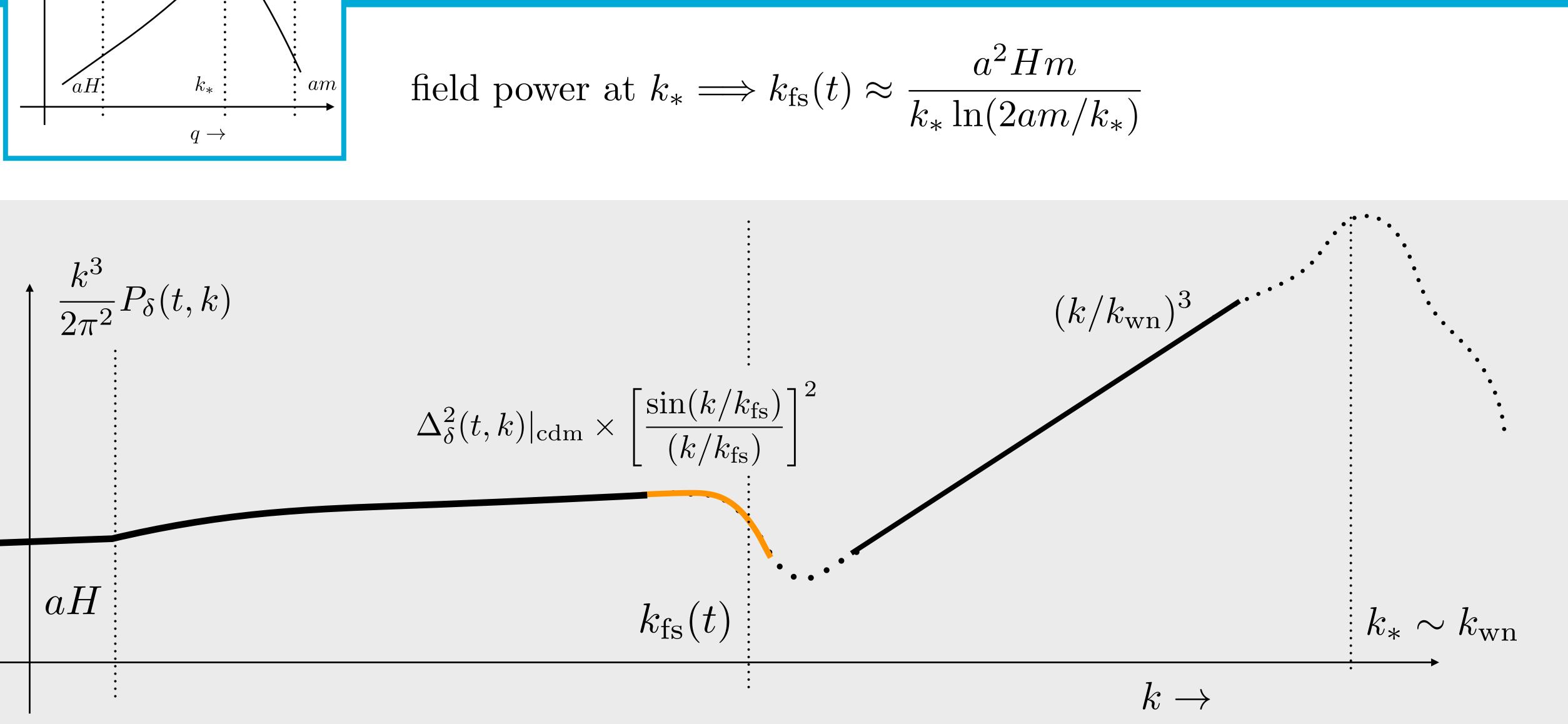
*ignore gravitational potentials on these scales during radiation domination

density power spectrum (adiabatic)





free streaming !



our argument — quantitative

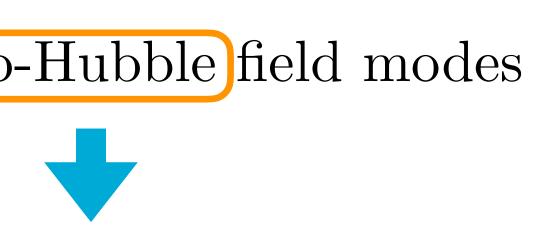
Dark matter density dominated by sub-Hubble field modes

2. free-streaming suppression in adiabatic density pert.

1. and 2. not seen for $k < k_{obs} \sim 10 \,\mathrm{M}$

 $k_{\rm dev}, k_{\rm fs} \gtrsim k_{\rm obs}$

 $m \geq$



1. white-noise isocurvature excess in isocurvature density pert. $k_{\rm dev} \approx 10^{-3} k_*$ $k_{\rm fs}(t) \approx \frac{a^2 Hm}{k_* \ln(2am/k_*)}$

$$\frac{\text{fpc}^{-1}}{\sqrt{2}} \text{ e.g. [Ly\alpha]}$$
$$\frac{10^{-18} \text{ eV}}{10^{-18} \text{ eV}}$$

Note that we did not need to know $k_*!$

"model independent" -- applies to all gravitationally interacting, non-relativistic fields (scalar, vector, tensor ...) "loophole" — inflationary production with infrared spectra (not sub-Hubble) for vectors (and tensors?), even inflationary production leads to sub-Hubble spectra

$$k_{\rm fs} \ll k_J \sim a\sqrt{mH} \Longrightarrow {\rm stronger bo}$$

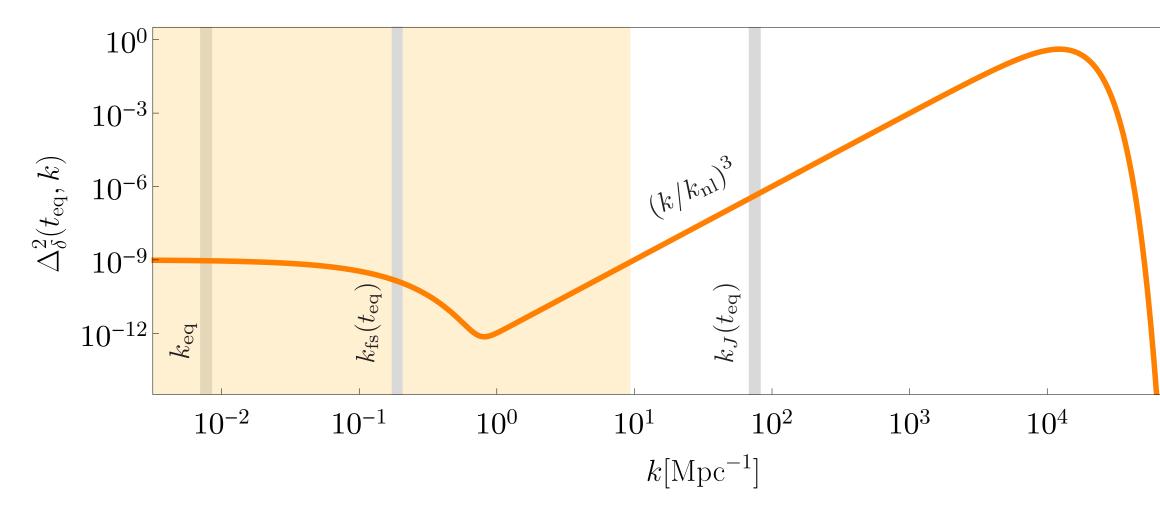
 $m_{\rm bound} \propto k_{\rm obs}^2 \Longrightarrow \text{look at MW satellites}$

ound

with Nadler and Wechsler

Dark matter density dominated by sub-Hubble field modes $\implies m \gtrsim 10^{-18} \,\mathrm{eV}$

bound good, detection better



extra small-scale structure

formation of mini-clusters/halos/solitons

some exciting phenomenology related to spin!

A Spin on Wave Dark Matter

Spin of wave DM from astrophysics?

10 min

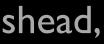
with Jain Jain, Zhang ain, Karur, Mocz Jain Long, Schiappacasse ain, Thomas, Wanischarungarung

If I forget to mention it, for non-relativistic limit of vector DM, see Adshead and Lozanov (2021). For a nice new production mechanism, see Adshead, Lozanov and Weiner (2023)

with Mehrdad Mirbabayi

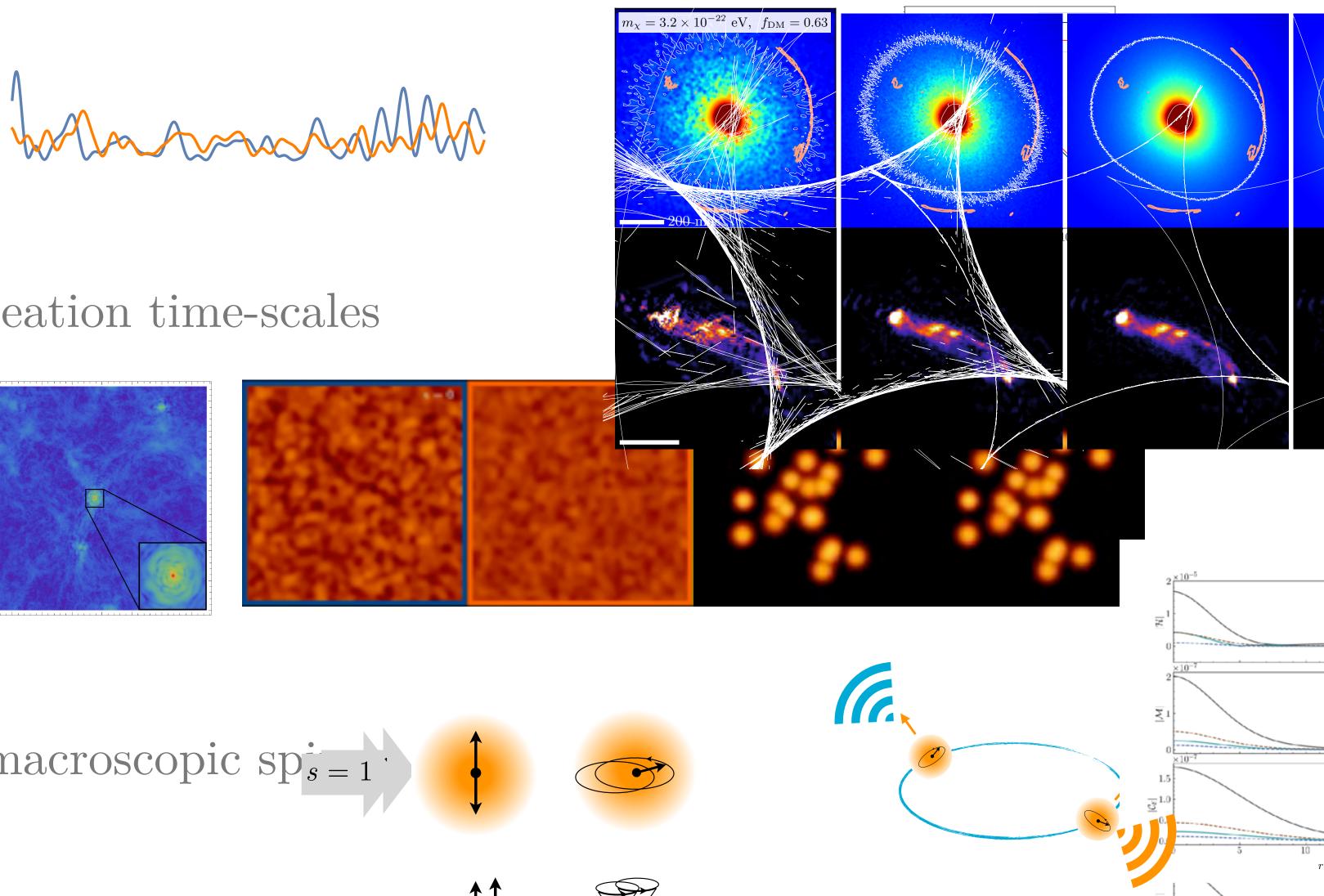
2211.09775

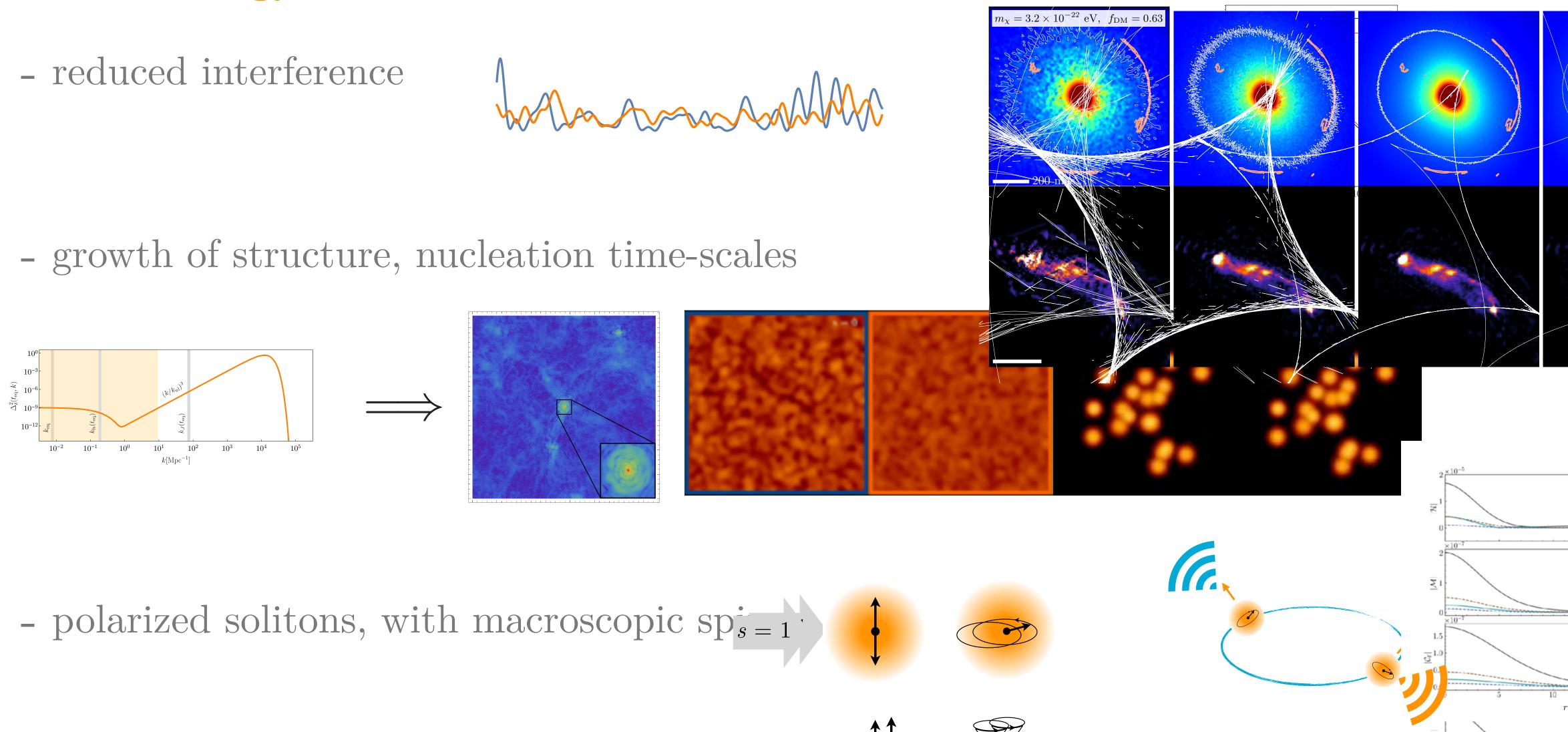
2109.04892 2111.08700 2203.11935 2211.08433 2301.11470 2304.01985



spin and dark matter sub-structure

Phenomenology





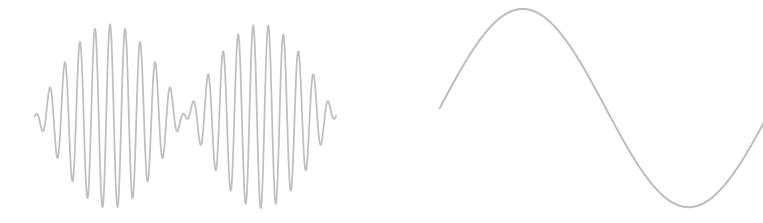
$$\mathcal{G}_{\mu\nu} = \partial_{\mu}W_{\nu} - \partial_{\nu}W_{\mu}$$

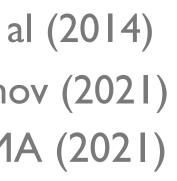
non-relativistic limit

$$W(t, \boldsymbol{x}) \equiv \frac{\hbar}{\sqrt{2mc}} \Re \left[\boldsymbol{\Psi}(t, \boldsymbol{x}) e^{-imc^2 t/\hbar} \right]$$

$$S_{nr} = \int dt d^3 \boldsymbol{x} \left[\frac{i\hbar}{2} \boldsymbol{\Psi}^{\dagger} \dot{\boldsymbol{\Psi}} + \text{c.c.} - \frac{\hbar^2}{2m} \nabla \boldsymbol{\Psi}^{\dagger} \cdot \nabla \boldsymbol{\Psi} + \frac{1}{8\pi G} \Phi \nabla^2 \Phi - m \Phi \boldsymbol{\Psi}^{\dagger} \boldsymbol{\Psi} \right]$$

$$S_{pin} - 0 \qquad \text{eg. Schive et. a Spin - 1} \qquad \text{Adshead \& Lozand Spin - 2s + 1} \qquad \text{Jain \& M}$$





non-relativistic limit = multicomponent Schrödinger-Poisson

$$[\mathbf{\Psi}]_i = \psi_i \text{ with } i = 1, 2, 3 \text{ vector}$$

 $i\hbar \frac{\partial}{\partial t} \mathbf{\Psi} = -\frac{\hbar^2}{2m} \nabla^2 \mathbf{\Psi} + m \Phi \mathbf{\Psi}$

$$[\Psi]_i = \psi_i$$
 with $i = 1$ scalar

case

)

$\nabla^2 \Phi = 4\pi G m \, \Psi^\dagger \Psi$

case

at this level this is just 2s+1 equal mass scalar fields but not when non-gravitational interactions are included!

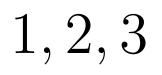
$$N = \int d^{3}x \Psi^{\dagger} \Psi, \quad \text{and} \quad M = mN, \qquad \text{(particle number and rest mass)}$$

$$E = \int d^{3}x \Big[\frac{\hbar^{2}}{2m} \nabla \Psi^{\dagger} \cdot \nabla \Psi - \frac{Gm^{2}}{2} \Psi^{\dagger} \Psi \int \frac{d^{3}y}{4\pi |\boldsymbol{x} - \boldsymbol{y}|} \Psi^{\dagger}(\boldsymbol{y}) \Psi(\boldsymbol{y}) \Big], \qquad \text{(energy)}$$

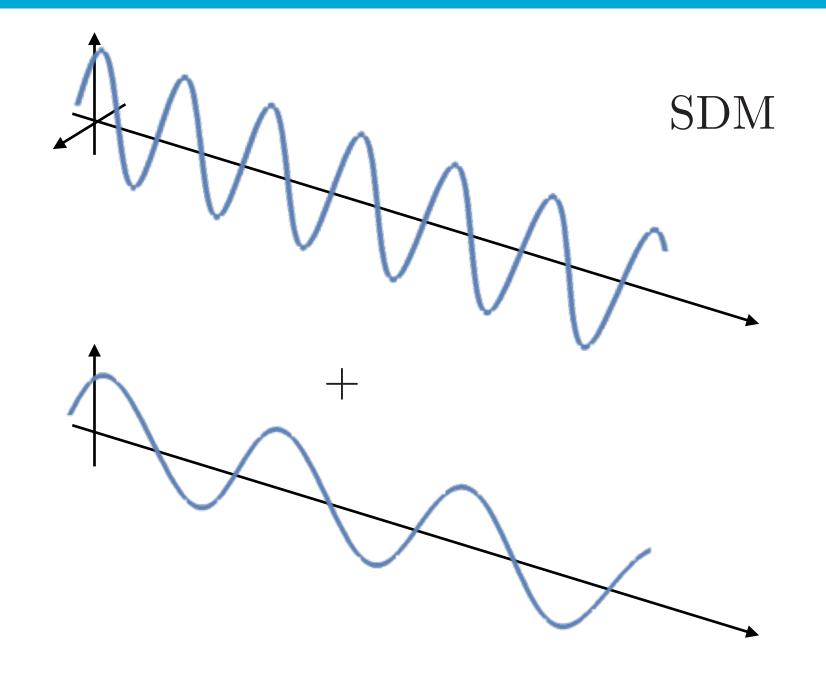
$$\boldsymbol{S} = \hbar \int d^{3}x \, i \Psi \times \Psi^{\dagger}, \qquad \text{(spin angular momentum)}$$

$$\boldsymbol{L} = \hbar \int d^{3}x \, \Re \left(i \Psi^{\dagger} \nabla \Psi \times \boldsymbol{x} \right). \qquad \text{(orbital angular momentum)}$$

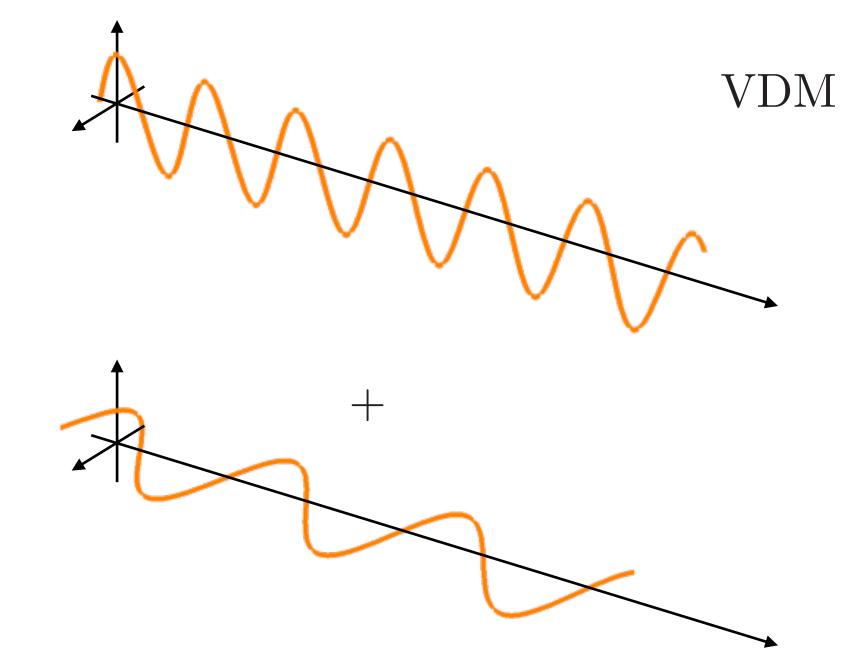
$$[\mathbf{\Psi}]_i = \psi_i \text{ with } i =$$



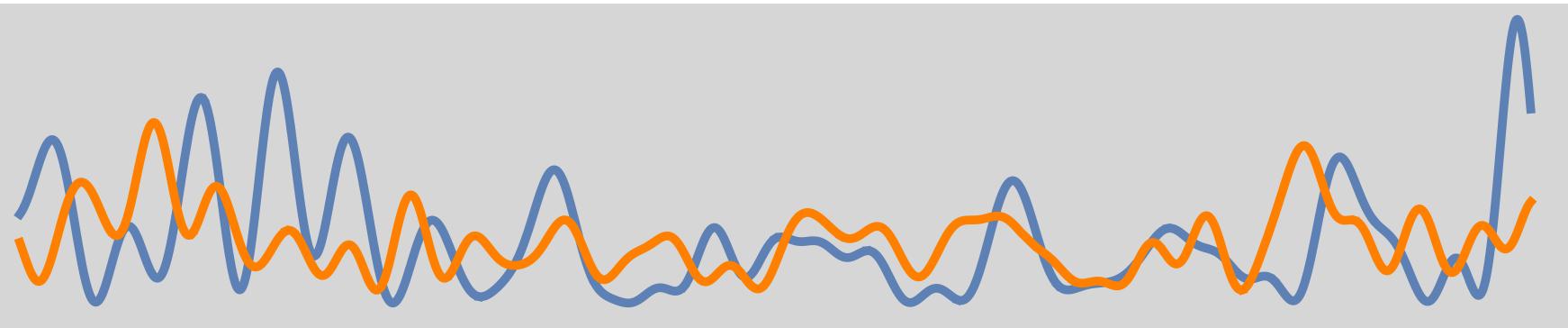
wave interference



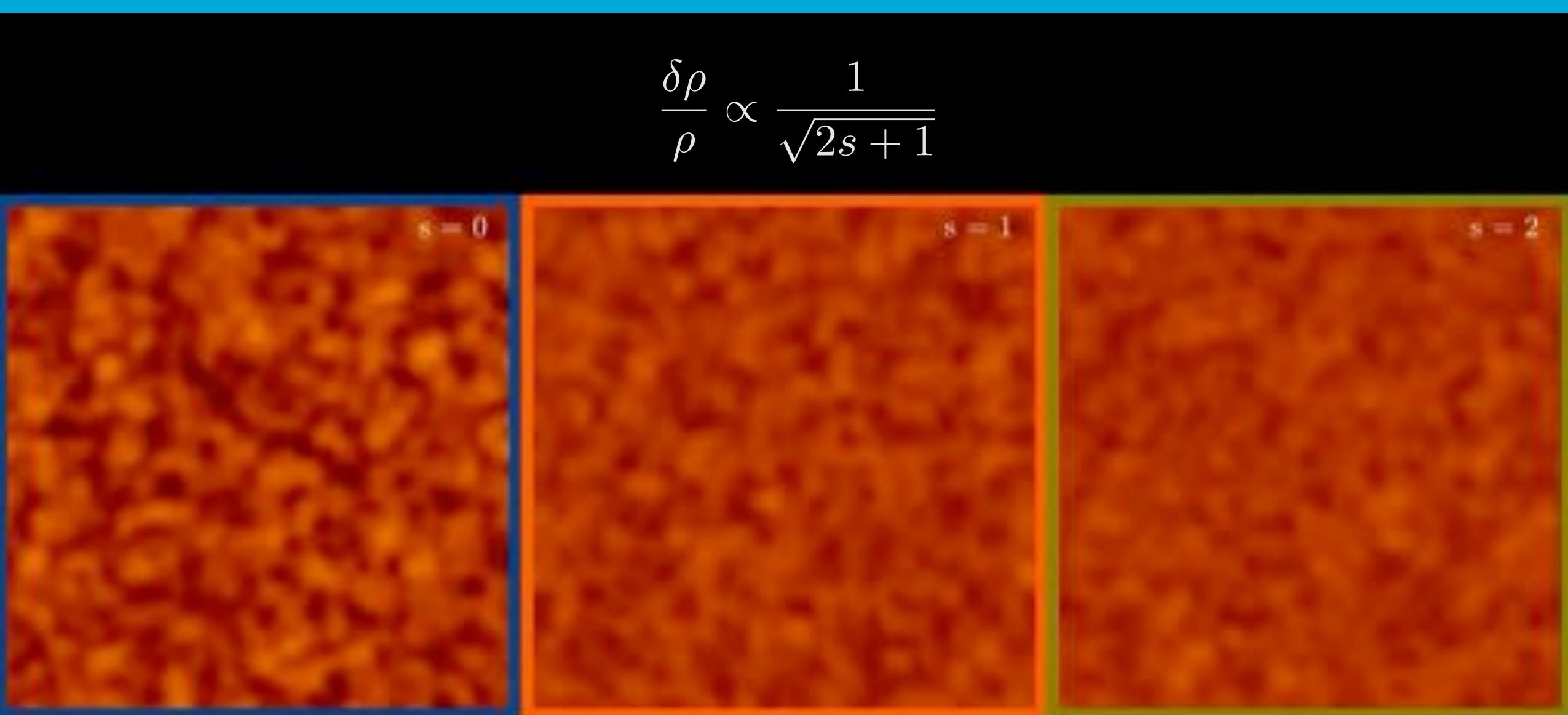
 $|\Psi_a(\boldsymbol{x}) + \Psi_b(\boldsymbol{x})|^2 \neq |\Psi_a(\boldsymbol{x})|^2 + |\Psi_b(\boldsymbol{x})|^2$

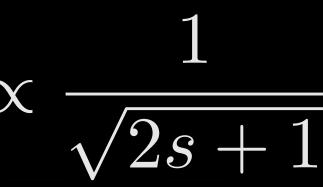


 $|\Psi_a(\boldsymbol{x}) + \Psi_b(\boldsymbol{x})|^2 = |\Psi_a(\boldsymbol{x})|^2 + |\Psi_b(\boldsymbol{x})|^2$

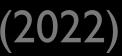


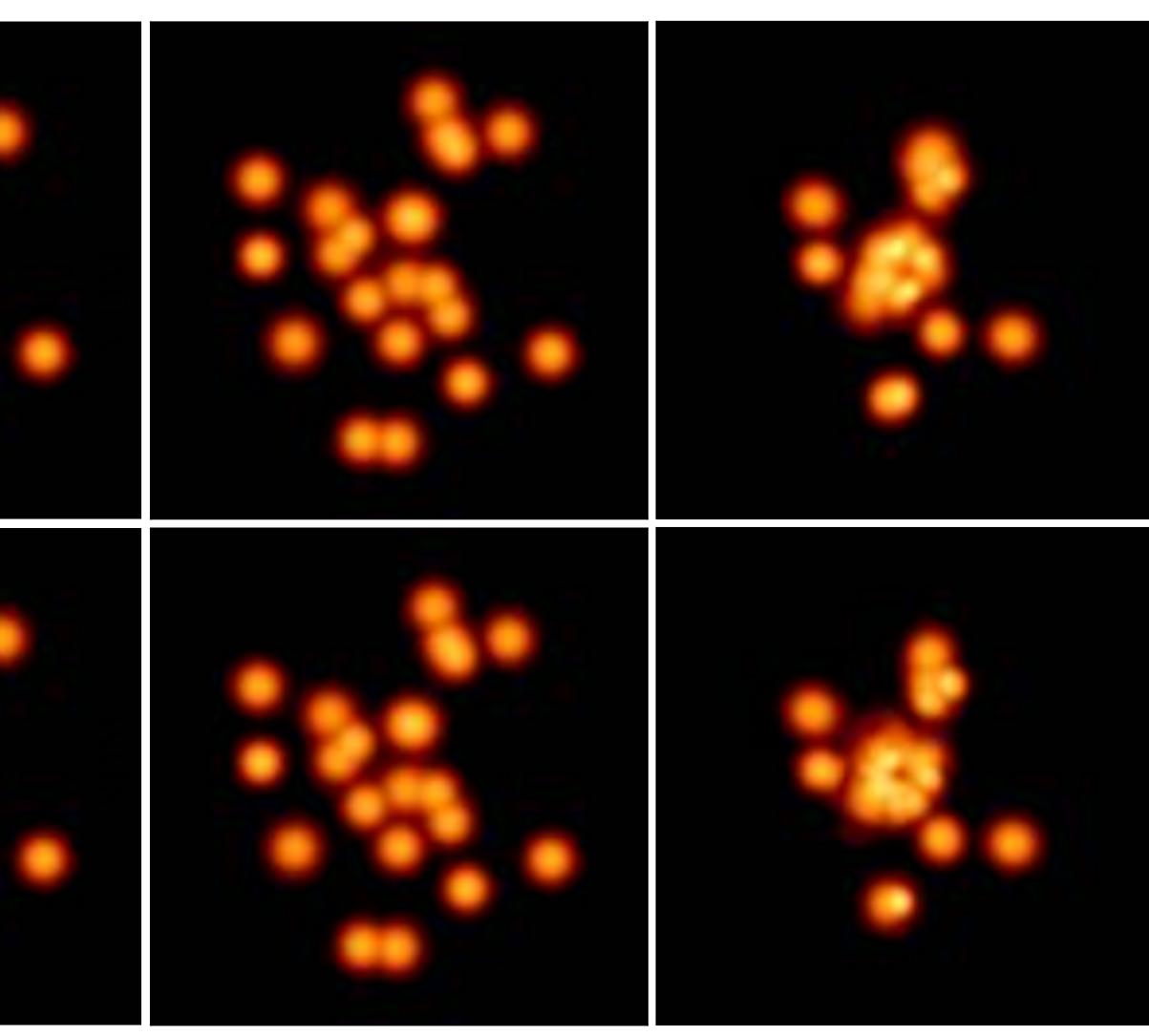
reduced interference





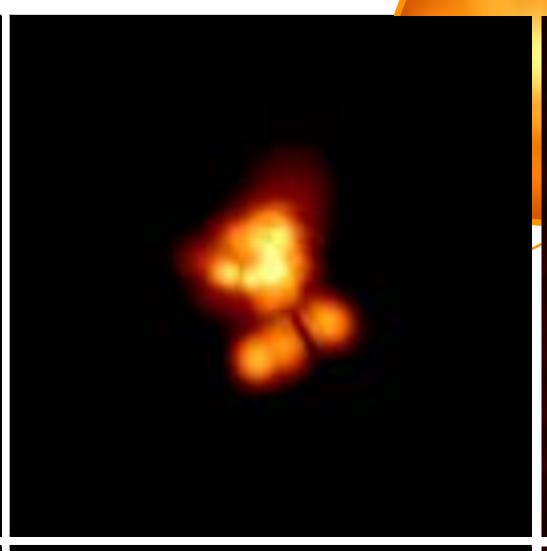
MA, Jain, Karur & Mocz (2022)

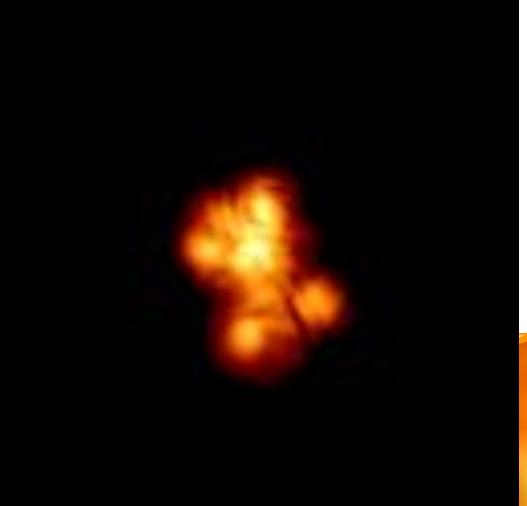




0

0.34 $t/t_{\rm dyn} \longrightarrow$

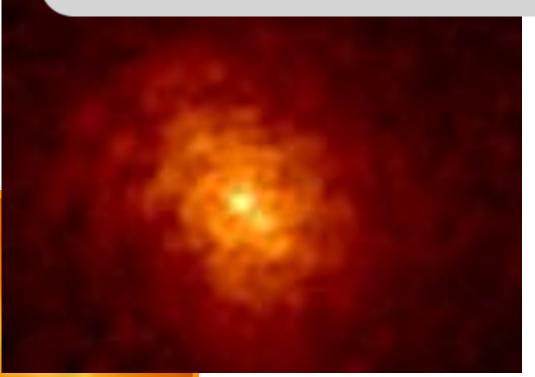




1.36

Difference between

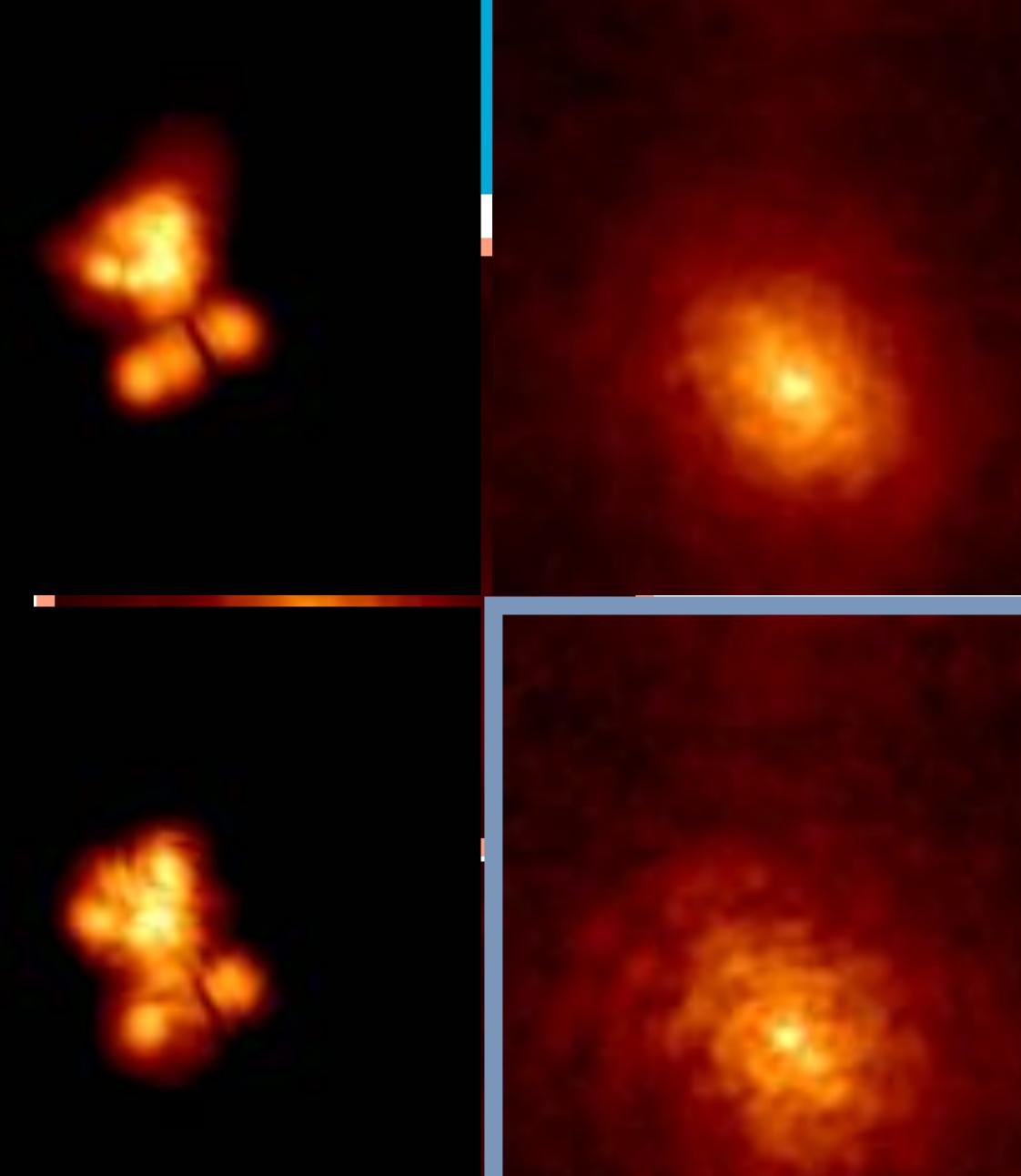
Vector & Scalar Dark Matter



MA, Jain, Karur & Mocz(2022)

$m \gtrsim rac{1}{(2s+1)^{1/3}} \left[3 imes 10^{-19} \mathrm{eV} ight]$

Dalal & Kratsov (2022)

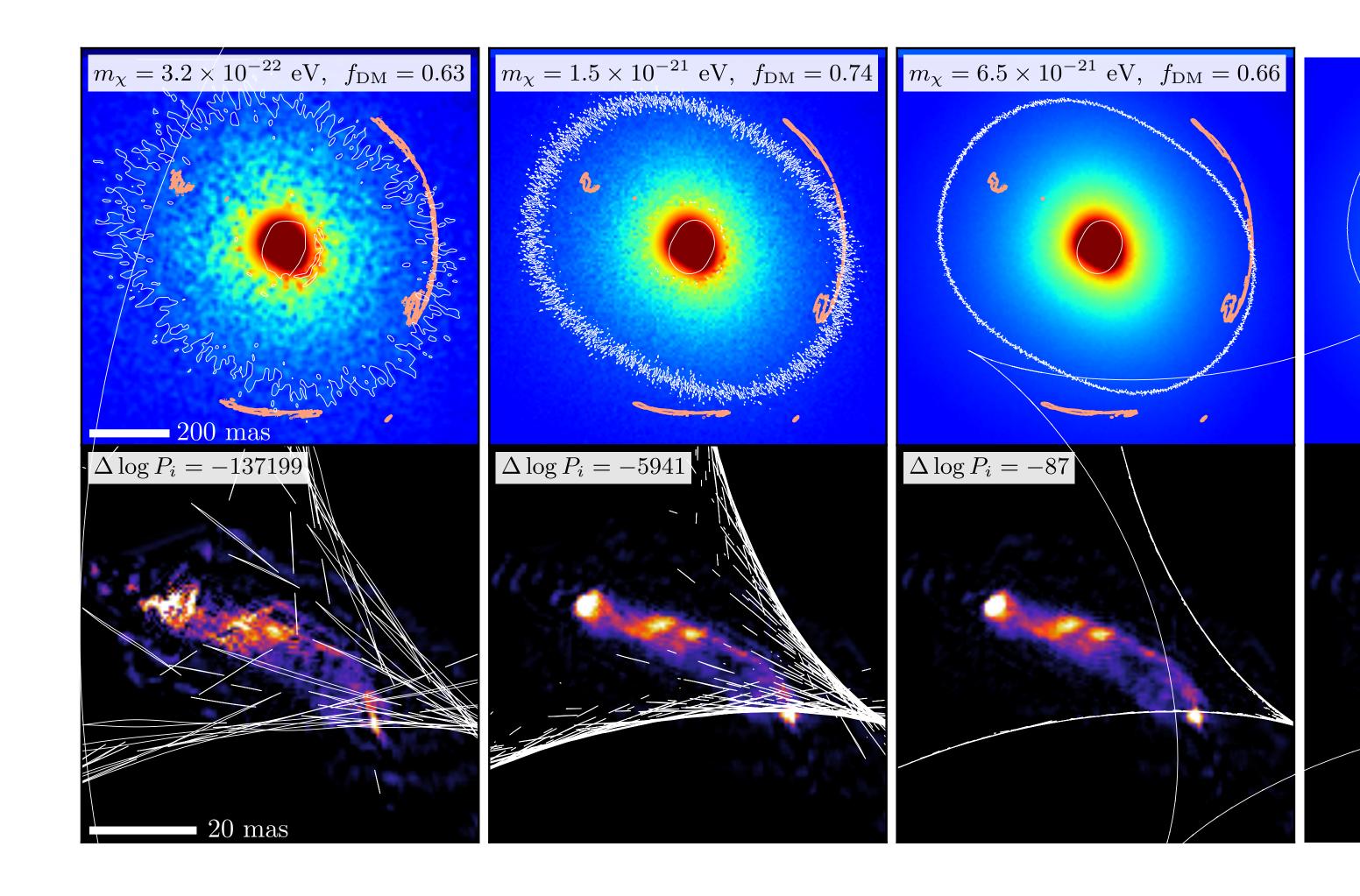


MA, Jain, Karur & Mocz (2022)

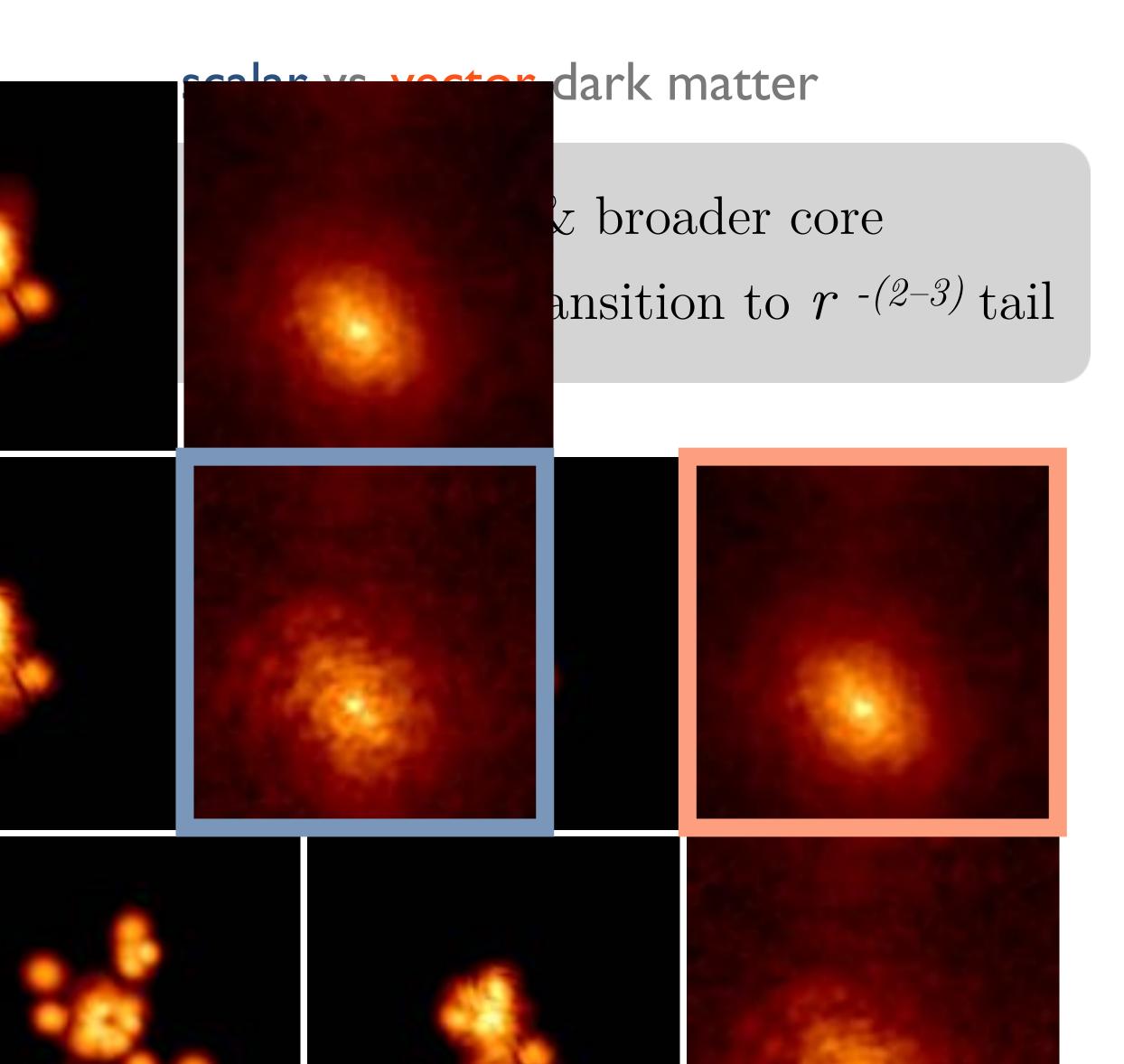
gravitational implications (examples)

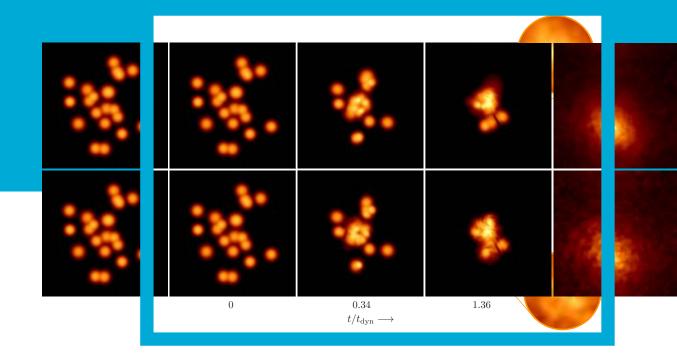
- lensing $m \gtrsim \frac{1}{(2s+1)} \left[4.4 \times 10^{-21} \,\mathrm{eV} \right]$

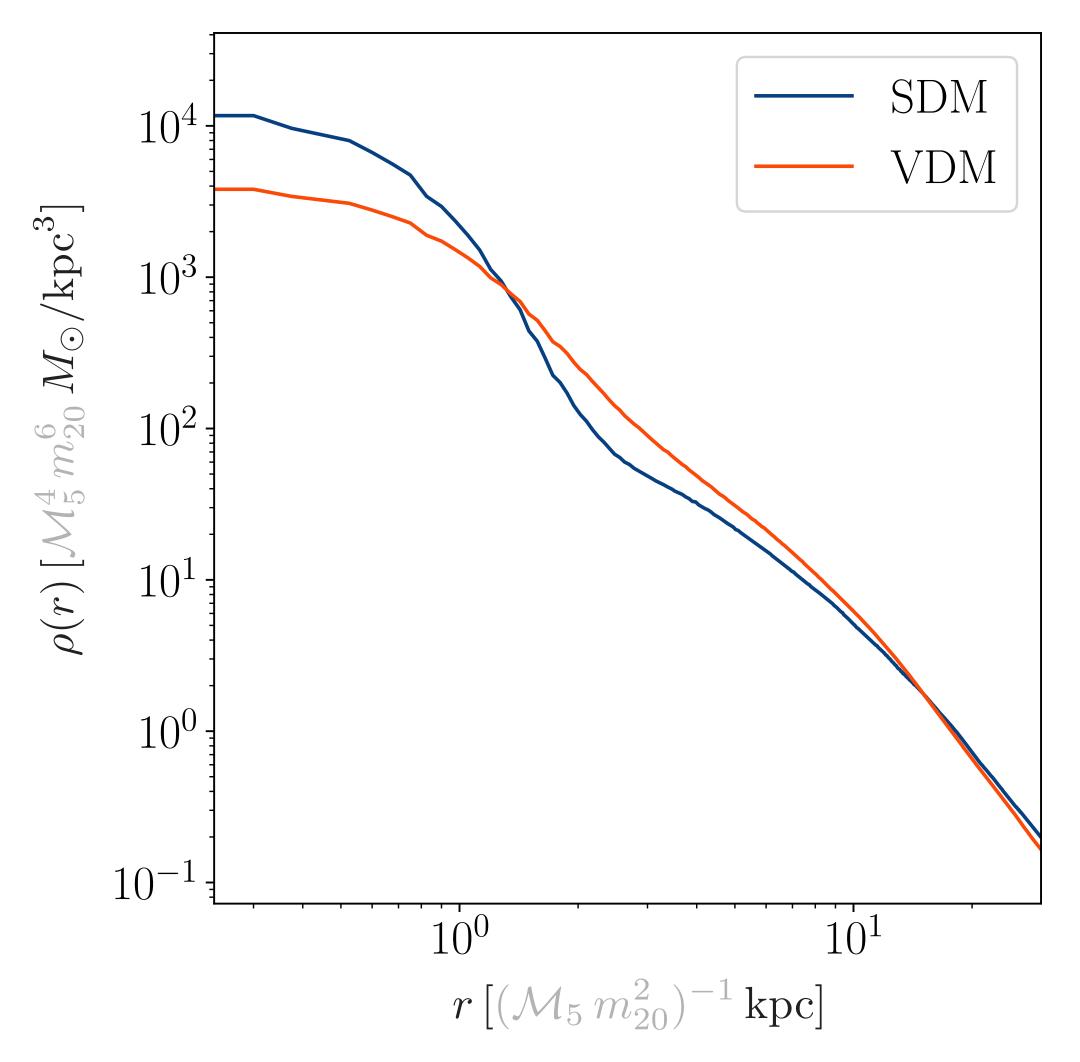
Powell et. al (2023)

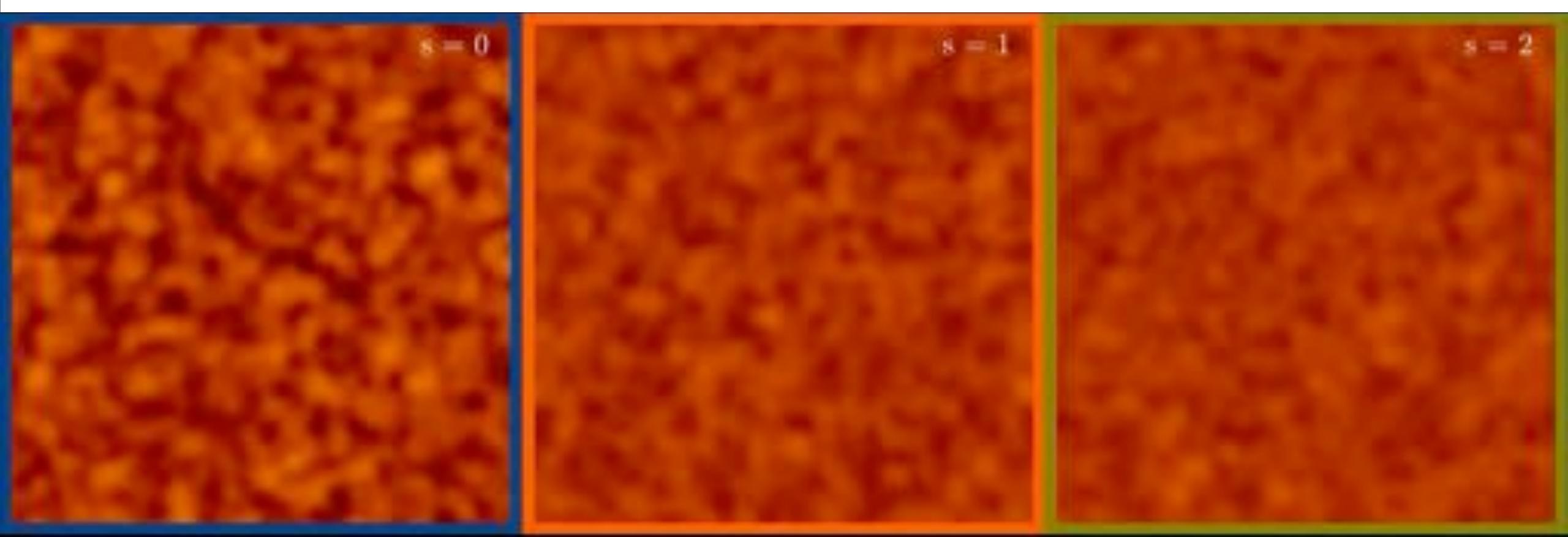


radial density profiles

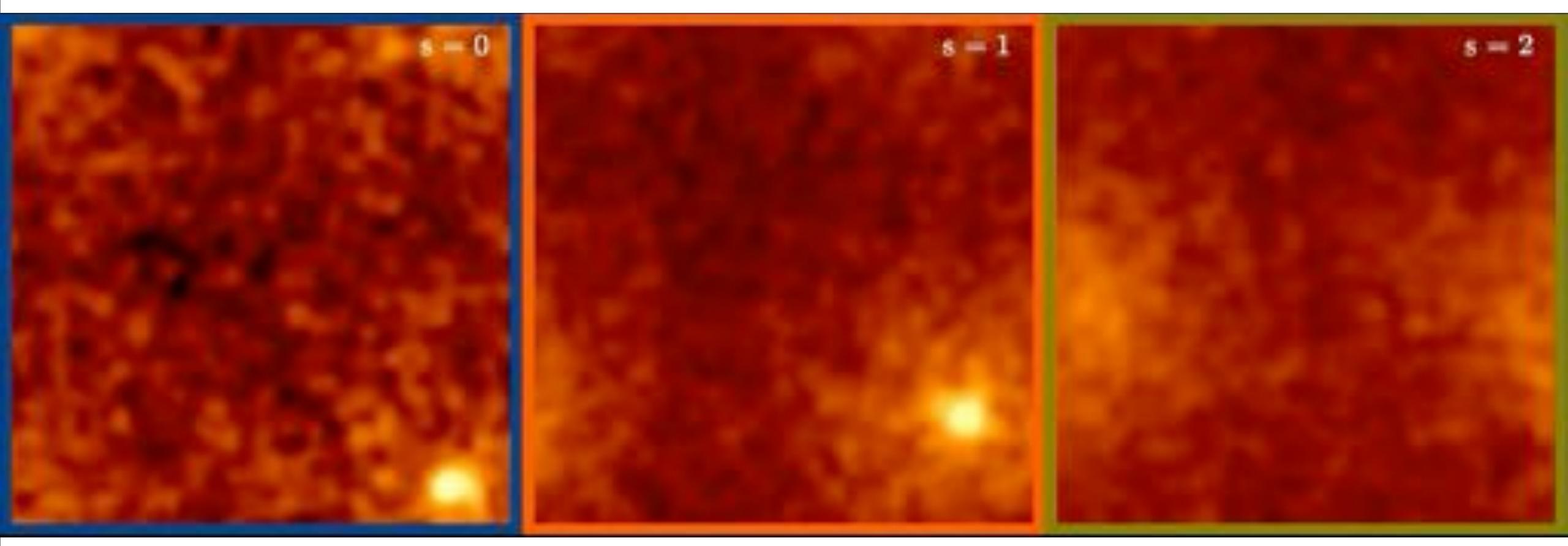


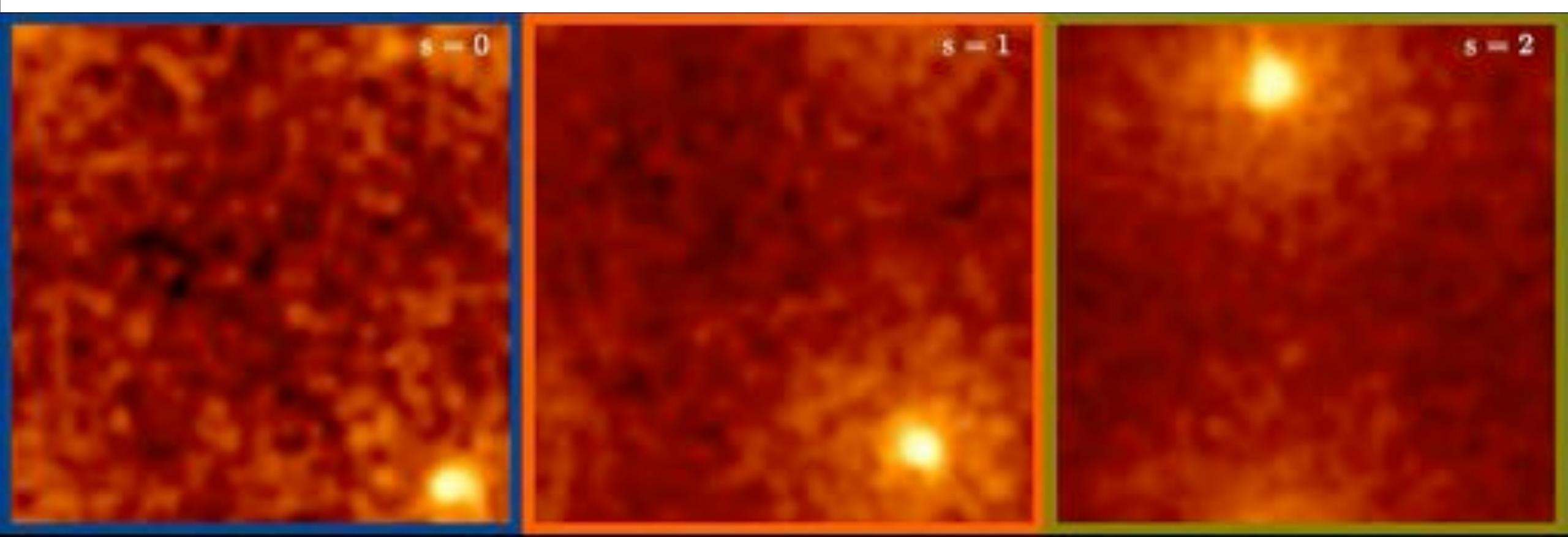








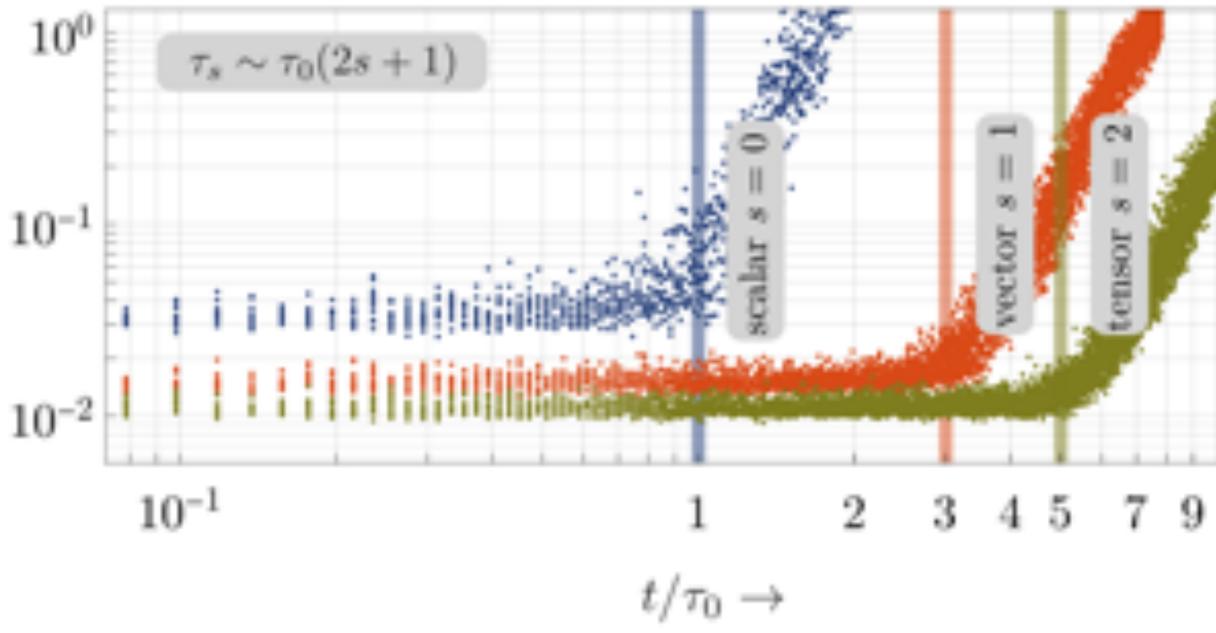




- nucleation time scale

$$\tau_{\rm s} \sim (2s+1)\tau_{\rm s=0}$$

$$\tau_{s=0} = [n\sigma_{\rm gr}v\mathcal{N}]^{-1}$$
$$\sigma_{\rm gr} \sim (Gm/v^2)^2, \qquad \mathcal{N} \sim n\lambda_{\rm dB}^3$$



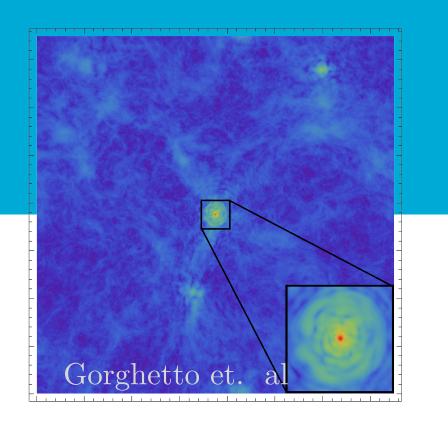
$$\tau_0 \sim \left(\frac{m}{10^{-22} \,\mathrm{eV}}\right)^3 \left(\frac{\sigma}{100 \,\mathrm{km} \, s^{-1}}\right)^6 \left(\frac{10^8 M_\odot \mathrm{kpc}^{-3}}{\bar{\rho}^3}\right)^2 \times 10 \mathrm{Gyrs}$$

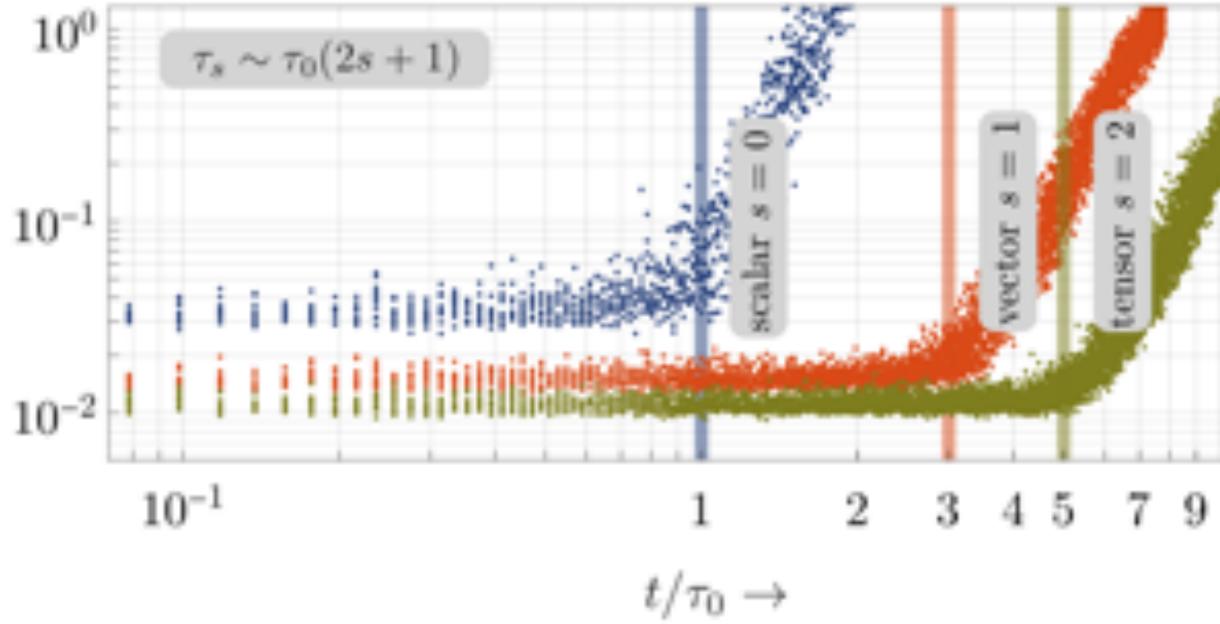
see Levkov et. al (2018) for scalar case

- nucleation time scale $au_{\rm s} \sim (2s+1) au_{\rm s=0}$

$$\tau_{\rm s=0} \sim n\sigma_{\rm gr} v \mathcal{N}$$

 $\sigma_{\rm gr} \sim (Gm/v^2)^2, \qquad \mathcal{N} \sim n\lambda_{\rm dB}^3$





$$\tau_0 \sim \left(\frac{m}{10^{-22} \,\mathrm{eV}}\right)^3 \left(\frac{\sigma}{100 \,\mathrm{km} \, s^{-1}}\right)^6 \left(\frac{10^8 M_\odot \mathrm{kpc}^{-3}}{\bar{\rho}^3}\right)^2 \times$$

kinetic nucleation of solitons — multi-component case

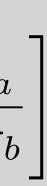
$$i\frac{\partial}{\partial t}\psi_{a} = -\frac{1}{2m_{a}}\nabla^{2}\psi_{a} + m_{a}\Phi\psi_{a}$$

$$\nabla^{2}\Phi = 4\pi G \sum_{a} m_{a}\psi_{a}^{*}\psi_{a}.$$

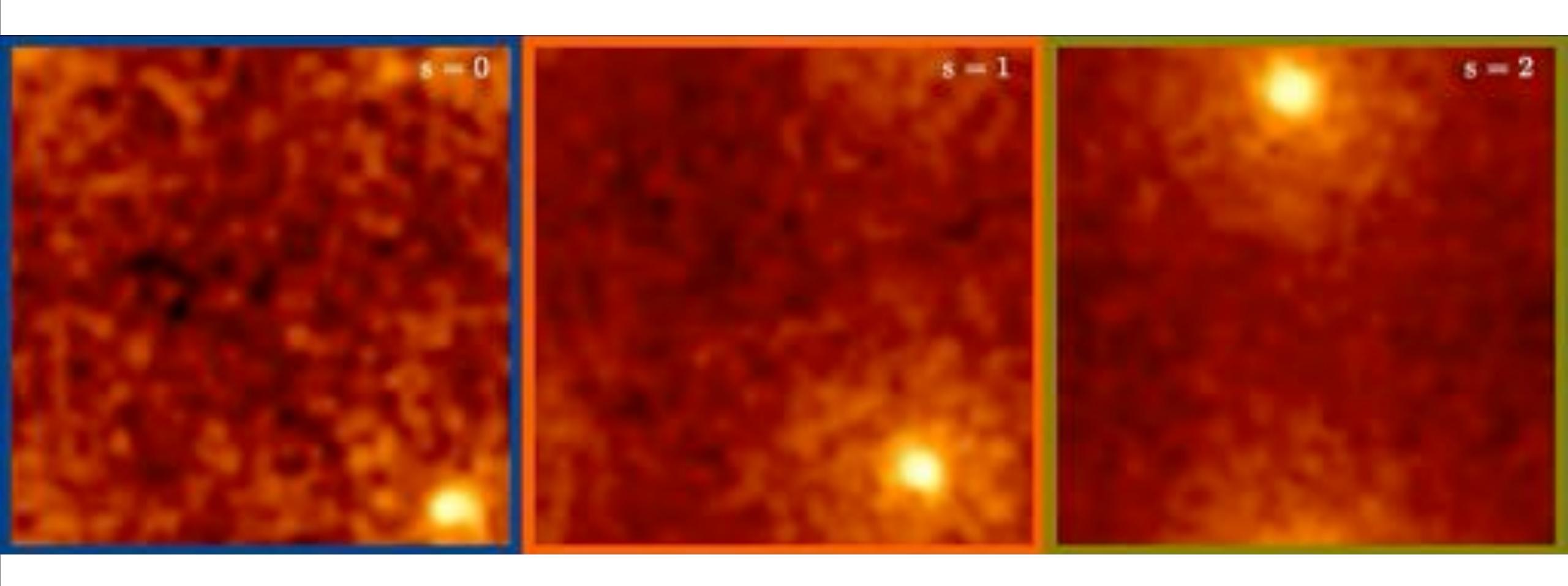
$$\frac{\partial f_{\boldsymbol{v}_{a}}^{a}}{\partial t} = \sum_{b} m_{b}^{3}\frac{\Lambda}{2\pi}\frac{(4\pi m_{a}m_{b}G)}{m_{a}}$$
where
$$\mathcal{D}_{ij}^{ab} = \int \frac{\mathrm{d}\tilde{\boldsymbol{v}}_{b}}{(2\pi)^{3}}f_{\boldsymbol{\tilde{v}}_{b}}^{b} \frac{\partial}{\partial t}$$

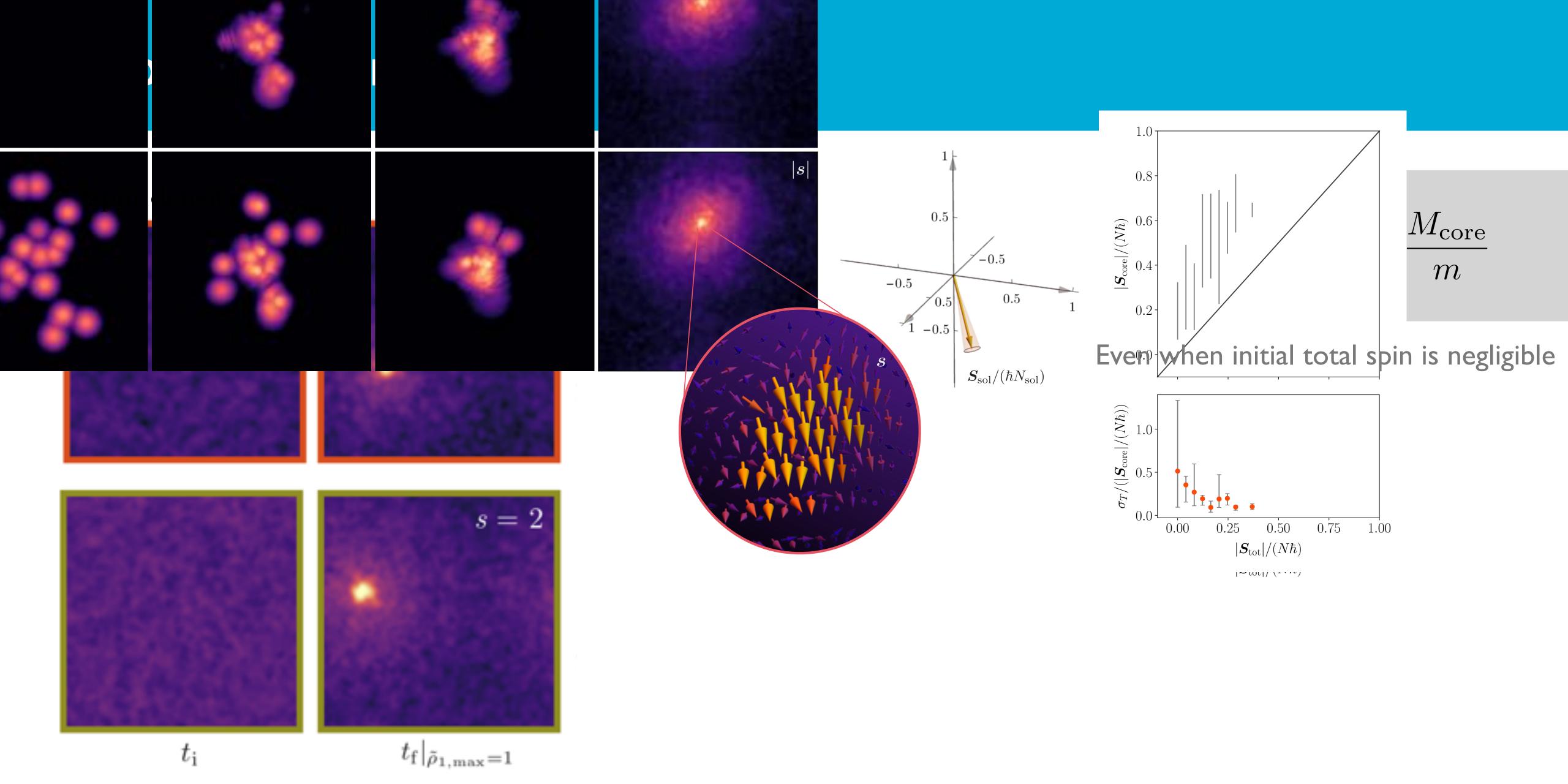
$$\Gamma_{(s)} = \Gamma_0 / (2s+1)$$

Jain, MA, Thomas, Wanichwecharungruang (2023)



what are these blobs?





MA, Jain, Karur & Mocz (2022)

Jain, MA, Thomas, Wanichwecharungruang (2023)

2022) 2023)

$$S_{\rm sol} = i(\boldsymbol{\epsilon} \times \boldsymbol{\epsilon}^{\dagger}) \frac{M_{\rm sol}}{m} \hbar$$

macroscopic spin

$$S_{\rm tot}/\hbar = \lambda N \hat{z}$$

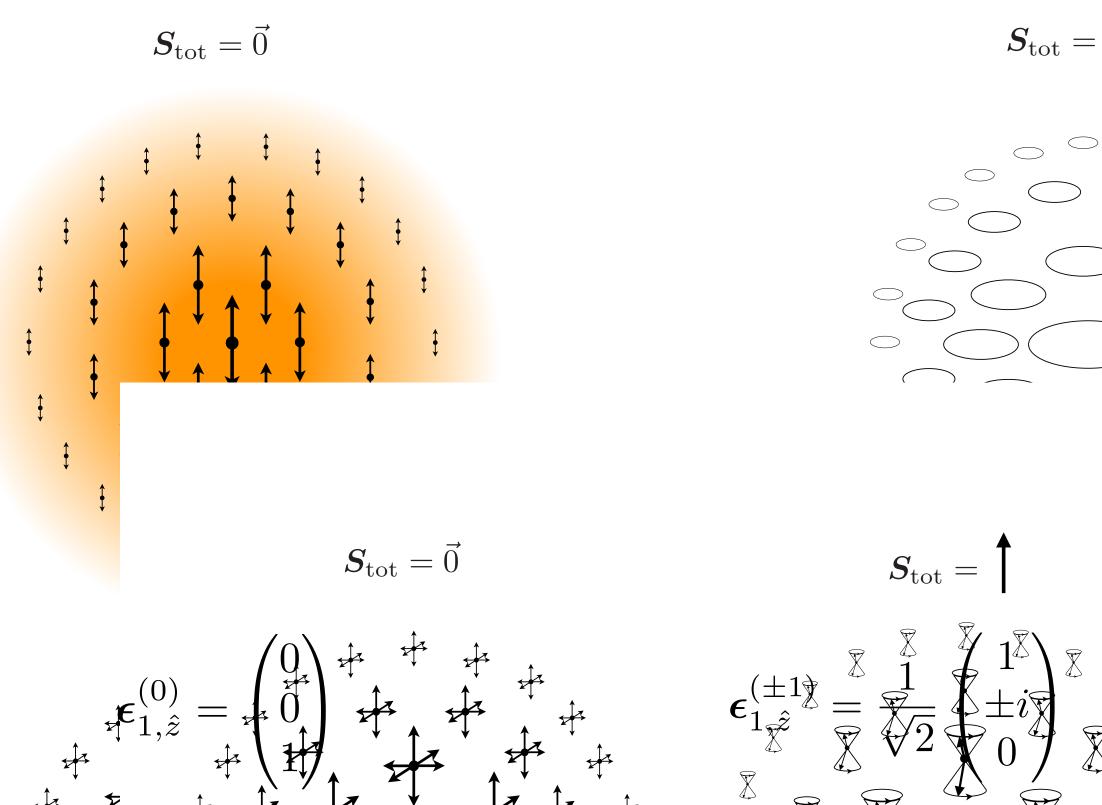
N = # of particles in soliton

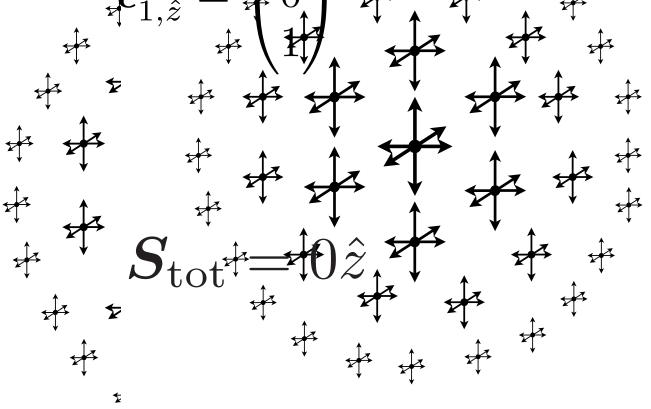
Jain & MA (2021)

tensor

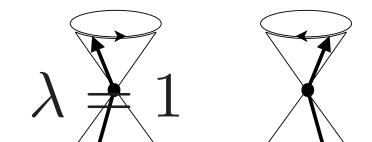
 $s = 2^s$

 $S_{\rm tot}/\hbar = \lambda N \hat{z}$





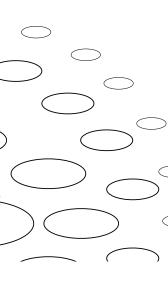
 $\lambda = 0$



 \mathbb{X}

 $oldsymbol{S}_{ ext{tot}}$

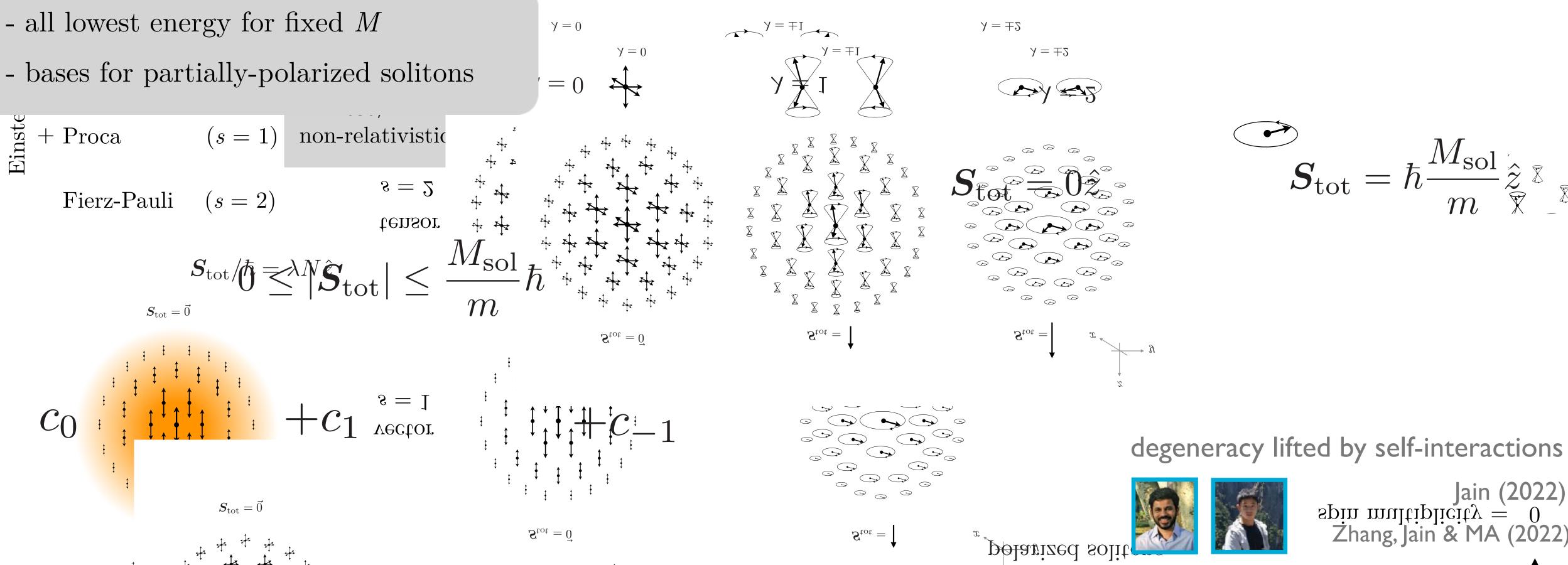
 ∇



"polarized" vect

macroscopic spin

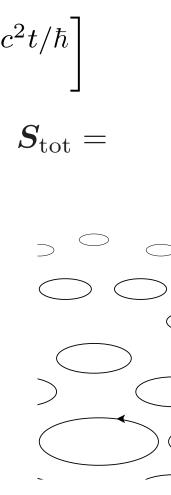
$$S_{\rm tot} = \hbar \frac{M_{\rm sol}}{m} \hat{z}$$

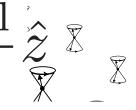


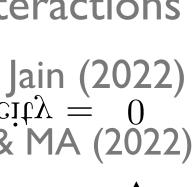
$$S_{\text{tot}}/\hbar \overline{x} \approx M \equiv \frac{\hat{z} \hbar}{\sqrt{2mc}} \Re \left[\Psi(t, x) e^{-imc} \right]$$

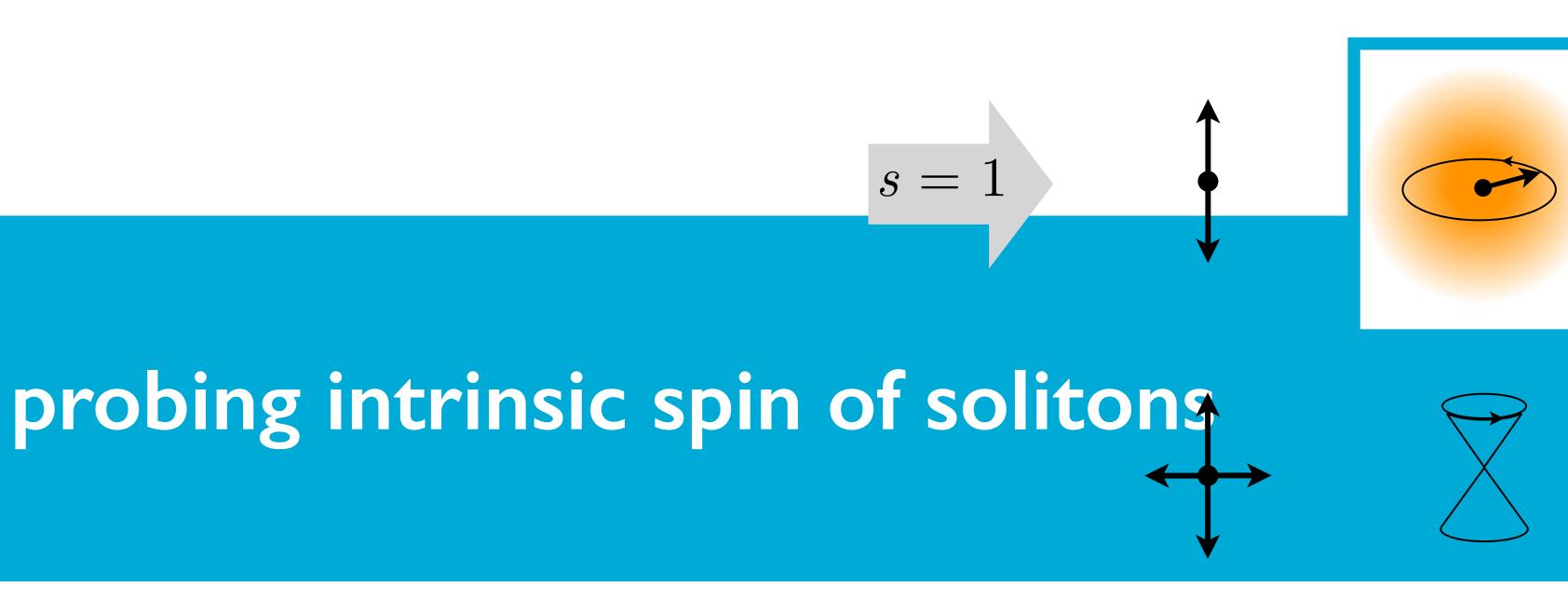
 $m{S}_{
m tot}=ec{0}$

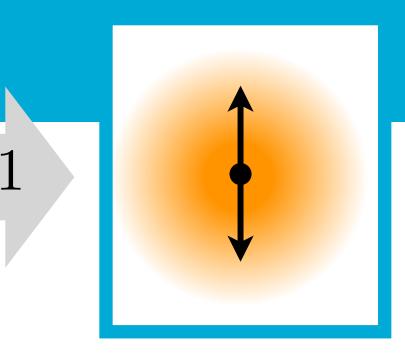
Spin multiplicity = 0

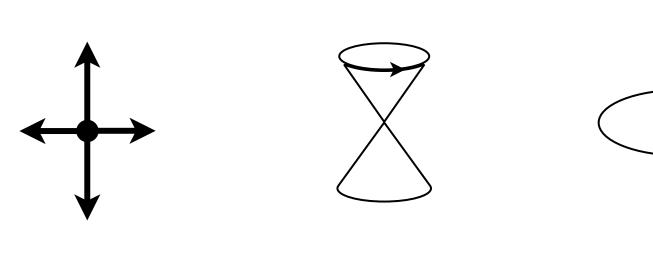


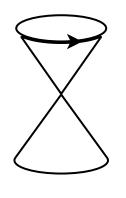


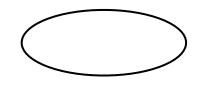








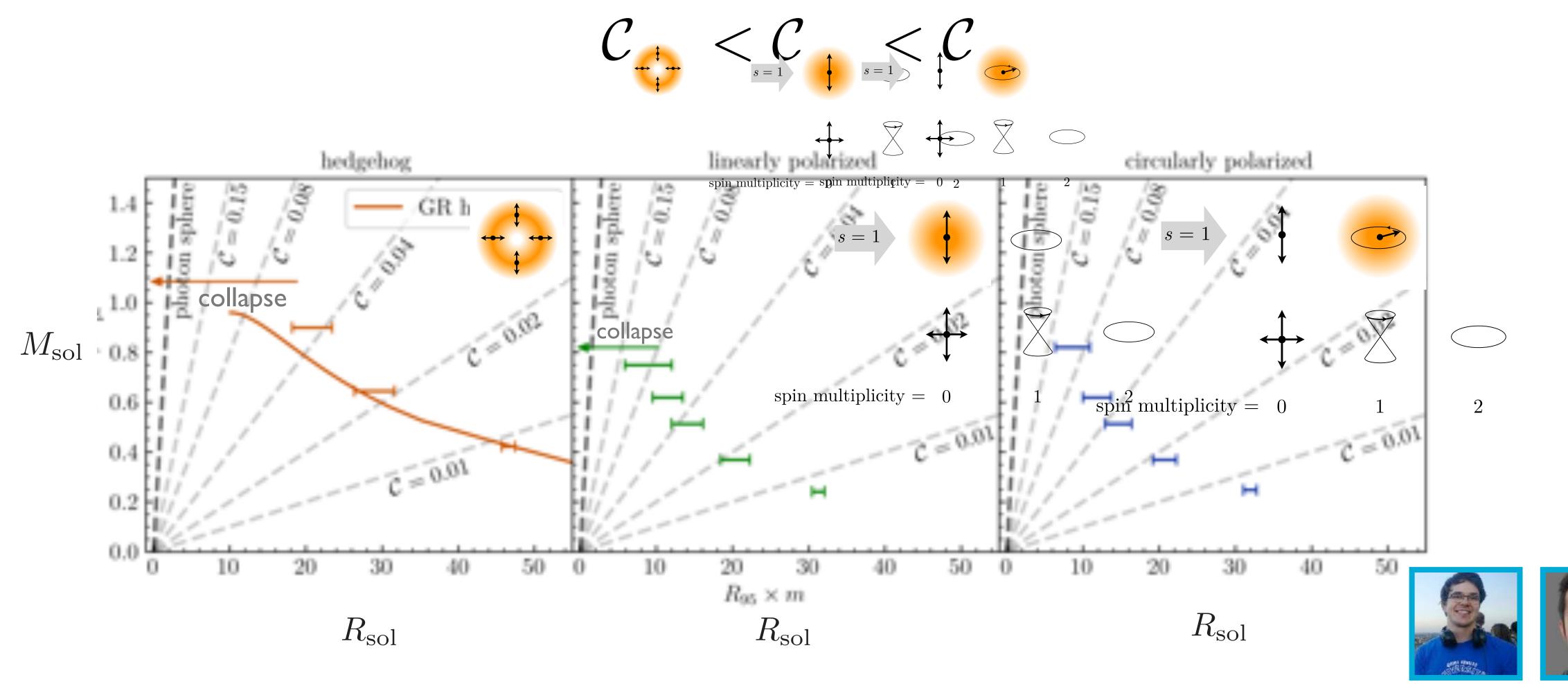




spin multiplicity = 01

compactness of polarized solitons

more resistance to collapse to BH for circularly polarized stars

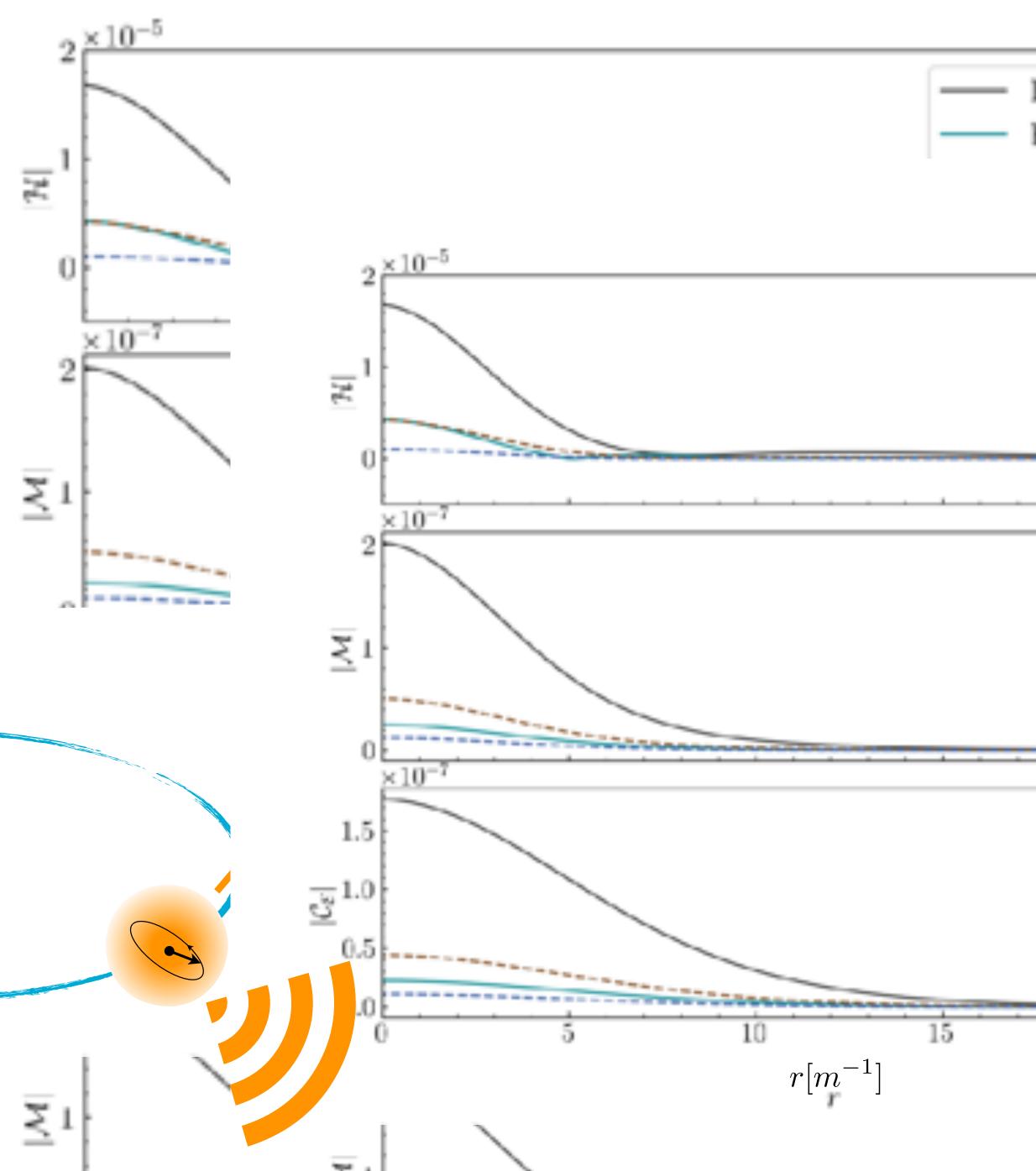


 $\mathcal{C} = GM/Rc^2$

with Thomas Helfer & Zipeng Wang (soon!)

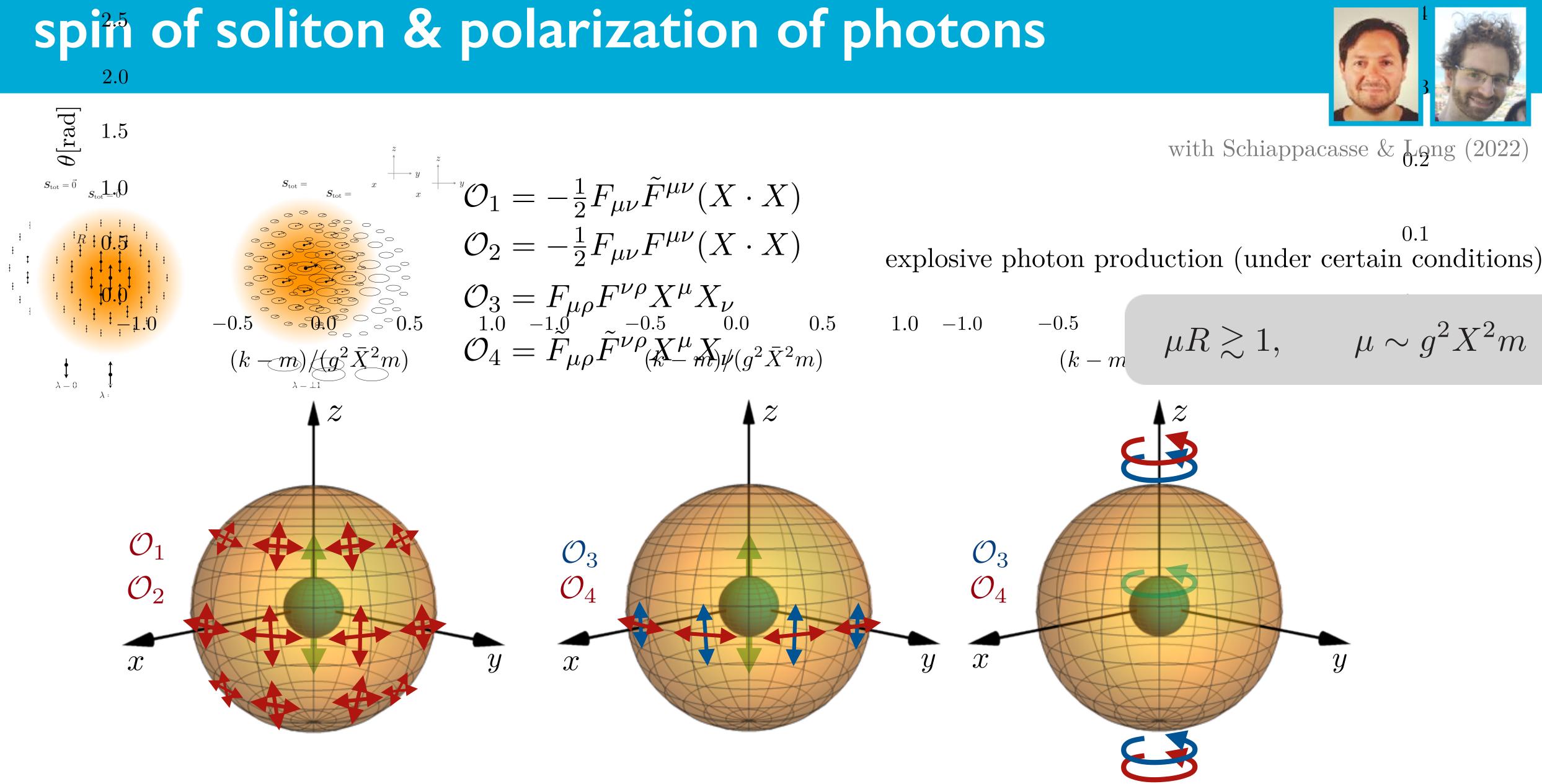
gravitational waves and s

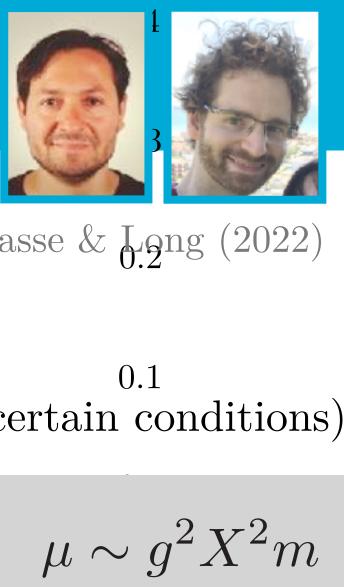
$$V = -\frac{GM_1M_2}{r} \left[1 + \mathcal{O}(v^2/c^2) - \frac{2}{rc} [\hat{r}] + \frac{1}{r^2c^2} \left\{ \frac{S_1}{M_1} \cdot \frac{S_2}{M_2} - 3\left(\frac{S_1}{M_1} \cdot \hat{r}\right) \right\} \right]$$



lammaa	
lowres highres	
-	
	20
	20

 $\mathbf{3.0}$

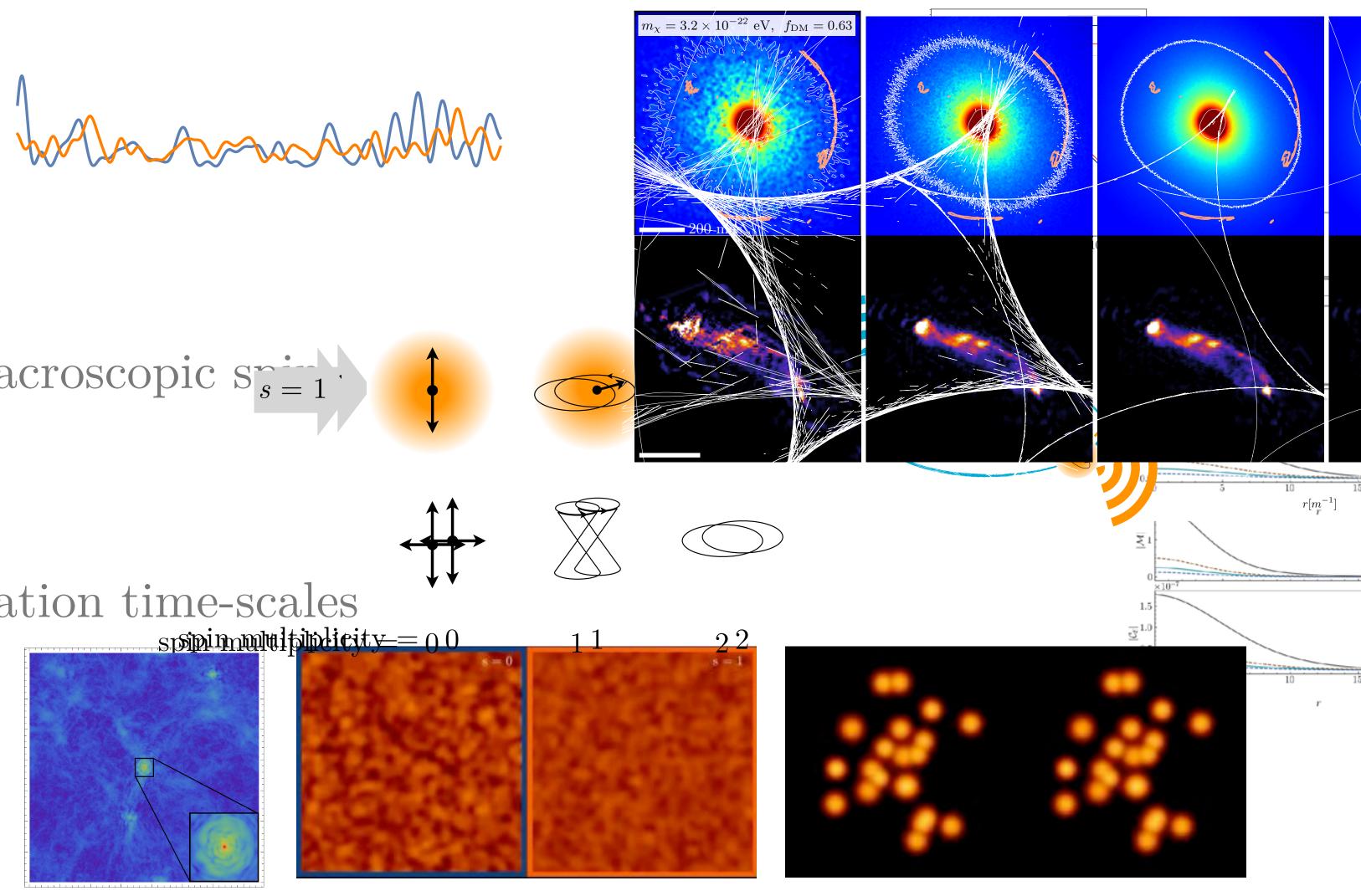




spin and dark matter sub-structure

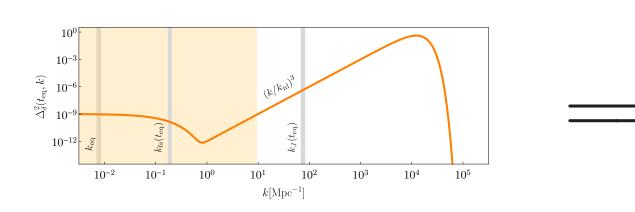
Phenomenology

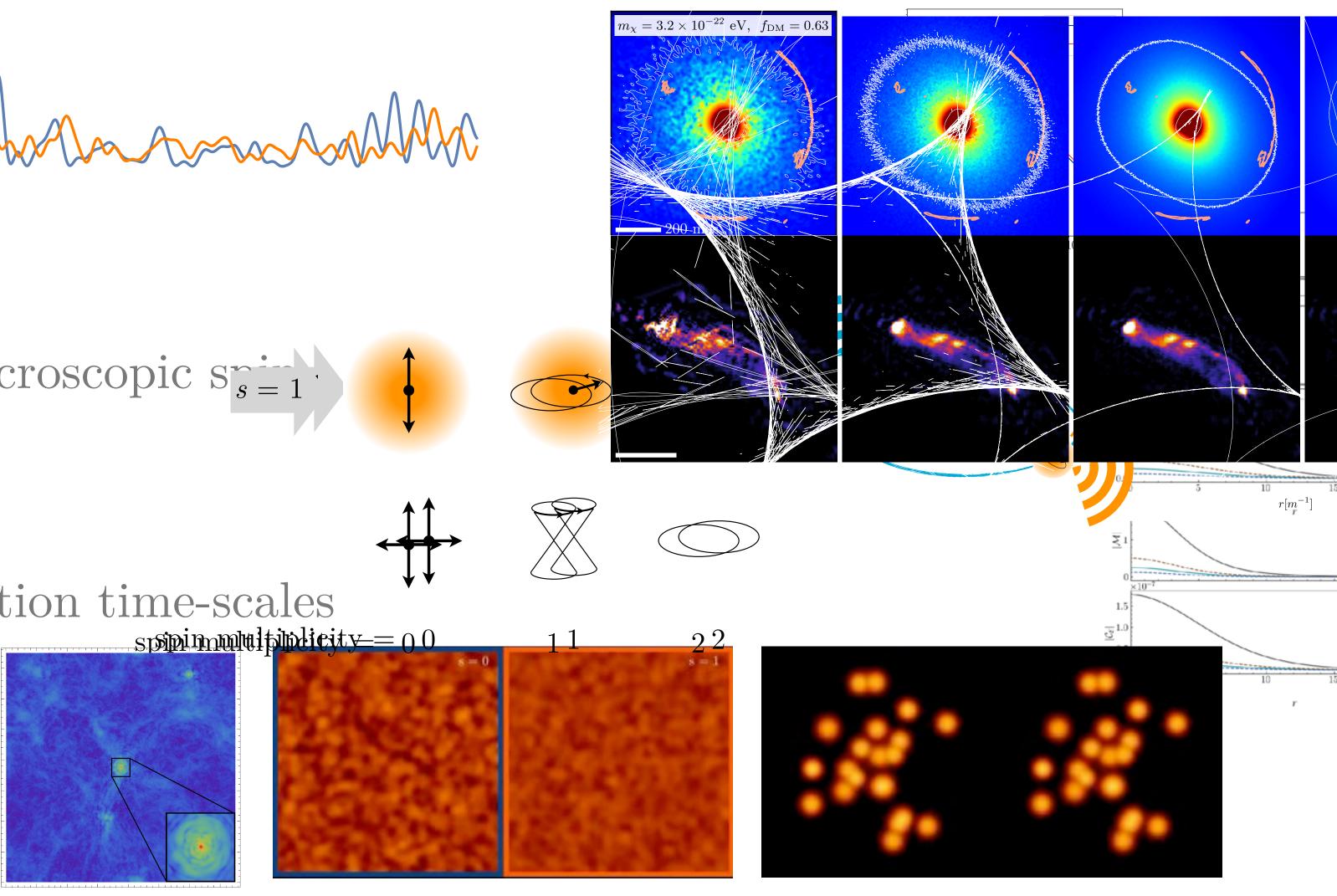
- reduced interference



- polarized solitons, with macroscopic $s_{s=1}^{-1}$

- growth of structure, nucleation time-scales





i-SPin: An integrator for multicomponent Mudit Jain & Mustafa Amin

Schrodinger-Poisson systems with self-interactions

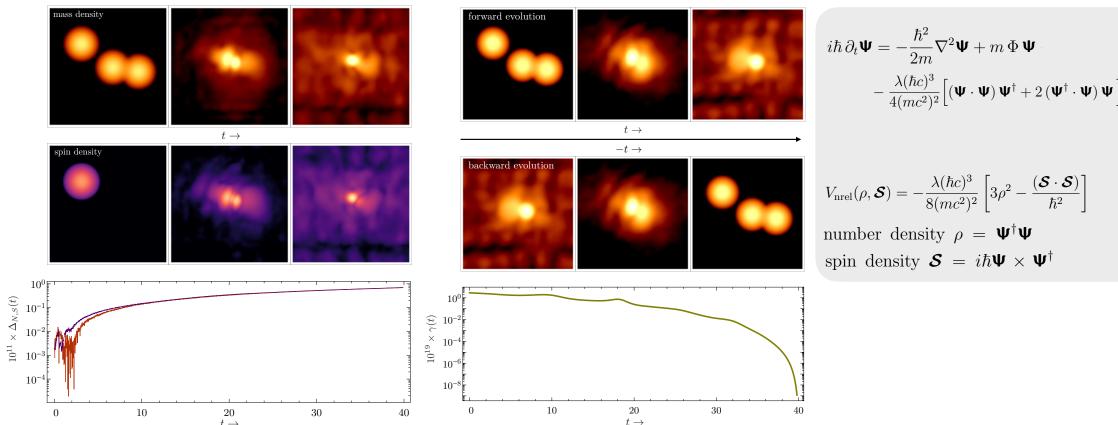
i-SPin: An algorithm (and publicly available code) to numerically evolve multicomponent Schrodinger-Poisson (SP) systems, including attractive/repulsive self-interactions + gravity

problem: If SP system represents the non-relativistic limit of a massive vector field, nongravitational self-interactions (in particular, *spin-spin* type interactions) introduce new challenges related to mass and spin conservation which are not present in purely gravitational systems.

solution: Above challenges addressed with a novel analytical solution for the non-trivial 'kick' step in the algorithm (sec 4.3.2)

features: (i) second order accurate evolution (ii) spin and mass conserved to machine precision (iii) reversible

generalizations: *n*-component fields with SO(n) symmetry, an expanding universe relevant for cosmology, and the inclusion of external potentials relevant for laboratory settings



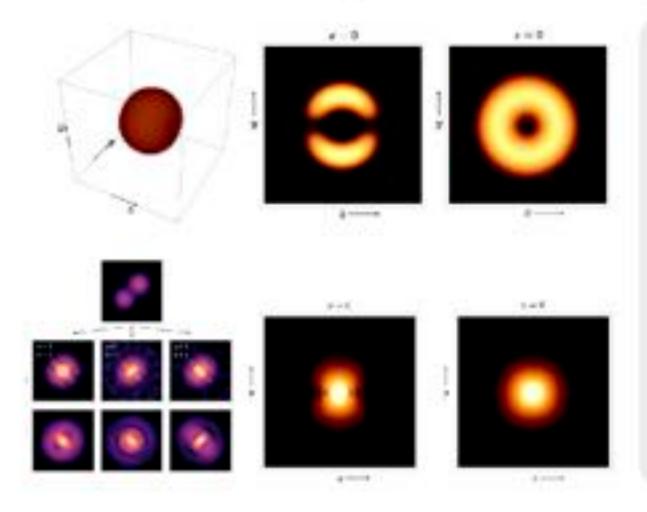
i-SPin 2: An integrator for general spin-s Gross-Pitaevskii systems

I-Spin 2: An algorithm for evolving general spin-s Gross-Pitaevskii / non-linear Schrodinger systems carrying a variety of interactions, where the 2s+1 components of the 'spinor' field represent the different spin-multiplicity states.

Allowed interactions: Nonrelativistic interactions up to quartic order in the Schrodinger field (both short and long-range, and spin-dependent and spin-independent interactions), including explicit spin-orbit couplings. The algorithm allows for spatially varying external and/ or self-generated vector potentials that couple to the spin density of the field.

Applications: (a) Laboratory systems such as spinor Bose-Einstein condensates (BECs). (b) Cosmological/astrophysical systems such as self-interacting bosonic dark matter.

Numerical features: Our symplectic algorithm is second-order accurate in time, and is extensible to the known higher-order accurate methods.



$$\begin{split} \hat{\mathbf{S}}_{\mathrm{ax}} &= \int \mathrm{d}t \, \mathrm{d}^3 x \left[\frac{i}{2} \psi_n^\dagger \dot{\psi}_n + \mathbf{c.c.} - \frac{1}{2\mu} \nabla \psi_n^\dagger \cdot \nabla \psi_n \\ &- \mu \rho V(\mathbf{x}) - \gamma \, \boldsymbol{\mathcal{S}} \cdot \tilde{\boldsymbol{B}}(\mathbf{x}, t) - V_{\mathrm{ax}} \\ &- \frac{\xi}{2} \frac{1}{(2s+1)} |\psi_n \, \hat{\boldsymbol{A}}_{nn'} \psi_{n'}|^2 \\ &+ i \, g_{ij} \, \psi_n^\dagger \, |\hat{\boldsymbol{S}}_i|_{mi'} \, \nabla_j \, \psi_n \right], \end{split}$$

with $\tilde{B}(x, t) = f(t)B(x)$, and

$$V_{\text{tred}}(\rho, S) = -\frac{1}{2\mu^2} \left[\lambda \rho^2 + \alpha \left(S \cdot S\right)\right]$$

number density $\rho = \psi_{\alpha}^{\dagger} \psi_{\alpha}$ $S = \psi_n^* \hat{S}_{nn'} \psi_{n'}$ spin density.

