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Fig. 1 Sketch (not to scale) of the huge range of possible DM models that have been conceived. They span many orders of magnitude
in mass, with DM represented by very distinct phenomena, ranging from new elementary particles to black holes.

structures we see in our universe today, as is evident in observations of the large scale structure of our universe
(Anderson et al. 2014; Tegmark et al. 2004).

With all this evidence coming from precise astrophysical and cosmological observations, cosmologists have con-
verged to a phenomenological model to describe our universe, the ⇤CDM model. This model is currently the
concordance model of cosmology and it accumulates a number of observational successes. It exhibits outstanding
agreement with current cosmological observations (Anderson et al. 2014), which is manifested in the parameters
of this model being constrained at the percent and sub-percent level. This incredibly simple model is described by
only six parameters and parametrizes a large amount of the universe’s history. It describes a universe that is flat
and seeded by nearly scale invariant perturbations, composed of baryons, which amount to approximately 5% of
the energy density of the universe, a small radiation component, but in its majority is composed of two unknown
ingredients. The energy budget of the universe is dominated (⇠ 70%) by a component responsible for the current
accelerated expansion of the universe called dark energy, and a clustering component, the dark matter, making up
to ⇠ 25% of our universe. These large-scale observations give a coarse-grained description of these non-baryonic
components in the hydrodynamical limit where dark matter is described as a perfect fluid with very small pressure
(w ⇡ 0) and sound speed, cs ⇡ 0, that does not interact, at least strongly, with baryonic matter. Dark energy is
parametrized by a cosmological constant, the simplest model for the present accelerated expansion of our universe.

Therefore, within ⇤CDM, the Cold Dark Matter (CDM) paradigm emerged from the large scale observations
and describes the component responsible for the formation of the structures of our universe through gravitational
clustering. In the CDM model, DM is described by a perfect fluid that must be massive, su�ciently cold, which
means non-relativistic at the time of structure formation, and collisionless in order to explain the observational data
on large linear scales. This coarse-grained description of a CDM is very successful in fitting the linear, large scales
observations from the CMB, LSS, to clusters, and general properties of galaxies.

However, even though we know the hydrodynamical properties of DM on large scales to a very high precision, the
microphysics of the DM component remains unknown. This allows for the creation of a plethora of possible models
of DM. Those models recover the large scale properties of CDM, but invoke very di↵erent objects and phenomena
to play the role of DM.

This incredible variety of viable models of DM can be seen in the huge range of masses those models cover, as
shown in Fig. 1. This figure shows many di↵erent broad classes of DM models, and each of which might contain
many di↵erent specific models. It spans more than 80 orders of magnitude and shows very di↵erent hypothesis for
DM, from new elementary particles, to composite objects (Jacobs et al. 2015; Khlopov 2019), up to astrophysical
size primordial black holes (for a review on recent bounds see (Carr et al. 2020; Carr and Kuhnel 2020)). This shows
us that although we have gathered a lot of knowledge about the gravitational properties of DM, the nature of DM
is still elusive, with the current data still allowing a huge amount of highly di↵erent models.

The possibility that dark matter could be a long lived particle is very appealing. Specially if these candidates
are expected candidates from extensions of the standard model of particle physics. One class of models that became
the preferred candidates for the DM particles are WIMP, weakly interacting massive particles, which represent new
elementary particles that interact with baryons not only gravitationally but also through the weak force or a new
force of comparable strength (Roszkowski et al. 2018; Lin 2019). The strong motivation for this candidate is because
if it is thermally produced in the early universe, the relic abundance of particles that have mass of the order of the
electroweak scale, and a coupling of order one, corresponds precisely to the abundance of DM in our universe. The
possibility that WIMP could also be discovered by direct detection experiments is also an important motivation to
search for this candidate. There is a great experimental e↵ort to constrain the properties of WIMP DM with the
parameter space being very restricted over the past few years. Given the complex phenomenology from the possible
models of WIMP DM and their interaction with the standard model particles, the translation of those bounds to the
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structures we see in our universe today, as is evident in observations of the large scale structure of our universe
(Anderson et al. 2014; Tegmark et al. 2004).

With all this evidence coming from precise astrophysical and cosmological observations, cosmologists have con-
verged to a phenomenological model to describe our universe, the ⇤CDM model. This model is currently the
concordance model of cosmology and it accumulates a number of observational successes. It exhibits outstanding
agreement with current cosmological observations (Anderson et al. 2014), which is manifested in the parameters
of this model being constrained at the percent and sub-percent level. This incredibly simple model is described by
only six parameters and parametrizes a large amount of the universe’s history. It describes a universe that is flat
and seeded by nearly scale invariant perturbations, composed of baryons, which amount to approximately 5% of
the energy density of the universe, a small radiation component, but in its majority is composed of two unknown
ingredients. The energy budget of the universe is dominated (⇠ 70%) by a component responsible for the current
accelerated expansion of the universe called dark energy, and a clustering component, the dark matter, making up
to ⇠ 25% of our universe. These large-scale observations give a coarse-grained description of these non-baryonic
components in the hydrodynamical limit where dark matter is described as a perfect fluid with very small pressure
(w ⇡ 0) and sound speed, cs ⇡ 0, that does not interact, at least strongly, with baryonic matter. Dark energy is
parametrized by a cosmological constant, the simplest model for the present accelerated expansion of our universe.

Therefore, within ⇤CDM, the Cold Dark Matter (CDM) paradigm emerged from the large scale observations
and describes the component responsible for the formation of the structures of our universe through gravitational
clustering. In the CDM model, DM is described by a perfect fluid that must be massive, su�ciently cold, which
means non-relativistic at the time of structure formation, and collisionless in order to explain the observational data
on large linear scales. This coarse-grained description of a CDM is very successful in fitting the linear, large scales
observations from the CMB, LSS, to clusters, and general properties of galaxies.

However, even though we know the hydrodynamical properties of DM on large scales to a very high precision, the
microphysics of the DM component remains unknown. This allows for the creation of a plethora of possible models
of DM. Those models recover the large scale properties of CDM, but invoke very di↵erent objects and phenomena
to play the role of DM.

This incredible variety of viable models of DM can be seen in the huge range of masses those models cover, as
shown in Fig. 1. This figure shows many di↵erent broad classes of DM models, and each of which might contain
many di↵erent specific models. It spans more than 80 orders of magnitude and shows very di↵erent hypothesis for
DM, from new elementary particles, to composite objects (Jacobs et al. 2015; Khlopov 2019), up to astrophysical
size primordial black holes (for a review on recent bounds see (Carr et al. 2020; Carr and Kuhnel 2020)). This shows
us that although we have gathered a lot of knowledge about the gravitational properties of DM, the nature of DM
is still elusive, with the current data still allowing a huge amount of highly di↵erent models.

The possibility that dark matter could be a long lived particle is very appealing. Specially if these candidates
are expected candidates from extensions of the standard model of particle physics. One class of models that became
the preferred candidates for the DM particles are WIMP, weakly interacting massive particles, which represent new
elementary particles that interact with baryons not only gravitationally but also through the weak force or a new
force of comparable strength (Roszkowski et al. 2018; Lin 2019). The strong motivation for this candidate is because
if it is thermally produced in the early universe, the relic abundance of particles that have mass of the order of the
electroweak scale, and a coupling of order one, corresponds precisely to the abundance of DM in our universe. The
possibility that WIMP could also be discovered by direct detection experiments is also an important motivation to
search for this candidate. There is a great experimental e↵ort to constrain the properties of WIMP DM with the
parameter space being very restricted over the past few years. Given the complex phenomenology from the possible
models of WIMP DM and their interaction with the standard model particles, the translation of those bounds to the
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structures we see in our universe today, as is evident in observations of the large scale structure of our universe
(Anderson et al. 2014; Tegmark et al. 2004).

With all this evidence coming from precise astrophysical and cosmological observations, cosmologists have con-
verged to a phenomenological model to describe our universe, the ⇤CDM model. This model is currently the
concordance model of cosmology and it accumulates a number of observational successes. It exhibits outstanding
agreement with current cosmological observations (Anderson et al. 2014), which is manifested in the parameters
of this model being constrained at the percent and sub-percent level. This incredibly simple model is described by
only six parameters and parametrizes a large amount of the universe’s history. It describes a universe that is flat
and seeded by nearly scale invariant perturbations, composed of baryons, which amount to approximately 5% of
the energy density of the universe, a small radiation component, but in its majority is composed of two unknown
ingredients. The energy budget of the universe is dominated (⇠ 70%) by a component responsible for the current
accelerated expansion of the universe called dark energy, and a clustering component, the dark matter, making up
to ⇠ 25% of our universe. These large-scale observations give a coarse-grained description of these non-baryonic
components in the hydrodynamical limit where dark matter is described as a perfect fluid with very small pressure
(w ⇡ 0) and sound speed, cs ⇡ 0, that does not interact, at least strongly, with baryonic matter. Dark energy is
parametrized by a cosmological constant, the simplest model for the present accelerated expansion of our universe.

Therefore, within ⇤CDM, the Cold Dark Matter (CDM) paradigm emerged from the large scale observations
and describes the component responsible for the formation of the structures of our universe through gravitational
clustering. In the CDM model, DM is described by a perfect fluid that must be massive, su�ciently cold, which
means non-relativistic at the time of structure formation, and collisionless in order to explain the observational data
on large linear scales. This coarse-grained description of a CDM is very successful in fitting the linear, large scales
observations from the CMB, LSS, to clusters, and general properties of galaxies.

However, even though we know the hydrodynamical properties of DM on large scales to a very high precision, the
microphysics of the DM component remains unknown. This allows for the creation of a plethora of possible models
of DM. Those models recover the large scale properties of CDM, but invoke very di↵erent objects and phenomena
to play the role of DM.

This incredible variety of viable models of DM can be seen in the huge range of masses those models cover, as
shown in Fig. 1. This figure shows many di↵erent broad classes of DM models, and each of which might contain
many di↵erent specific models. It spans more than 80 orders of magnitude and shows very di↵erent hypothesis for
DM, from new elementary particles, to composite objects (Jacobs et al. 2015; Khlopov 2019), up to astrophysical
size primordial black holes (for a review on recent bounds see (Carr et al. 2020; Carr and Kuhnel 2020)). This shows
us that although we have gathered a lot of knowledge about the gravitational properties of DM, the nature of DM
is still elusive, with the current data still allowing a huge amount of highly di↵erent models.

The possibility that dark matter could be a long lived particle is very appealing. Specially if these candidates
are expected candidates from extensions of the standard model of particle physics. One class of models that became
the preferred candidates for the DM particles are WIMP, weakly interacting massive particles, which represent new
elementary particles that interact with baryons not only gravitationally but also through the weak force or a new
force of comparable strength (Roszkowski et al. 2018; Lin 2019). The strong motivation for this candidate is because
if it is thermally produced in the early universe, the relic abundance of particles that have mass of the order of the
electroweak scale, and a coupling of order one, corresponds precisely to the abundance of DM in our universe. The
possibility that WIMP could also be discovered by direct detection experiments is also an important motivation to
search for this candidate. There is a great experimental e↵ort to constrain the properties of WIMP DM with the
parameter space being very restricted over the past few years. Given the complex phenomenology from the possible
models of WIMP DM and their interaction with the standard model particles, the translation of those bounds to the

Spin

Mass

1/2

3/2

5/2

boson stars/solitons/oscillons

cannot be fermions

QCD  
axion

“Wavelike” DM

<latexit sha1_base64="lUH2H+xHbFb8Ug0MX1NlvUUuxi4=">AAAB8XicbVDJSgNBEK2JW4xb1KOXxiB4CjPidgx68RjBLJgZQk+nkjTp7hm6e4QQ8hdePCji1b/x5t/YWQ6a+KDg8V4VVfXiVHBjff/by62srq1v5DcLW9s7u3vF/YO6STLNsMYSkehmTA0KrrBmuRXYTDVSGQtsxIPbid94Qm14oh7sMMVI0p7iXc6oddJjKDMSakmw3i6W/LI/BVkmwZyUYI5qu/gVdhKWSVSWCWpMK/BTG42otpwJHBfCzGBK2YD2sOWoohJNNJpePCYnTumQbqJdKUum6u+JEZXGDGXsOiW1fbPoTcT/vFZmu9fRiKs0s6jYbFE3E8QmZPI+6XCNzIqhI5Rp7m4lrE81ZdaFVHAhBIsvL5P6WTm4LF/cn5cqN/M48nAEx3AKAVxBBe6gCjVgoOAZXuHNM96L9+59zFpz3nzmEP7A+/wBzCaQXA==</latexit>

µeV

ultralight



light, bosonic wave dark matter

Ultra-light dark matter 3

Fig. 1 Sketch (not to scale) of the huge range of possible DM models that have been conceived. They span many orders of magnitude
in mass, with DM represented by very distinct phenomena, ranging from new elementary particles to black holes.

structures we see in our universe today, as is evident in observations of the large scale structure of our universe
(Anderson et al. 2014; Tegmark et al. 2004).

With all this evidence coming from precise astrophysical and cosmological observations, cosmologists have con-
verged to a phenomenological model to describe our universe, the ⇤CDM model. This model is currently the
concordance model of cosmology and it accumulates a number of observational successes. It exhibits outstanding
agreement with current cosmological observations (Anderson et al. 2014), which is manifested in the parameters
of this model being constrained at the percent and sub-percent level. This incredibly simple model is described by
only six parameters and parametrizes a large amount of the universe’s history. It describes a universe that is flat
and seeded by nearly scale invariant perturbations, composed of baryons, which amount to approximately 5% of
the energy density of the universe, a small radiation component, but in its majority is composed of two unknown
ingredients. The energy budget of the universe is dominated (⇠ 70%) by a component responsible for the current
accelerated expansion of the universe called dark energy, and a clustering component, the dark matter, making up
to ⇠ 25% of our universe. These large-scale observations give a coarse-grained description of these non-baryonic
components in the hydrodynamical limit where dark matter is described as a perfect fluid with very small pressure
(w ⇡ 0) and sound speed, cs ⇡ 0, that does not interact, at least strongly, with baryonic matter. Dark energy is
parametrized by a cosmological constant, the simplest model for the present accelerated expansion of our universe.

Therefore, within ⇤CDM, the Cold Dark Matter (CDM) paradigm emerged from the large scale observations
and describes the component responsible for the formation of the structures of our universe through gravitational
clustering. In the CDM model, DM is described by a perfect fluid that must be massive, su�ciently cold, which
means non-relativistic at the time of structure formation, and collisionless in order to explain the observational data
on large linear scales. This coarse-grained description of a CDM is very successful in fitting the linear, large scales
observations from the CMB, LSS, to clusters, and general properties of galaxies.

However, even though we know the hydrodynamical properties of DM on large scales to a very high precision, the
microphysics of the DM component remains unknown. This allows for the creation of a plethora of possible models
of DM. Those models recover the large scale properties of CDM, but invoke very di↵erent objects and phenomena
to play the role of DM.

This incredible variety of viable models of DM can be seen in the huge range of masses those models cover, as
shown in Fig. 1. This figure shows many di↵erent broad classes of DM models, and each of which might contain
many di↵erent specific models. It spans more than 80 orders of magnitude and shows very di↵erent hypothesis for
DM, from new elementary particles, to composite objects (Jacobs et al. 2015; Khlopov 2019), up to astrophysical
size primordial black holes (for a review on recent bounds see (Carr et al. 2020; Carr and Kuhnel 2020)). This shows
us that although we have gathered a lot of knowledge about the gravitational properties of DM, the nature of DM
is still elusive, with the current data still allowing a huge amount of highly di↵erent models.

The possibility that dark matter could be a long lived particle is very appealing. Specially if these candidates
are expected candidates from extensions of the standard model of particle physics. One class of models that became
the preferred candidates for the DM particles are WIMP, weakly interacting massive particles, which represent new
elementary particles that interact with baryons not only gravitationally but also through the weak force or a new
force of comparable strength (Roszkowski et al. 2018; Lin 2019). The strong motivation for this candidate is because
if it is thermally produced in the early universe, the relic abundance of particles that have mass of the order of the
electroweak scale, and a coupling of order one, corresponds precisely to the abundance of DM in our universe. The
possibility that WIMP could also be discovered by direct detection experiments is also an important motivation to
search for this candidate. There is a great experimental e↵ort to constrain the properties of WIMP DM with the
parameter space being very restricted over the past few years. Given the complex phenomenology from the possible
models of WIMP DM and their interaction with the standard model particles, the translation of those bounds to the
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Dark matter density dominated by sub-Hubble field modes

=) m & 10
�18

eV

A lower bound on dark matter mass

Mustafa A. Amin1 and Mehrdad Mirbabayi2

1
Department of Physics and Astronomy, Rice University, Houston, Texas 77005, U.S.A.,

⇤

2
International Centre for Theoretical Physics, Trieste, Italy

†

We argue that there is a lower bound of order 10�18 eV on dark matter mass if it is produced
after inflation via a process with finite correlation length.

I. INTRODUCTION

Dark matter is essential to our understanding of the
cosmos – from the astrophysical scales relevant for dwarf
galaxies to the cosmological scales in the Cosmic Mi-
crowave Background (CMB) [1]. Dark matter makes up
approximately 84% of the non-relativistic matter in our
cosmos [2]. Its detailed nature, however, is not well un-
derstood. For example, the mass or spin of dark matter
particles is not known, and we have yet to confirm any
non-gravitational interactions of dark matter. Further-
more, we do not have a unique formation mechanism for
dark matter in the early universe. Given the relevance of
dark matter to our understanding of the cosmos, any rel-
atively model-independent constraint on some of its mi-
croscopic properties would be valuable. In this letter, we
provide such a relatively model-independent lower bound
on the mass of dark matter particles.

An approximately scale invariant initial power spec-
trum of dark matter density fluctuations for comoving
wavenumbers k < kobs ⇠ 10 Mpc�1 is consistent with
current observations [3, 4]. We use two e↵ects, (1) excess
white noise power and (2) suppression of power due to
free-steaming, to provide a relatively model-independent
lower bound on the mass of the dark matter particles
produced after inflation, m & 10�18 eV. The bound is
independent of the nature of the field (scalar, vector, ten-
sor etc.) and details of the post-inflationary production
mechanism, but assumes this field constitutes all of dark
matter and interacts only gravitationally after produc-
tion. With more details of the production mechanism
included, the bound can be strengthened further. Our
lower bound is at least 1-2 orders of magnitude stronger
than that due to the finite Jeans scale in fuzzy dark mat-
ter [3, 5]. It is comparable to the recent bound due to
dynamical heating of stars in ultra-faint white dwarfs [6].
Our bound is more general, but weaker than the one
of [7, 8], who use a model-specific version of (1) alone.
Based on inferred quasar spins and hence lack of super-
radiance, [9] also claims a stronger bound on the mass
than ours.

To demonstrate our idea, we provide a concrete exam-
ple of scalar field dark matter. We set ~ = c = 1.

⇤ mustafa.a.amin@rice.edu
† mehrdad.mirbabayi@gmail.com

II. WHITE NOISE

Consider a scalar field, '(t,x) of mass m, that gets
excited at time ti after inflation with Heq ⌧ m < Hi.
For now, let us neglect the inflationary adiabatic fluctu-
ations. Then, the correlation length of the excitations is
expected to be subhorizon because of causality. Near
matter-radiation equality, the matter density is given
by[10]

⇢̄(t) ⇡ m
2

Z
d ln q

q
3

2⇡2
P'(t, q) , (1)

where integration over all momenta (without a UV cut-
o↵) is a justifiable approximation because by this time
the integral must be dominated by momenta much less
than ma(t). Meanwhile, since Heq ⌧ Hi, the main con-
tribution comes from momenta much larger than keq. For
simplicity, we take it to be a single scale k⇤. Because of
the finite correlation length, at momenta k ⌧ k⇤ there
is a white-noise contribution to the spectrum of the frac-
tional density perturbation �. The isocurvature transfer
function is close to one and we can approximate

P
(iso)
� (t, k) ⇡

m
4

⇢̄2(t)

Z
d ln q

q
3

2⇡2
[P'(q, t)]2 ⌘

2⇡
2

k
3
nl

. (2)

knl is understood as being defined by the above equa-
tion. With a single scale in the problem, we expect a
time-independent knl ⇠ k⇤. Further details of the order
unity isocurvature transfer function can be found in the
supplementary material (V F).

We stress that despite the suggestive subscript, knl

only parametrizes the slope of the white-noise part of
the density power spectrum at su�ciently small k. It is
not necessarily the location in k space where the density
perturbations become nonlinear. Furthermore, while not
necessary for the following sections, a parameterization
of knl ⇠ k⇤ in terms of the time and lengthscale asso-
ciated with the production mechanism, and mass m, is
provided in the supplementary material section (V A).

The reader who is familiar with the theory of struc-
ture formation might be skeptical about this flat spec-
trum. Indeed, it is well known that the stochastic con-
tribution to the nonlinear P�(t, k) arising from clustering
behaves as k

4 rather than k
0 at low k. This is a con-

sequence of mass and momentum conservation (see [11],
chapter 28). A white-noise contribution / k

0, would im-
ply that starting from the same initial matter density
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our argument 
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Dark matter density dominated by sub-Hubble field modes

=) m & 10
�18

eV
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1. and 2. not seen for k < kobs ⇠ 10Mpc�1
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1. white-noise excess in isocurvature density pert.

2. free-streaming suppression in adiabatic density pert.



comparison  with literature
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Dalal & Kravtsov (2022): m & 3⇥ 10�19 eV

<latexit sha1_base64="VSCovT2p2w3T5NobutVJmySb+xM="></latexit>

Irsic et. al (2017): m & 2⇥ 10�21 eV Irsic et. al (2017) — Lyα

Dalal & Kravtsov (2022) — dynamical heating of stars

Powell et. al (2023) — lensing<latexit sha1_base64="uIbEZNPurjBrM2a+hyGz4CvohV8="></latexit>

Powell et. al (2023): m & 4⇥ 10�21 eV

Nadler et. al (2021) — MW satellites
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m & 3⇥ 10�21 eV

*Above are model independent constraints, stronger constraints exist for particular models (Irsic, Xiao & McQuinn, 2020)

<latexit sha1_base64="Yqiya/e/0qizvQIxYNtdeKNwC/w=">AAACAnicbVDLSsNAFJ3UV62vqCtxM1gEF1oS8dFl0Y3LCvYBTSyT6bQdOpOEmRuhhOLGX3HjQhG3foU7/8Zpm4W2HrhwOOde7r0niAXX4DjfVm5hcWl5Jb9aWFvf2Nyyt3fqOkoUZTUaiUg1A6KZ4CGrAQfBmrFiRAaCNYLB9dhvPDCleRTewTBmviS9kHc5JWCktr0nvR4YW2LXuU9P3PLIO/aUxKzetotOyZkAzxM3I0WUodq2v7xORBPJQqCCaN1ynRj8lCjgVLBRwUs0iwkdkB5rGRoSybSfTl4Y4UOjdHA3UqZCwBP190RKpNZDGZhOSaCvZ72x+J/XSqBb9lMexgmwkE4XdROBIcLjPHCHK0ZBDA0hVHFzK6Z9oggFk1rBhODOvjxP6qcl96J0fntWrFxlceTRPjpAR8hFl6iCblAV1RBFj+gZvaI368l6sd6tj2lrzspmdtEfWJ8/T2uWGQ==</latexit>

m & 10�18 eV MA & Mirbabayi (2022)



some details

*analytic calculation of density spectra, see appendix of MA & Mirbabayi (2022)
*to us, results were “intuitively convincing” but quantitative calculation is non-trivial
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We argue that there is a lower bound of order 10�18 eV on dark matter mass if it is produced
after inflation via a process with finite correlation length.

I. INTRODUCTION

Dark matter is essential to our understanding of the
cosmos – from the astrophysical scales relevant for dwarf
galaxies to the cosmological scales in the Cosmic Mi-
crowave Background (CMB) [1]. Dark matter makes up
approximately 84% of the non-relativistic matter in our
cosmos [2]. Its detailed nature, however, is not well un-
derstood. For example, the mass or spin of dark matter
particles is not known, and we have yet to confirm any
non-gravitational interactions of dark matter. Further-
more, we do not have a unique formation mechanism for
dark matter in the early universe. Given the relevance of
dark matter to our understanding of the cosmos, any rel-
atively model-independent constraint on some of its mi-
croscopic properties would be valuable. In this letter, we
provide such a relatively model-independent lower bound
on the mass of dark matter particles.

An approximately scale invariant initial power spec-
trum of dark matter density fluctuations for comoving
wavenumbers k < kobs ⇠ 10 Mpc�1 is consistent with
current observations [3, 4]. We use two e↵ects, (1) excess
white noise power and (2) suppression of power due to
free-steaming, to provide a relatively model-independent
lower bound on the mass of the dark matter particles
produced after inflation, m & 10�18 eV. The bound is
independent of the nature of the field (scalar, vector, ten-
sor etc.) and details of the post-inflationary production
mechanism, but assumes this field constitutes all of dark
matter and interacts only gravitationally after produc-
tion. With more details of the production mechanism
included, the bound can be strengthened further. Our
lower bound is at least 1-2 orders of magnitude stronger
than that due to the finite Jeans scale in fuzzy dark mat-
ter [3, 5]. It is comparable to the recent bound due to
dynamical heating of stars in ultra-faint white dwarfs [6].
Our bound is more general, but weaker than the one
of [7, 8], who use a model-specific version of (1) alone.
Based on inferred quasar spins and hence lack of super-
radiance, [9] also claims a stronger bound on the mass
than ours.

To demonstrate our idea, we provide a concrete exam-
ple of scalar field dark matter. We set ~ = c = 1.

⇤ mustafa.a.amin@rice.edu
† mehrdad.mirbabayi@gmail.com

II. WHITE NOISE

Consider a scalar field, '(t,x) of mass m, that gets
excited at time ti after inflation with Heq ⌧ m < Hi.
For now, let us neglect the inflationary adiabatic fluctu-
ations. Then, the correlation length of the excitations is
expected to be subhorizon because of causality. Near
matter-radiation equality, the matter density is given
by[10]

⇢̄(t) ⇡ m
2

Z
d ln q

q
3

2⇡2
P'(t, q) , (1)

where integration over all momenta (without a UV cut-
o↵) is a justifiable approximation because by this time
the integral must be dominated by momenta much less
than ma(t). Meanwhile, since Heq ⌧ Hi, the main con-
tribution comes from momenta much larger than keq. For
simplicity, we take it to be a single scale k⇤. Because of
the finite correlation length, at momenta k ⌧ k⇤ there
is a white-noise contribution to the spectrum of the frac-
tional density perturbation �. The isocurvature transfer
function is close to one and we can approximate

P
(iso)
� (t, k) ⇡

m
4

⇢̄2(t)

Z
d ln q

q
3

2⇡2
[P'(q, t)]2 ⌘

2⇡
2

k
3
nl

. (2)

knl is understood as being defined by the above equa-
tion. With a single scale in the problem, we expect a
time-independent knl ⇠ k⇤. Further details of the order
unity isocurvature transfer function can be found in the
supplementary material (V F).

We stress that despite the suggestive subscript, knl

only parametrizes the slope of the white-noise part of
the density power spectrum at su�ciently small k. It is
not necessarily the location in k space where the density
perturbations become nonlinear. Furthermore, while not
necessary for the following sections, a parameterization
of knl ⇠ k⇤ in terms of the time and lengthscale asso-
ciated with the production mechanism, and mass m, is
provided in the supplementary material section (V A).

The reader who is familiar with the theory of struc-
ture formation might be skeptical about this flat spec-
trum. Indeed, it is well known that the stochastic con-
tribution to the nonlinear P�(t, k) arising from clustering
behaves as k

4 rather than k
0 at low k. This is a con-

sequence of mass and momentum conservation (see [11],
chapter 28). A white-noise contribution / k

0, would im-
ply that starting from the same initial matter density

dark matter density close to matter radiation eq.
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time-independent knl ⇠ k⇤. Further details of the order
unity isocurvature transfer function can be found in the
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perturbations become nonlinear. Furthermore, while not
necessary for the following sections, a parameterization
of knl ⇠ k⇤ in terms of the time and lengthscale asso-
ciated with the production mechanism, and mass m, is
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ture formation might be skeptical about this flat spec-
trum. Indeed, it is well known that the stochastic con-
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power spectrum of !eld, peaked at
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'(t,x) light, but non-relativistic scalar !eld during rad. dom.

       holds for !eld produced after in"ation
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a(t)H(t) ⌧ k⇤ ⌧ a(t)m eventually non-relativistic to be DM
Note: no signi!cant zero mode of the !eld!
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I. INTRODUCTION

Dark matter is essential to our understanding of the
cosmos – from the astrophysical scales relevant for dwarf
galaxies to the cosmological scales in the Cosmic Mi-
crowave Background (CMB) [1]. Dark matter makes up
approximately 84% of the non-relativistic matter in our
cosmos [2]. Its detailed nature, however, is not well un-
derstood. For example, the mass or spin of dark matter
particles is not known, and we have yet to confirm any
non-gravitational interactions of dark matter. Further-
more, we do not have a unique formation mechanism for
dark matter in the early universe. Given the relevance of
dark matter to our understanding of the cosmos, any rel-
atively model-independent constraint on some of its mi-
croscopic properties would be valuable. In this letter, we
provide such a relatively model-independent lower bound
on the mass of dark matter particles.

An approximately scale invariant initial power spec-
trum of dark matter density fluctuations for comoving
wavenumbers k < kobs ⇠ 10 Mpc�1 is consistent with
current observations [3, 4]. We use two e↵ects, (1) excess
white noise power and (2) suppression of power due to
free-steaming, to provide a relatively model-independent
lower bound on the mass of the dark matter particles
produced after inflation, m & 10�18 eV. The bound is
independent of the nature of the field (scalar, vector, ten-
sor etc.) and details of the post-inflationary production
mechanism, but assumes this field constitutes all of dark
matter and interacts only gravitationally after produc-
tion. With more details of the production mechanism
included, the bound can be strengthened further. Our
lower bound is at least 1-2 orders of magnitude stronger
than that due to the finite Jeans scale in fuzzy dark mat-
ter [3, 5]. It is comparable to the recent bound due to
dynamical heating of stars in ultra-faint white dwarfs [6].
Our bound is more general, but weaker than the one
of [7, 8], who use a model-specific version of (1) alone.
Based on inferred quasar spins and hence lack of super-
radiance, [9] also claims a stronger bound on the mass
than ours.

To demonstrate our idea, we provide a concrete exam-
ple of scalar field dark matter. We set ~ = c = 1.
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II. WHITE NOISE

Consider a scalar field, '(t,x) of mass m, that gets
excited at time ti after inflation with Heq ⌧ m < Hi.
For now, let us neglect the inflationary adiabatic fluctu-
ations. Then, the correlation length of the excitations is
expected to be subhorizon because of causality. Near
matter-radiation equality, the matter density is given
by[10]

⇢̄(t) ⇡ m
2

Z
d ln q

q
3

2⇡2
P'(t, q) , (1)

where integration over all momenta (without a UV cut-
o↵) is a justifiable approximation because by this time
the integral must be dominated by momenta much less
than ma(t). Meanwhile, since Heq ⌧ Hi, the main con-
tribution comes from momenta much larger than keq. For
simplicity, we take it to be a single scale k⇤. Because of
the finite correlation length, at momenta k ⌧ k⇤ there
is a white-noise contribution to the spectrum of the frac-
tional density perturbation �. The isocurvature transfer
function is close to one and we can approximate

P
(iso)
� (t, k) ⇡

m
4

⇢̄2(t)

Z
d ln q

q
3

2⇡2
[P'(q, t)]2 ⌘

2⇡
2

k
3
nl

. (2)

knl is understood as being defined by the above equa-
tion. With a single scale in the problem, we expect a
time-independent knl ⇠ k⇤. Further details of the order
unity isocurvature transfer function can be found in the
supplementary material (V F).

We stress that despite the suggestive subscript, knl

only parametrizes the slope of the white-noise part of
the density power spectrum at su�ciently small k. It is
not necessarily the location in k space where the density
perturbations become nonlinear. Furthermore, while not
necessary for the following sections, a parameterization
of knl ⇠ k⇤ in terms of the time and lengthscale asso-
ciated with the production mechanism, and mass m, is
provided in the supplementary material section (V A).

The reader who is familiar with the theory of struc-
ture formation might be skeptical about this flat spec-
trum. Indeed, it is well known that the stochastic con-
tribution to the nonlinear P�(t, k) arising from clustering
behaves as k

4 rather than k
0 at low k. This is a con-

sequence of mass and momentum conservation (see [11],
chapter 28). A white-noise contribution / k

0, would im-
ply that starting from the same initial matter density
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I. INTRODUCTION

Dark matter is essential to our understanding of the
cosmos – from the astrophysical scales relevant for dwarf
galaxies to the cosmological scales in the Cosmic Mi-
crowave Background (CMB) [1]. Dark matter makes up
approximately 84% of the non-relativistic matter in our
cosmos [2]. Its detailed nature, however, is not well un-
derstood. For example, the mass or spin of dark matter
particles is not known, and we have yet to confirm any
non-gravitational interactions of dark matter. Further-
more, we do not have a unique formation mechanism for
dark matter in the early universe. Given the relevance of
dark matter to our understanding of the cosmos, any rel-
atively model-independent constraint on some of its mi-
croscopic properties would be valuable. In this letter, we
provide such a relatively model-independent lower bound
on the mass of dark matter particles.

An approximately scale invariant initial power spec-
trum of dark matter density fluctuations for comoving
wavenumbers k < kobs ⇠ 10 Mpc�1 is consistent with
current observations [3, 4]. We use two e↵ects, (1) excess
white noise power and (2) suppression of power due to
free-steaming, to provide a relatively model-independent
lower bound on the mass of the dark matter particles
produced after inflation, m & 10�18 eV. The bound is
independent of the nature of the field (scalar, vector, ten-
sor etc.) and details of the post-inflationary production
mechanism, but assumes this field constitutes all of dark
matter and interacts only gravitationally after produc-
tion. With more details of the production mechanism
included, the bound can be strengthened further. Our
lower bound is at least 1-2 orders of magnitude stronger
than that due to the finite Jeans scale in fuzzy dark mat-
ter [3, 5]. It is comparable to the recent bound due to
dynamical heating of stars in ultra-faint white dwarfs [6].
Our bound is more general, but weaker than the one
of [7, 8], who use a model-specific version of (1) alone.
Based on inferred quasar spins and hence lack of super-
radiance, [9] also claims a stronger bound on the mass
than ours.

To demonstrate our idea, we provide a concrete exam-
ple of scalar field dark matter. We set ~ = c = 1.
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II. WHITE NOISE

Consider a scalar field, '(t,x) of mass m, that gets
excited at time ti after inflation with Heq ⌧ m < Hi.
For now, let us neglect the inflationary adiabatic fluctu-
ations. Then, the correlation length of the excitations is
expected to be subhorizon because of causality. Near
matter-radiation equality, the matter density is given
by[10]

⇢̄(t) ⇡ m
2

Z
d ln q

q
3

2⇡2
P'(t, q) , (1)

where integration over all momenta (without a UV cut-
o↵) is a justifiable approximation because by this time
the integral must be dominated by momenta much less
than ma(t). Meanwhile, since Heq ⌧ Hi, the main con-
tribution comes from momenta much larger than keq. For
simplicity, we take it to be a single scale k⇤. Because of
the finite correlation length, at momenta k ⌧ k⇤ there
is a white-noise contribution to the spectrum of the frac-
tional density perturbation �. The isocurvature transfer
function is close to one and we can approximate

P
(iso)
� (t, k) ⇡

m
4

⇢̄2(t)

Z
d ln q

q
3

2⇡2
[P'(q, t)]2 ⌘

2⇡
2
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knl is understood as being defined by the above equa-
tion. With a single scale in the problem, we expect a
time-independent knl ⇠ k⇤. Further details of the order
unity isocurvature transfer function can be found in the
supplementary material (V F).

We stress that despite the suggestive subscript, knl

only parametrizes the slope of the white-noise part of
the density power spectrum at su�ciently small k. It is
not necessarily the location in k space where the density
perturbations become nonlinear. Furthermore, while not
necessary for the following sections, a parameterization
of knl ⇠ k⇤ in terms of the time and lengthscale asso-
ciated with the production mechanism, and mass m, is
provided in the supplementary material section (V A).

The reader who is familiar with the theory of struc-
ture formation might be skeptical about this flat spec-
trum. Indeed, it is well known that the stochastic con-
tribution to the nonlinear P�(t, k) arising from clustering
behaves as k

4 rather than k
0 at low k. This is a con-

sequence of mass and momentum conservation (see [11],
chapter 28). A white-noise contribution / k

0, would im-
ply that starting from the same initial matter density
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I. INTRODUCTION

Dark matter is essential to our understanding of the
cosmos – from the astrophysical scales relevant for dwarf
galaxies to the cosmological scales in the Cosmic Mi-
crowave Background (CMB) [1]. Dark matter makes up
approximately 84% of the non-relativistic matter in our
cosmos [2]. Its detailed nature, however, is not well un-
derstood. For example, the mass or spin of dark matter
particles is not known, and we have yet to confirm any
non-gravitational interactions of dark matter. Further-
more, we do not have a unique formation mechanism for
dark matter in the early universe. Given the relevance of
dark matter to our understanding of the cosmos, any rel-
atively model-independent constraint on some of its mi-
croscopic properties would be valuable. In this letter, we
provide such a relatively model-independent lower bound
on the mass of dark matter particles.

An approximately scale invariant initial power spec-
trum of dark matter density fluctuations for comoving
wavenumbers k < kobs ⇠ 10 Mpc�1 is consistent with
current observations [3, 4]. We use two e↵ects, (1) excess
white noise power and (2) suppression of power due to
free-steaming, to provide a relatively model-independent
lower bound on the mass of the dark matter particles
produced after inflation, m & 10�18 eV. The bound is
independent of the nature of the field (scalar, vector, ten-
sor etc.) and details of the post-inflationary production
mechanism, but assumes this field constitutes all of dark
matter and interacts only gravitationally after produc-
tion. With more details of the production mechanism
included, the bound can be strengthened further. Our
lower bound is at least 1-2 orders of magnitude stronger
than that due to the finite Jeans scale in fuzzy dark mat-
ter [3, 5]. It is comparable to the recent bound due to
dynamical heating of stars in ultra-faint white dwarfs [6].
Our bound is more general, but weaker than the one
of [7, 8], who use a model-specific version of (1) alone.
Based on inferred quasar spins and hence lack of super-
radiance, [9] also claims a stronger bound on the mass
than ours.

To demonstrate our idea, we provide a concrete exam-
ple of scalar field dark matter. We set ~ = c = 1.
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II. WHITE NOISE

Consider a scalar field, '(t,x) of mass m, that gets
excited at time ti after inflation with Heq ⌧ m < Hi.
For now, let us neglect the inflationary adiabatic fluctu-
ations. Then, the correlation length of the excitations is
expected to be subhorizon because of causality. Near
matter-radiation equality, the matter density is given
by[10]

⇢̄(t) ⇡ m
2

Z
d ln q

q
3

2⇡2
P'(t, q) , (1)

where integration over all momenta (without a UV cut-
o↵) is a justifiable approximation because by this time
the integral must be dominated by momenta much less
than ma(t). Meanwhile, since Heq ⌧ Hi, the main con-
tribution comes from momenta much larger than keq. For
simplicity, we take it to be a single scale k⇤. Because of
the finite correlation length, at momenta k ⌧ k⇤ there
is a white-noise contribution to the spectrum of the frac-
tional density perturbation �. The isocurvature transfer
function is close to one and we can approximate

P
(iso)
� (t, k) ⇡
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[P'(q, t)]2 ⌘
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knl is understood as being defined by the above equa-
tion. With a single scale in the problem, we expect a
time-independent knl ⇠ k⇤. Further details of the order
unity isocurvature transfer function can be found in the
supplementary material (V F).

We stress that despite the suggestive subscript, knl

only parametrizes the slope of the white-noise part of
the density power spectrum at su�ciently small k. It is
not necessarily the location in k space where the density
perturbations become nonlinear. Furthermore, while not
necessary for the following sections, a parameterization
of knl ⇠ k⇤ in terms of the time and lengthscale asso-
ciated with the production mechanism, and mass m, is
provided in the supplementary material section (V A).

The reader who is familiar with the theory of struc-
ture formation might be skeptical about this flat spec-
trum. Indeed, it is well known that the stochastic con-
tribution to the nonlinear P�(t, k) arising from clustering
behaves as k

4 rather than k
0 at low k. This is a con-

sequence of mass and momentum conservation (see [11],
chapter 28). A white-noise contribution / k

0, would im-
ply that starting from the same initial matter density
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We argue that there is a lower bound of order 10�18 eV on dark matter mass if it is produced
after inflation via a process with finite correlation length.

I. INTRODUCTION

Dark matter is essential to our understanding of the
cosmos – from the astrophysical scales relevant for dwarf
galaxies to the cosmological scales in the Cosmic Mi-
crowave Background (CMB) [1]. Dark matter makes up
approximately 84% of the non-relativistic matter in our
cosmos [2]. Its detailed nature, however, is not well un-
derstood. For example, the mass or spin of dark matter
particles is not known, and we have yet to confirm any
non-gravitational interactions of dark matter. Further-
more, we do not have a unique formation mechanism for
dark matter in the early universe. Given the relevance of
dark matter to our understanding of the cosmos, any rel-
atively model-independent constraint on some of its mi-
croscopic properties would be valuable. In this letter, we
provide such a relatively model-independent lower bound
on the mass of dark matter particles.

An approximately scale invariant initial power spec-
trum of dark matter density fluctuations for comoving
wavenumbers k < kobs ⇠ 10 Mpc�1 is consistent with
current observations [3, 4]. We use two e↵ects, (1) excess
white noise power and (2) suppression of power due to
free-steaming, to provide a relatively model-independent
lower bound on the mass of the dark matter particles
produced after inflation, m & 10�18 eV. The bound is
independent of the nature of the field (scalar, vector, ten-
sor etc.) and details of the post-inflationary production
mechanism, but assumes this field constitutes all of dark
matter and interacts only gravitationally after produc-
tion. With more details of the production mechanism
included, the bound can be strengthened further. Our
lower bound is at least 1-2 orders of magnitude stronger
than that due to the finite Jeans scale in fuzzy dark mat-
ter [3, 5]. It is comparable to the recent bound due to
dynamical heating of stars in ultra-faint white dwarfs [6].
Our bound is more general, but weaker than the one
of [7, 8], who use a model-specific version of (1) alone.
Based on inferred quasar spins and hence lack of super-
radiance, [9] also claims a stronger bound on the mass
than ours.

To demonstrate our idea, we provide a concrete exam-
ple of scalar field dark matter. We set ~ = c = 1.

⇤ mustafa.a.amin@rice.edu
† mehrdad.mirbabayi@gmail.com

II. WHITE NOISE

Consider a scalar field, '(t,x) of mass m, that gets
excited at time ti after inflation with Heq ⌧ m < Hi.
For now, let us neglect the inflationary adiabatic fluctu-
ations. Then, the correlation length of the excitations is
expected to be subhorizon because of causality. Near
matter-radiation equality, the matter density is given
by[10]

⇢̄(t) ⇡ m
2

Z
d ln q

q
3

2⇡2
P'(t, q) , (1)

where integration over all momenta (without a UV cut-
o↵) is a justifiable approximation because by this time
the integral must be dominated by momenta much less
than ma(t). Meanwhile, since Heq ⌧ Hi, the main con-
tribution comes from momenta much larger than keq. For
simplicity, we take it to be a single scale k⇤. Because of
the finite correlation length, at momenta k ⌧ k⇤ there
is a white-noise contribution to the spectrum of the frac-
tional density perturbation �. The isocurvature transfer
function is close to one and we can approximate

P
(iso)
� (t, k) ⇡

m
4

⇢̄2(t)

Z
d ln q

q
3

2⇡2
[P'(q, t)]2 ⌘

2⇡
2

k
3
nl

. (2)

knl is understood as being defined by the above equa-
tion. With a single scale in the problem, we expect a
time-independent knl ⇠ k⇤. Further details of the order
unity isocurvature transfer function can be found in the
supplementary material (V F).

We stress that despite the suggestive subscript, knl

only parametrizes the slope of the white-noise part of
the density power spectrum at su�ciently small k. It is
not necessarily the location in k space where the density
perturbations become nonlinear. Furthermore, while not
necessary for the following sections, a parameterization
of knl ⇠ k⇤ in terms of the time and lengthscale asso-
ciated with the production mechanism, and mass m, is
provided in the supplementary material section (V A).

The reader who is familiar with the theory of struc-
ture formation might be skeptical about this flat spec-
trum. Indeed, it is well known that the stochastic con-
tribution to the nonlinear P�(t, k) arising from clustering
behaves as k

4 rather than k
0 at low k. This is a con-

sequence of mass and momentum conservation (see [11],
chapter 28). A white-noise contribution / k

0, would im-
ply that starting from the same initial matter density
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1. white-noise isocurvature excess in isocurvature density pert.

2. free-streaming suppression in adiabatic density pert.
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Note that we did not need to know k⇤!
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with Nadler and Wechsler

“model independent” -- applies to all gravitationally interacting,  

non-relativistic !elds (scalar, vector, tensor …)

“loophole” — in"ationary production with infrared spectra (not sub-Hubble)
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for vectors (and tensors?), even in"ationary production leads to sub-Hubble spectra
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Figure 4: Left: The evolution of the maximum value ⇢max of the energy density field of the vector through
MRE, in a simulation with volume (3.75�?)3. Time is parameterised by the scale factor a relative to
that at MRE, aeq. The mean vector energy density ⇢ is also plotted. At early times ⇢max follows ⇢, with
small fluctuations due to the oscillation of modes with k & kJ , driven by quantum pressure. The collapse
of overdensities with � & 1, which in the absence of quantum pressure would occur at a/aeq ' 1/�,
is hindered until after MRE. Once kJ/k? / a

1/4 has grown su�ciently, overdensities collapse. After
the collapse, the maximum density is at a point inside a soliton. The soliton is produced with excited
quasinormal modes, so the maximum density subsequently oscillates. Right: A slice of the energy density
at a/aeq = 7, in the same simulation as is plotted in the left panel. The slice passes through the point
that has the largest density at this time, which is at the centre of a soliton. The soliton (red region
in inset) is surrounded by a spherical ‘fuzzy’ halo (yellow/green region) and there are cosmic filaments
connecting it to other solitons. Spherical waves can be seen around the soliton, which are due to the
emission of energy from quasinormal modes. A video showing the evolution can be found at [58].

study the growth of density perturbations and the evolution of the density power spectrum in more detail
in Appendix D.

In Figure 4 (right) we plot the density field ⇢ through the slice of the same simulation that contains
the point with the largest density, at a/aeq = 7. There is a central soliton (red region). The soliton is
surrounded by a spherical fuzzy halo (yellow/green region) extending far from its core, the maximum
density of which is about two orders of magnitude smaller than the soliton core density. Finally, the early
stages of a cosmic web connecting di↵erent solitons have formed (see also Figure 1 left, where we show a
3D version of the same energy density). Spherical waves can be seen beyond the halo. These are due to
energy released by the decay of the soliton’s quasi-normal modes.

To understand the nature of the collapsed objects, in Figure 5 (left) we plot the spherically averaged
density profile around the centre of the objects at a/aeq = 5, averaged over all the objects in our full set
of simulations. To enable the profiles of objects with di↵erent mass to be combined, for each object the
density profile is normalised to its central density ⇢s and the distance from its centre to the quantum
Jeans length �J(⇢s) corresponding to its central density ⇢s. As it is clear from Section 3.1, in terms of
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FIG. 1. A visual summary of some of the main results of our paper.

novel class of extremally polarized solitons with spin
Stot/~ = �M/m which can be macroscopically large for
M � m. Here, m is the mass of the field, M is the
mass of the soliton and � is the spin multiplicity. These
coherent solitons (along with fractionally polarized
ones mentioned earlier) might open up new avenues for
observationally probing higher-spin fields.

We find that even within Newtonian gravity it might
be possible to distinguish interacting solitons with dif-
ferent polarizations. Going beyond Newtonian gravity,
which we do not pursue here, might remove degeneracies
between di↵erent polarizations of the higher-spin fields
even further. We also discuss possibilities of probing
this higher-spin dark matter via non-gravitational
interactions, taking advantage of the polarization state
of the solitons.

The paper is organized as follows. In section II we
discuss our model for the case of dark scalar, vector,
and tensor massive fields, leaving additional details in
Appendix A. In section III we provide the e↵ective non-
relativistic action (which is the Schrödinger-Poisson sys-
tem) for these dark integer spin fields, and discuss the
various symmetries of the action. In section IV we dis-
cuss the gravitationally bound solitons. In section V we
discuss their distinguishability, primarily within Newto-
nian gravity, and also mention other non-gravitational
couplings that can probe the spin nature of the fields. In
section VI we summarize and also highlight some future
directions worth investigating.

II. MODELS

Our matter Lagrangian consists of the usual Standard
Model (SM) sector, along with some dark sector that
includes additional massive spin-0, spin-1, or even spin-2
fields. We take these fields to be real valued.

Explicitly, our general action has the form

S = SEH + Sdark + Svis , (1)

where SEH is the gravity sector, Sdark is some dark
sector (incluing dark integer spin fields), and Svis is
the visible sector (comprising of the SM). Our focus
is only on the gravity + dark sector in this paper.
We consider perturbations of di↵erent fields around
some background metric ḡµ� which leads to the usual
massless spin-2 fluctuations: hµ� (the graviton), along
with other perturbations in di↵erent fields. We will
focus on a given spin-s field + gravity, instead of
considering massive spin-0, 1 and 2 together, although
our formalism can accomodate the latter scenario as well.

For most part, we are interested in sub-horizon
physics where length scales associated with config-
urations of these dark fields are much smaller than
the Hubble horizon. As a result, we ignore Hub-
ble expansion, and take the background metric to be2

ḡµ� = �µ� = diag(1, �1, �1, �1). We also take ~ = c = 1.

In the next three subsections, we provide the general
action up-to quadratic order in the fields of interest, along
with leading order gravitational interactions. For the
non-relativistic limit that we are interested in, the lead-
ing order actions provided here are su�cient. The full
nonlinear actions are discussed in the Appendix.

A. Spin-0

The quadratic (free) action for the spin-0 field �, and
metric fluctuations hµ� , along with their leading interac-

2 We use ḡµ� = diag(1, �a2(t), �a2(t), �a2(t)) for an expanding
universe when needed. Here, a(t) is the scale factor normalized
to unity today.
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novel class of extremally polarized solitons with spin
Stot/~ = �M/m which can be macroscopically large for
M � m. Here, m is the mass of the field, M is the
mass of the soliton and � is the spin multiplicity. These
coherent solitons (along with fractionally polarized
ones mentioned earlier) might open up new avenues for
observationally probing higher-spin fields.

We find that even within Newtonian gravity it might
be possible to distinguish interacting solitons with dif-
ferent polarizations. Going beyond Newtonian gravity,
which we do not pursue here, might remove degeneracies
between di↵erent polarizations of the higher-spin fields
even further. We also discuss possibilities of probing
this higher-spin dark matter via non-gravitational
interactions, taking advantage of the polarization state
of the solitons.

The paper is organized as follows. In section II we
discuss our model for the case of dark scalar, vector,
and tensor massive fields, leaving additional details in
Appendix A. In section III we provide the e↵ective non-
relativistic action (which is the Schrödinger-Poisson sys-
tem) for these dark integer spin fields, and discuss the
various symmetries of the action. In section IV we dis-
cuss the gravitationally bound solitons. In section V we
discuss their distinguishability, primarily within Newto-
nian gravity, and also mention other non-gravitational
couplings that can probe the spin nature of the fields. In
section VI we summarize and also highlight some future
directions worth investigating.

II. MODELS

Our matter Lagrangian consists of the usual Standard
Model (SM) sector, along with some dark sector that
includes additional massive spin-0, spin-1, or even spin-2
fields. We take these fields to be real valued.

Explicitly, our general action has the form

S = SEH + Sdark + Svis , (1)

where SEH is the gravity sector, Sdark is some dark
sector (incluing dark integer spin fields), and Svis is
the visible sector (comprising of the SM). Our focus
is only on the gravity + dark sector in this paper.
We consider perturbations of di↵erent fields around
some background metric ḡµ� which leads to the usual
massless spin-2 fluctuations: hµ� (the graviton), along
with other perturbations in di↵erent fields. We will
focus on a given spin-s field + gravity, instead of
considering massive spin-0, 1 and 2 together, although
our formalism can accomodate the latter scenario as well.

For most part, we are interested in sub-horizon
physics where length scales associated with config-
urations of these dark fields are much smaller than
the Hubble horizon. As a result, we ignore Hub-
ble expansion, and take the background metric to be2

ḡµ� = �µ� = diag(1, �1, �1, �1). We also take ~ = c = 1.

In the next three subsections, we provide the general
action up-to quadratic order in the fields of interest, along
with leading order gravitational interactions. For the
non-relativistic limit that we are interested in, the lead-
ing order actions provided here are su�cient. The full
nonlinear actions are discussed in the Appendix.

A. Spin-0

The quadratic (free) action for the spin-0 field �, and
metric fluctuations hµ� , along with their leading interac-

2 We use ḡµ� = diag(1, �a2(t), �a2(t), �a2(t)) for an expanding
universe when needed. Here, a(t) is the scale factor normalized
to unity today.

Nonrelativistic ICscoll
aps

e to
 BH

increasing compactness

(for example phase of gravitational waves in the weak field limit. Let us assume that we have two
solitons of mass M1 and M2 whose separated by a distance r which is much larger than their radii
R1 and R2. The spin of the solitons are S1 and S2 respectively. The e↵ective potential governing
their dynamics can be written as [37, 38]

V = �
GM1M2

r

�
1 + O(v2

/c
2) �

2

rc
[r̂ ⇥ (v1 � v2)] ·

2�

a=1

Sa

Ma

+
1

r2c2

�
S1

M1
·

S2

M2
� 3

�
S1

M1
· r̂

� �
S2

M2
· r̂

�
+

2�

a=1

C
(a)
ES2

2M1M2

�
S

2
a � 3(Sa · r̂)2

�
�

+ . . .

� (0.1)

The third term on the first line is the spin-orbit interaction, and the 2nd line is the spin-spin

interaction, both of which are absent in configurations without spin. The coe�cient C
(a)
ES2 is a

property of the object, which the PI will calculate for the configurations of interest.4 Note that the
intuition is that the spin generates a quadrupole moment: Q ⇠ CES2S

2
/Mc

2, is not accurate since
the intrinsic spin still results in spherically symmetric objects (at leading order in the Newtonian
Limit).

The changes in the dynamics of a binary configuration, and emitted gravitational waves can
be estimated using the above e↵ective potential. Using these estimates as a guide, the PI and
collaborators will generate accurate templates of the gravitational waves from binary mergers using
GRChombo. These template would depend on the internal structure of the objects as well as the
spin of each configurations, and could be a valuable asset in the search for exotic compact objects.
They provide a direct probe of the underlying spin of the fields.

4Note that for a Kerr black-hole, C(a)
ES2 = 1, while it is larger (� 4 � 8) for spinning neutron stars, and is related

to the quadrupole distortion of the objects (and hence to the Love numbers).
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FIG. 1. A
visual summary of some of the main

results of our paper.

novel class
of extremally

polarized
solitons

with
spin

S
tot /~ =

�
M

/m
which

can
be macroscopically large for

M

�

m.
Here,

m
is the

mass of the
field,

M

is the

mass of the soliton
and

�
is the spin

multiplicity. These

coherent
solitons

(along
with

fractionally
polarized

ones mentioned
earlier) might open

up
new

avenues for

observationally probing higher-spin fields.

W
e find

that even
within

Newtonian
gravity

it might

be possible to
distinguish

interacting
solitons with

dif-

ferent polarizations.
Going

beyond
Newtonian

gravity,

which we do not pursue here, might remove degeneracies

between
di↵erent polarizations of the higher-spin

fields

even
further.

W
e

also
discuss

possibilities
of probing

this
higher-spin

dark
matter

via
non-gravitational

interactions, taking
advantage of the polarization

state

of the solitons.
The

paper is organized
as follows.

In
section

II we

discuss
our

model for
the

case
of dark

scalar, vector,

and
tensor massive

fields, leaving
additional details in

Appendix A. In section III we provide the e↵ective non-

relativistic action (which is the Schrödinger-Poisson sys-

tem) for these dark
integer spin

fields, and
discuss the

various symmetries of the action. In
section

IV
we dis-

cuss the gravitationally bound
solitons. In

section
V

we

discuss their distinguishability, primarily
within

Newto-

nian
gravity, and

also
mention

other non-gravitational

couplings that can probe the spin nature of the fields. In

section VI we summarize and also highlight some future

directions worth investigating.
II.

M
OD

ELS

Our matter Lagrangian consists of the usual Standard

M
odel (SM

) sector, along
with

some
dark

sector that

includes additional massive spin-0, spin-1, or even spin-2

fields. W
e take these fields to be real valued.

Explicitly, our general action has the form

S
=

S
EH +

S
dark +

S
vis ,

(1)

where
S
EH

is
the

gravity
sector,

S
dark is

some
dark

sector
(incluing

dark
integer

spin
fields),

and
S
vis is

the
visible

sector
(comprising

of the
SM

). Our
focus

is
only

on
the

gravity
+

dark
sector

in
this

paper.

W
e

consider
perturbations

of
di↵erent

fields
around

some
background

metric
ḡ
µ� which

leads to
the

usual

massless spin-2
fluctuations:

h
µ� (the

graviton), along

with
other

perturbations
in

di↵erent
fields.

W
e

will

focus
on

a
given

spin-s
field

+
gravity,

instead
of

considering
massive spin-0, 1

and
2

together, although

our formalism
can accomodate the latter scenario as well.

For
most

part,
we

are
interested

in
sub-horizon

physics
where

length
scales

associated
with

config-

urations
of

these
dark

fields
are

much
smaller

than

the
Hubble

horizon.
As

a
result,

we
ignore

Hub-

ble
expansion, and

take
the

background
metric

to
be 2

ḡ
µ� =

�
µ� =

diag(1,�1,�1,�1). W
e also take ~ =

c =
1.

In
the next three subsections, we provide the general

action up-to quadratic order in the fields of interest, along

with
leading

order gravitational interactions.
For the

non-relativistic limit that we are interested
in, the lead-

ing
order actions provided

here are su�cient.
The full

nonlinear actions are discussed in the Appendix.

A.
Spin-0

The quadratic (free) action
for the spin-0 field

�, and

metric fluctuations
h
µ� , along with their leading interac-

2
W

e
use

ḡ
µ� =

diag(1,�a 2
(t),�a 2

(t),�a 2
(t)) for an

expanding

universe when
needed. Here, a(t) is the scale factor normalized

to unity
today.
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Figure 3. Left: Impact of macroscopic spin on the e↵ective gravitational potential for two orbiting bodies,
and hence gravitational wave emission before & during merger. Right: Full numerical relativity evolution
of circularly polarized (maximal spin) and linearly polarized (zero spin) solitons as they evolve from non-
relativistic initial conditions for 3 initial compactness per pair: C ⇡ 0.04, 0.06, 0.1 show in black [where we
expect relativistic corrections & 10%]. The maximal spin solitons S ⇡ ~Msol/m (orange) do not collapse
to a BH at the largest initial compactness considered, whereas the linearly polarized ones (blue) do. Spin
provides a barrier against collapse in this regime (preliminary). Middle: Hamiltonian constraint for the initial
configurations, showing convergence with increasing resolution and order of numerical algorithms.

Proposed Tasks & Expected Outputs.

(a) Spin & Maximal Compactness: Without relativistic corrections, all configurations with the
same total particle number have the same energy, independent of the spin: 0  |S|  ~Msol/m

[9]. However, with relativistic corrections, it is expected that this degeneracy is broken. The
spherical symmetry is also expected to be weakly broken [31]. Using GRChombo[81], the PI and
collaborators will determine which solutions are preferred in full general relativity, starting with
di↵erent Newtonian configurations (with arbitrary polarization). This task is challenging, however,
preliminary work guided by the limiting Newtonian solutions shows strong promise in terms of
results as well as technical aspects such as constraint preservation during the evolution (see middle
panel of Fig. 3). Each run takes ⇠ 104 CPU hrs.

Another output of this calculation will be determining the maximum compactness possible for
solitons with macroscopic spin, beyond which they collapse to BHs. For similar analysis of scalar
solitons, see [87, 88]. Preliminary investigations reveal that the compactness allowed is higher
for solitons with intrinsic spin, compared to those without. Hedgehog configurations which also
have zero spin, and are not extremally polarized (not shown here), collapse at an even smaller
compactness. Moreover, as compactness increases the M vs. R relationship di↵ers between solitons
with macroscopic spin and those without. See right panel of Fig. 3 for preliminary results, where
points represent time averages. The maximum compactness before collapse to BH determines
the amplitude of gravitational waves that can be generated from such objects in the final merger
phase. If an e�cient production mechanism exists, the above results also could potentially tell us a
relationship between spin and mass of the formed black holes from this process [89].

(b) Spin & Gravitational Waves: Consider two solitons of mass M1 and M2 separated by
a distance r, individual radii R1 and R2, and maximal, macroscopic intrinsic spin S1 and S2

respectively (see Fig. 3). The e↵ective potential governing their orbital dynamics [90, 91] is also
shown in the top left of Fig. 3. The third term on the first line is the spin-orbit interaction, and
the 2nd line is the spin-spin interaction, both of which are absent in configurations without spin.
Both a↵ect the orbital dynamics and emission of gravitational waves. The evolution of the phase
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Figure 3: Left panel (3a): Angle averaged late time central core+halo profiles for ⇠ 160 simulations
spanning a range of initial conditions including di↵erent total mass, initial number of solitons, locations
of solitons, phases and spins of solitons (i.e. ⌅ spans an order of magnitude). The radial coordinate
and density are normalized by rc and ⇢(r = 0) to highlight the di↵erences in profile shape of VDM and
SDM coalesced cores independent of the initial conditions. Solid lines indicate average over di↵erent
simulations, the shaded regions indicate the spread in all profiles. A marker at r/rc ⇡ 3.5 shows a
general transition between core/halo regions in both SDM and VDM scenarios. Right panel (3b): Final
radial density from 11 simulations (time averaged over roughly 1 period of radial oscillations of the
core), where the initial mass is narrowly distributed around Mtot = 2.3 ⇥ 105 M� ⇥ M5, the size of
the simulation volume is L = 100 kpc ⇥ (M5m

2
20)

�1 and the number of initial solitons was fixed at
21. Solitons in VDM are less dense, and wider than those in SDM for identical initial conditions. An
approximately ⇠ r

�3 power law is see for both SDM and VDM at large radii.

Beginning with N solitons of mass M i
sol each, and distributed randomly throughout the

box, the total energy is (scaled to yield a dimensionless scale-invariant measure ⌅)

⌅ ⌘
|Etot|

M3
tot(Gm/~)2

⇡
1

M3
tot(Gm/~)2


N

G(M i
sol)

2

2Ri
sol

+ (1.88)N(N � 1)
G(M i

sol)
2

L

�
, (4.1)

⇡
1

20N2
. (4.2)

In the first line, L is the box size and Ri
sol ⌧ L is the initial solitons’ radius. In the last equality,

we have assumed that the first term in eq. (4.1) dominates over the second.4

4Note that R
i
sol ⌘ 9.95~2

/(GM
i
solm

2) contains 99% of the soliton’s mass, and we also include gradient con-
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FIG. 1. A visual summary of some of the main results of our paper.

novel class of extremally polarized solitons with spin
Stot/~ = �M/m which can be macroscopically large for
M � m. Here, m is the mass of the field, M is the
mass of the soliton and � is the spin multiplicity. These
coherent solitons (along with fractionally polarized
ones mentioned earlier) might open up new avenues for
observationally probing higher-spin fields.

We find that even within Newtonian gravity it might
be possible to distinguish interacting solitons with dif-
ferent polarizations. Going beyond Newtonian gravity,
which we do not pursue here, might remove degeneracies
between di↵erent polarizations of the higher-spin fields
even further. We also discuss possibilities of probing
this higher-spin dark matter via non-gravitational
interactions, taking advantage of the polarization state
of the solitons.

The paper is organized as follows. In section II we
discuss our model for the case of dark scalar, vector,
and tensor massive fields, leaving additional details in
Appendix A. In section III we provide the e↵ective non-
relativistic action (which is the Schrödinger-Poisson sys-
tem) for these dark integer spin fields, and discuss the
various symmetries of the action. In section IV we dis-
cuss the gravitationally bound solitons. In section V we
discuss their distinguishability, primarily within Newto-
nian gravity, and also mention other non-gravitational
couplings that can probe the spin nature of the fields. In
section VI we summarize and also highlight some future
directions worth investigating.

II. MODELS

Our matter Lagrangian consists of the usual Standard
Model (SM) sector, along with some dark sector that
includes additional massive spin-0, spin-1, or even spin-2
fields. We take these fields to be real valued.

Explicitly, our general action has the form

S = SEH + Sdark + Svis , (1)

where SEH is the gravity sector, Sdark is some dark
sector (incluing dark integer spin fields), and Svis is
the visible sector (comprising of the SM). Our focus
is only on the gravity + dark sector in this paper.
We consider perturbations of di↵erent fields around
some background metric ḡµ⌫ which leads to the usual
massless spin-2 fluctuations: hµ⌫ (the graviton), along
with other perturbations in di↵erent fields. We will
focus on a given spin-s field + gravity, instead of
considering massive spin-0, 1 and 2 together, although
our formalism can accomodate the latter scenario as well.

For most part, we are interested in sub-horizon
physics where length scales associated with config-
urations of these dark fields are much smaller than
the Hubble horizon. As a result, we ignore Hub-
ble expansion, and take the background metric to be2
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FIG. 1. A visual summary of some of the main results of our paper.

novel class of extremally polarized solitons with spin
Stot/~ = �M/m which can be macroscopically large for
M � m. Here, m is the mass of the field, M is the
mass of the soliton and � is the spin multiplicity. These
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The paper is organized as follows. In section II we
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and tensor massive fields, leaving additional details in
Appendix A. In section III we provide the e↵ective non-
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various symmetries of the action. In section IV we dis-
cuss the gravitationally bound solitons. In section V we
discuss their distinguishability, primarily within Newto-
nian gravity, and also mention other non-gravitational
couplings that can probe the spin nature of the fields. In
section VI we summarize and also highlight some future
directions worth investigating.
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Figure 1. Example surface mass density maps (^ , in units of the critical density ⌃2) with the model lensed images in orange contours (top row) and the
corresponding reconstructed source surface brightness maps (� , in units of the peak surface brightness �max; bottom row) for three random realizations of MG
J0751+2716 in an FDM cosmology. Critical curves and caustics are plotted in white. The lensing e�ect of the FDM granules is apparent: The critical curves
wiggle back and forth across the lensed arcs, which would require the presence of multiple images of the same region of the source along the arc. In the absence
of such features in the observed data, the morphology of the inferred source is disrupted as the model attempts to fit the observation.

form of a Gaussian random field with correlation length oj and a
position-dependent variance given by

hX^2
i =
oj

p
c

⌃2
2

π
d2

DM 3;, (2)

where the integral is along the line of sight, dDM is the smooth 3D
density profile of the dark matter component of the lens, ⌃2 is the
lensing critical surface mass density, and oj = \/(<jfE ) corre-
sponds to the (reduced) de Broglie wavelength of the dark matter
particle. In practice, we generate realizations of X^ by first generat-
ing a white noise field modulated by the variance in equation (2),
then correlating using a Gaussian kernel of width oj via an FFT-
based convolution. We then solve for the resulting perturbation to the
lensing potential X using another FFT.

The correlation length oj is inversely proportional to fE , the ve-
locity dispersion of the dark matter in the lens galaxy, which is a proxy
for the depth of the gravitational potential well in which the dark mat-
ter field resides. There are no resolved kinematic data on this lens
system, so it must be estimated using the Einstein radius of the lens.
Alloin et al. (2007) found fE = 101 km s�1, using a cored pseudo-
isothermal density profile. We derive fE = 108 km s�1, assuming
a singular isothermal profile. To accommodate this uncertainty, we
draw fE from a uniform prior between 100 and 110 km s�1 (see
Table 1).

An additional source of uncertainty in generating FDM lens real-
izations is the dark matter fraction in the lens, 5DM, which directly
determines the granule amplitude. Our composite smooth model
from Powell et al. (2022) gives a baryonic mass (measured within
the critical curve) of 8.6⇥109 M� . This number is in good agreement
with observations by the Hubble Space Telescope (HST) WFPC2 as
part of the CfA-Arizona Space Telescope LEns Survey (CASTLES)
project (e.g. Kochanek et al. 2000); a fit to the +- and �-band lens
galaxy photometry using �������� (Blanton & Roweis 2007) yields

a baryonic mass of 8.0⇥109 M� . The total projected mass of the lens
within the critical curve is set by the Einstein radius at 2.7⇥1010 M� .
Allowing for an uncertainty of ±0.2 dex in the baryonic mass, we
adopt a uniform prior on 5DM between 0.5 and 0.8 (see Table 1).
This prior range is consistent with dark matter fractions in massive
early-type lens galaxies studied by Oldham & Auger (2018).

We assume that all small-scale inhomogeneities in the lensing
convergence are produced by FDM granules in the lens itself. We do
not explicitly consider the e�ects of a central soliton core in the FDM
halo; such a core would be much smaller than the Einstein radius of
the lens (Schive et al. 2014; Chan et al. 2020), and would therefore be
absorbed in the smooth lens model. Unlike the analysis by Laroche
et al. (2022), we do not include subhalo or line-of-sight (LOS) halo
populations in our lens model. This choice is justified because in
the mass range of <j ⇠ 10�22 to 10�20.5 eV, in which our analysis
is most sensitive, an FDM cosmology cannot produce subhaloes or
LOS haloes that are highly concentrated or numerous enough to
mimic the signal of FDM granules (Schive et al. 2016; see also Fig.
5 of Laroche et al. 2022); indeed, any large-scale contribution to the
lens model by di�use low-mass haloes would already be accounted
for in the smooth model. The practical e�ects of excluding low-mass
haloes from our model are the loss of some sensitivity to <j and the
inability to place an upper bound on <j .

3 RESULTS

We show example convergence maps for three FDM lens realizations
with their corresponding maximum a-posteriori (MAP) source sur-
face brightness reconstructions in Fig. 1. For <j . 10�21 eV, the
critical curves (plotted in white) cross back and forth many times
across the lensed arcs. Such a configuration of critical curves would
imply the presence of many images of alternating parity along the arc
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freedom (spin) of ultralight dark matter.
The key to understanding the di↵erences between SDM and VDM is that the wave-

interference e↵ects are smaller in VDM compared to SDM. As a simple example, if we consider
the interference of two plane waves with unit amplitude, then the typical amount of interfer-
ence in VDM is 1/

p
3 times that in SDM. More generally, for a spin-s field, the interference is

1/
p

2s + 1 times smaller than that in SDM.
The rest of the paper is organized as follows. In Sec. 2, we introduce our model for VDM

along with its nonrelativistic limit. We also provide an understanding of interference in VDM
waves, as well as solitons in VDM. We explore binary soliton mergers in Sec. 3, and calculate the
fraction of total mass that remains bound in the final soliton. In Sec. 4, we consider the merger
of N = O(10) solitons. We compare the results of the merger in VDM and SDM, including
core mass, density profiles, size of interference granules, as well as spin angular momentum
density. In Sec. 5, we briefly discuss observational implications including dynamical heating of
stars, cores of dwarf galaxies, and DM substructure. We summarize our main results, as well a
future outlook in 6. Details of the numerical simulation, as well as some details of our analytic
calculations are deferred to the Appendix.

2 Preliminaries

2.1 Model and equations of motion

A (dark) massive spin-1 field Wµ minimally coupled to gravity and without non-gravitational
self-interactions is described by the following action:

S =

Z
d4x
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m2c2
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gµ⌫WµW⌫ +
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16⇡G
R + ...

i
, (2.1)

where Gµ⌫ = @µW⌫ � @⌫Wµ. The ‘...’ in (2.1) represents the Standard Model Lagrangian and
other possible dark sector(s). Here, m is the mass of the vector boson. We can represent the
spatial part of the (real-valued) vector field W in terms of a complex vector  as

W (t, x) ⌘
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p
2mc

<

h
 (t, x)e�imc2t/~

i
, (2.2)

where has dimensions of [length]�3/2. Similarly, W0(t, x) ⌘ ~/
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2mc <

h
 0(t, x)e�imc2t/~

i
. We

are interested in the non-relativistic behaviour of the vector field where the spatial variation in
the field is slow compared to the Compton scale �m = ~/mc and we are in the Newtonian gravity
regime. We focus on su�ciently subhorizon dynamics, and hence ignore Hubble expansion. In
this case, the dynamics are described by the non-relativistic action for the complex vector field
 and the Newtonian gravitational potential �:

Snr =

Z
dtd3x

"
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2
 † ̇+ c.c. �
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· r +
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and the corresponding multi-component Schrödinger-Poisson (SP) system of equations of mo-
tion:1

i~ @
@t
 = �

~2

2m
r

2 + m � , r
2� = 4⇡Gm † . (2.4)

This is our master equation that we work with throughout this work. We re-iterate that  a
complex 3-tuple with components [ ]i =  i with i = 1, 2, 3 and  † =

P3
i=1 | i|

2. For scalar
dark matter, we have a single component field (which leads to the “usual” Schrödinger-Poisson
system). For a generalization to the spin-s case, see [20].

2.1.1 Conserved Quantities

Note that in our convention the number density, mass density, and spin density are

N (t, x) =  † , ⇢(t, x) = m † , and s = i~ ⇥ †. (2.5)

The conserved quantities associated with our non-relativistic VDM are:

N =

Z
d3x † , and M = mN, (particle number and rest mass) (2.6)

E =

Z
d3x

h ~2

2m
r †

· r �
Gm2

2
 † 

Z
d3y

4⇡|x � y|
 †(y) (y)

i
, (energy) (2.7)

S = ~
Z

d3x i ⇥ † , (spin angular momentum)

(2.8)

L = ~
Z

d3x <
�
i †

r ⇥ x
�
. (orbital angular momentum) (2.9)

Note that spin and orbital angular momentum are separately conserved in the non-relativistic
system. Importantly, by definition, spin angular momentum is identically zero for SDM (but
not VDM). For details of the non-relativistic action and conserved quantities for a general spin-s
bosonic field (including VDM) see [20].

2.1.2 Fluid equations

We can also transform our multicomponent SP system eq. (2.4) into a set of three, coupled fluid
equations (following the Madelung transform commonly used in SDM [22]). With the following
field re-definition,  j =

p
⇢j/m eiSj , and defining the velocity ui = ~rSi/m, we have

@⇢j
@t

+ r · (⇢juj) = 0 ,
@uj

@t
+ (uj · r)uj =

1

m
r(Qj � m�), where j = 1, 2, 3 (2.10)

1To include the e↵ects of Hubble expansion, simply replace r ! r/a and @t ! @t + 3H/2 where a is the
scalefactor and H = ȧ/a.
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Note that spin and orbital angular momentum are separately conserved in the non-relativistic
system. Importantly, by definition, spin angular momentum is identically zero for SDM (but
not VDM). For details of the non-relativistic action and conserved quantities for a general spin-s
bosonic field (including VDM) see [20].

2.1.2 Fluid equations

We can also transform our multicomponent SP system eq. (2.4) into a set of three, coupled fluid
equations (following the Madelung transform commonly used in SDM [22]). With the following
field re-definition,  j =

p
⇢j/m eiSj , and defining the velocity ui = ~rSi/m, we have

@⇢j
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+ r · (⇢juj) = 0 ,
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+ (uj · r)uj =
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m
r(Qj � m�), where j = 1, 2, 3 (2.10)

1To include the e↵ects of Hubble expansion, simply replace r ! r/a and @t ! @t + 3H/2 where a is the
scalefactor and H = ȧ/a.
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where Qj = (~2/2m)r2p⇢j/
p
⇢j. The spin density si = i(~/m2)✏ijk

p
⇢j⇢kei(Sj�Sk). The vortic-

ity for each of the three fluids !j = r ⇥ uj = 0 if ⇢j 6= 0. Note that zero vorticity does not
imply zero spin density. If !i 6= 0 for some fixed i (with !j 6=i = 0), then s = siî.

We numerically solve eq. (2.4), but the conservation/fluid equations can be useful in gaining
physical intuition for the behaviour of the system (including for example, vortices [12] in three
fluids.).
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reduced interference

MA, Jain, Karur & Mocz (2022)
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Figure 1: Starting with a collection of N = 21 solitons, we eventually evolve to an an approximately
spherically symmetric configuration with a central core surrounded by a halo. Top row is vector dark
matter (VDM), bottom row is scalar dark matter (SDM). For identical initial conditions in density,
the central core is less dense in VDM compared to SDM and the halo shows less interference in VDM
compared to SDM. The core to halo transition is also smoother in VDM compared to SDM. In the
above images, the color represents the projected mass density in simulation volume. Lighter colors
correspond to higher mass density.

note that that our fs ⇡ 0.61 is less than ⇡ 0.7 quoted in the literature [23], which could be
due to di↵erent ways in which the mass loss fraction is calculated as well as the initial relative
velocities used.

4 Many soliton mergers

We begin with N ⇠ O[10] solitons whose positions are chosen randomly within our simulation
volume. As we let the system evolve, gravitational interactions bring the solitons closer. Field
interference and nonlinear evolution leads to a complex transient phase, after which, the density
settles into an approximately spherically symmetric density configuration. The typical time-
scale of this transient phase is less than the dynamical time scale tdyn = 1/

p
G⇢̄ of our systen.
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gravitational implications (examples)

- dynamical heating of stars 

MA, Jain, Karur & Mocz (2022)
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gravitational implications (examples)

- lensing 
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Figure 1. Example surface mass density maps (^ , in units of the critical density ⌃2) with the model lensed images in orange contours (top row) and the
corresponding reconstructed source surface brightness maps (� , in units of the peak surface brightness �max; bottom row) for three random realizations of MG
J0751+2716 in an FDM cosmology. Critical curves and caustics are plotted in white. The lensing e�ect of the FDM granules is apparent: The critical curves
wiggle back and forth across the lensed arcs, which would require the presence of multiple images of the same region of the source along the arc. In the absence
of such features in the observed data, the morphology of the inferred source is disrupted as the model attempts to fit the observation.

form of a Gaussian random field with correlation length oj and a
position-dependent variance given by

hX^2
i =
oj

p
c

⌃2
2

π
d2

DM 3;, (2)

where the integral is along the line of sight, dDM is the smooth 3D
density profile of the dark matter component of the lens, ⌃2 is the
lensing critical surface mass density, and oj = \/(<jfE ) corre-
sponds to the (reduced) de Broglie wavelength of the dark matter
particle. In practice, we generate realizations of X^ by first generat-
ing a white noise field modulated by the variance in equation (2),
then correlating using a Gaussian kernel of width oj via an FFT-
based convolution. We then solve for the resulting perturbation to the
lensing potential X using another FFT.

The correlation length oj is inversely proportional to fE , the ve-
locity dispersion of the dark matter in the lens galaxy, which is a proxy
for the depth of the gravitational potential well in which the dark mat-
ter field resides. There are no resolved kinematic data on this lens
system, so it must be estimated using the Einstein radius of the lens.
Alloin et al. (2007) found fE = 101 km s�1, using a cored pseudo-
isothermal density profile. We derive fE = 108 km s�1, assuming
a singular isothermal profile. To accommodate this uncertainty, we
draw fE from a uniform prior between 100 and 110 km s�1 (see
Table 1).

An additional source of uncertainty in generating FDM lens real-
izations is the dark matter fraction in the lens, 5DM, which directly
determines the granule amplitude. Our composite smooth model
from Powell et al. (2022) gives a baryonic mass (measured within
the critical curve) of 8.6⇥109 M� . This number is in good agreement
with observations by the Hubble Space Telescope (HST) WFPC2 as
part of the CfA-Arizona Space Telescope LEns Survey (CASTLES)
project (e.g. Kochanek et al. 2000); a fit to the +- and �-band lens
galaxy photometry using �������� (Blanton & Roweis 2007) yields

a baryonic mass of 8.0⇥109 M� . The total projected mass of the lens
within the critical curve is set by the Einstein radius at 2.7⇥1010 M� .
Allowing for an uncertainty of ±0.2 dex in the baryonic mass, we
adopt a uniform prior on 5DM between 0.5 and 0.8 (see Table 1).
This prior range is consistent with dark matter fractions in massive
early-type lens galaxies studied by Oldham & Auger (2018).

We assume that all small-scale inhomogeneities in the lensing
convergence are produced by FDM granules in the lens itself. We do
not explicitly consider the e�ects of a central soliton core in the FDM
halo; such a core would be much smaller than the Einstein radius of
the lens (Schive et al. 2014; Chan et al. 2020), and would therefore be
absorbed in the smooth lens model. Unlike the analysis by Laroche
et al. (2022), we do not include subhalo or line-of-sight (LOS) halo
populations in our lens model. This choice is justified because in
the mass range of <j ⇠ 10�22 to 10�20.5 eV, in which our analysis
is most sensitive, an FDM cosmology cannot produce subhaloes or
LOS haloes that are highly concentrated or numerous enough to
mimic the signal of FDM granules (Schive et al. 2016; see also Fig.
5 of Laroche et al. 2022); indeed, any large-scale contribution to the
lens model by di�use low-mass haloes would already be accounted
for in the smooth model. The practical e�ects of excluding low-mass
haloes from our model are the loss of some sensitivity to <j and the
inability to place an upper bound on <j .

3 RESULTS

We show example convergence maps for three FDM lens realizations
with their corresponding maximum a-posteriori (MAP) source sur-
face brightness reconstructions in Fig. 1. For <j . 10�21 eV, the
critical curves (plotted in white) cross back and forth many times
across the lensed arcs. Such a configuration of critical curves would
imply the presence of many images of alternating parity along the arc

MNRAS 000, 1–5 (2019)

Powell et. al (2023)
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Figure 3: Left panel (3a): Angle averaged late time central core+halo profiles for ⇠ 160 simulations
spanning a range of initial conditions including di↵erent total mass, initial number of solitons, locations
of solitons, phases and spins of solitons (i.e. ⌅ spans an order of magnitude). The radial coordinate
and density are normalized by rc and ⇢(r = 0) to highlight the di↵erences in profile shape of VDM and
SDM coalesced cores independent of the initial conditions. Solid lines indicate average over di↵erent
simulations, the shaded regions indicate the spread in all profiles. A marker at r/rc ⇡ 3.5 shows a
general transition between core/halo regions in both SDM and VDM scenarios. Right panel (3b): Final
radial density from 11 simulations (time averaged over roughly 1 period of radial oscillations of the
core), where the initial mass is narrowly distributed around Mtot = 2.3 ⇥ 105 M� ⇥ M5, the size of
the simulation volume is L = 100 kpc ⇥ (M5m

2
20)

�1 and the number of initial solitons was fixed at
21. Solitons in VDM are less dense, and wider than those in SDM for identical initial conditions. An
approximately ⇠ r

�3 power law is see for both SDM and VDM at large radii.

Beginning with N solitons of mass M i
sol each, and distributed randomly throughout the

box, the total energy is (scaled to yield a dimensionless scale-invariant measure ⌅)

⌅ ⌘
|Etot|

M3
tot(Gm/~)2

⇡
1

M3
tot(Gm/~)2


N

G(M i
sol)

2

2Ri
sol

+ (1.88)N(N � 1)
G(M i

sol)
2

L

�
, (4.1)

⇡
1

20N2
. (4.2)

In the first line, L is the box size and Ri
sol ⌧ L is the initial solitons’ radius. In the last equality,

we have assumed that the first term in eq. (4.1) dominates over the second.4

4Note that R
i
sol ⌘ 9.95~2

/(GM
i
solm

2) contains 99% of the soliton’s mass, and we also include gradient con-
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Figure 1: Starting with a collection of N = 21 solitons, we eventually evolve to an an approximately
spherically symmetric configuration with a central core surrounded by a halo. Top row is vector dark
matter (VDM), bottom row is scalar dark matter (SDM). For identical initial conditions in density,
the central core is less dense in VDM compared to SDM and the halo shows less interference in VDM
compared to SDM. The core to halo transition is also smoother in VDM compared to SDM. In the
above images, the color represents the projected mass density in simulation volume. Lighter colors
correspond to higher mass density.

note that that our fs ⇡ 0.61 is less than ⇡ 0.7 quoted in the literature [23], which could be
due to di↵erent ways in which the mass loss fraction is calculated as well as the initial relative
velocities used.

4 Many soliton mergers

We begin with N ⇠ O[10] solitons whose positions are chosen randomly within our simulation
volume. As we let the system evolve, gravitational interactions bring the solitons closer. Field
interference and nonlinear evolution leads to a complex transient phase, after which, the density
settles into an approximately spherically symmetric density configuration. The typical time-
scale of this transient phase is less than the dynamical time scale tdyn = 1/

p
G⇢̄ of our systen.
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FIG. 1. Top panel: Maximum density in the simulation vol-
ume as a function of time for scalar (s = 0), vector (s = 1)
and tensor fields (s = 2). The condensation time scales with
the number of components of the field as ⌧(s) ⇠ ⌧0⇥N , where
N = 2s + 1. The simulated data includes 14 simulations for
s = 0, 1, 2 each. For visual clarity, the output shown are sig-
nificantly under-sampled compared to what is available from
our simulations. Lower panels: In each row (corresponding
to scalar, vector and tensor fields respectively), the first two
panels show a projection of the mass density of the spin-s field
at initial and final times, while the third panel provides the
radial profile of the mass density (solid line is the expected
soliton profile) at the final time. Some simulation animations
are available here.

to �(s) = �0/(2s+1). The time of condensate nucleation
(within any component) is therefore estimated as

⌧(s) ⇠ ⌧0(2s+ 1) . (8)

To verify the above prediction, we have performed ⇠ 50
simulations for s = 0, 1 and 2 (corresponding to scalar,
vector and tensor wavelike dark matter). We provide
necessary details of the actual simulations in appendix C.
Fig. 1 shows our simulation results along with compar-

ison with analytics. The densities are normalized by
(�2m/

p
G)2, and length scales by 1/(m�).

For simulations, we take the condensation time to be
the time when there is a characteristic change in slope
(on a log-log scale) of the maximum density in the simu-
lation volume vs. time. Note that the ⌧0 used to normal-
ize the time axis in the top panel of Fig 1 is extracted
from simulations for the scalar case, chosen to highlight
the scaling of the condensation time with the number of
components.
The density in the box at initial times and after the

soliton is reasonably well formed (we decided this based
on a fixed density threshold ⇢̃max = 1) are also shown
in the lower panels. The soliton profile in total density
shows good agreement with theoretical expectations [9].
We also kept track of densities in individual components
of the fields. For the multicomponent cases (in particular
the tensor one), not all components have the same shape
of the density profile at the final snapshot shown. We
see an increasing approach to similar profile shapes as
time progresses and the agreement of the soliton profile
with the theoretically expected one improves. Note the
reduced interference e↵ects (seen as less contrast in the
colors, but the length scale of the patterns remains the
same) in the initial conditions or in the patterns away
from the soliton, as expected from [16]. The same phe-
nomenon was also seen in [21].
Furthermore, we calculate the spin densities (see [9,

16]) of the condensates at final times in the respective

FIG. 2. The simulation snapshots in the top and bottom
row show the initial and final projections of the magnitude of
the spin-density for vector and tensor cases respectively. The
rightmost column show the radial profile of the magnitude of
the spin density at the final time. Note that spin accumulates
with the density (compare with bottom two rows of Fig. 1).
Restoring factors of ~, the spin per boson in the simulation
volume is O(10�2)~, whereas in the core it concentrates to
O(1)~ . Unlike the magnitude of the radial spin density pro-
file, spin in the core and in the simulation volume is obtained
by vector summation of spin density at each location.

- nucleation time scale 

�gr ⇠ (Gm/v2)2, N ⇠ n�3
dB

⌧s ⇠ (2s+ 1)⌧s=0

see Levkov et. al (2018) for scalar case
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Figure 4: Left: The evolution of the maximum value ⇢max of the energy density field of the vector through
MRE, in a simulation with volume (3.75�?)3. Time is parameterised by the scale factor a relative to
that at MRE, aeq. The mean vector energy density ⇢ is also plotted. At early times ⇢max follows ⇢, with
small fluctuations due to the oscillation of modes with k & kJ , driven by quantum pressure. The collapse
of overdensities with � & 1, which in the absence of quantum pressure would occur at a/aeq ' 1/�,
is hindered until after MRE. Once kJ/k? / a

1/4 has grown su�ciently, overdensities collapse. After
the collapse, the maximum density is at a point inside a soliton. The soliton is produced with excited
quasinormal modes, so the maximum density subsequently oscillates. Right: A slice of the energy density
at a/aeq = 7, in the same simulation as is plotted in the left panel. The slice passes through the point
that has the largest density at this time, which is at the centre of a soliton. The soliton (red region
in inset) is surrounded by a spherical ‘fuzzy’ halo (yellow/green region) and there are cosmic filaments
connecting it to other solitons. Spherical waves can be seen around the soliton, which are due to the
emission of energy from quasinormal modes. A video showing the evolution can be found at [58].

study the growth of density perturbations and the evolution of the density power spectrum in more detail
in Appendix D.

In Figure 4 (right) we plot the density field ⇢ through the slice of the same simulation that contains
the point with the largest density, at a/aeq = 7. There is a central soliton (red region). The soliton is
surrounded by a spherical fuzzy halo (yellow/green region) extending far from its core, the maximum
density of which is about two orders of magnitude smaller than the soliton core density. Finally, the early
stages of a cosmic web connecting di↵erent solitons have formed (see also Figure 1 left, where we show a
3D version of the same energy density). Spherical waves can be seen beyond the halo. These are due to
energy released by the decay of the soliton’s quasi-normal modes.

To understand the nature of the collapsed objects, in Figure 5 (left) we plot the spherically averaged
density profile around the centre of the objects at a/aeq = 5, averaged over all the objects in our full set
of simulations. To enable the profiles of objects with di↵erent mass to be combined, for each object the
density profile is normalised to its central density ⇢s and the distance from its centre to the quantum
Jeans length �J(⇢s) corresponding to its central density ⇢s. As it is clear from Section 3.1, in terms of
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radial profile of the mass density (solid line is the expected
soliton profile) at the final time. Some simulation animations
are available here.

to �(s) = �0/(2s+1). The time of condensate nucleation
(within any component) is therefore estimated as

⌧(s) ⇠ ⌧0(2s+ 1) . (8)

To verify the above prediction, we have performed ⇠ 50
simulations for s = 0, 1 and 2 (corresponding to scalar,
vector and tensor wavelike dark matter). We provide
necessary details of the actual simulations in appendix C.
Fig. 1 shows our simulation results along with compar-

ison with analytics. The densities are normalized by
(�2m/

p
G)2, and length scales by 1/(m�).

For simulations, we take the condensation time to be
the time when there is a characteristic change in slope
(on a log-log scale) of the maximum density in the simu-
lation volume vs. time. Note that the ⌧0 used to normal-
ize the time axis in the top panel of Fig 1 is extracted
from simulations for the scalar case, chosen to highlight
the scaling of the condensation time with the number of
components.
The density in the box at initial times and after the

soliton is reasonably well formed (we decided this based
on a fixed density threshold ⇢̃max = 1) are also shown
in the lower panels. The soliton profile in total density
shows good agreement with theoretical expectations [9].
We also kept track of densities in individual components
of the fields. For the multicomponent cases (in particular
the tensor one), not all components have the same shape
of the density profile at the final snapshot shown. We
see an increasing approach to similar profile shapes as
time progresses and the agreement of the soliton profile
with the theoretically expected one improves. Note the
reduced interference e↵ects (seen as less contrast in the
colors, but the length scale of the patterns remains the
same) in the initial conditions or in the patterns away
from the soliton, as expected from [16]. The same phe-
nomenon was also seen in [21].
Furthermore, we calculate the spin densities (see [9,

16]) of the condensates at final times in the respective

FIG. 2. The simulation snapshots in the top and bottom
row show the initial and final projections of the magnitude of
the spin-density for vector and tensor cases respectively. The
rightmost column show the radial profile of the magnitude of
the spin density at the final time. Note that spin accumulates
with the density (compare with bottom two rows of Fig. 1).
Restoring factors of ~, the spin per boson in the simulation
volume is O(10�2)~, whereas in the core it concentrates to
O(1)~ . Unlike the magnitude of the radial spin density pro-
file, spin in the core and in the simulation volume is obtained
by vector summation of spin density at each location.
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we describe the general model of multicomponent dark
matter with only gravitational self-interactions. Leaving
details of the derivation of multicomponent wave kinetic
equation for appendix A, and its subsequent reduction in
the eikonal approximation for appendix B, in Sec. III we
discuss the general structure of the Boltzmann / Fokker-
Planck equation for our multicomponent SP system. We
provide estimates of the rate of change of distribution
functions at vanishing momenta, which are relevant for
the nucleation time scales of gravitating condensates. In
subsequent subsections IIIA and III B, we specialize to
the two cases of interest mentioned above, discuss the
simulation results, and provide comparisons with analyt-
ical estimates. Finally, in IV, we summarize our work.
Details of numerical simulations are provided in yet an-
other appendix C.
Conventions: Unless stated otherwise, we will work in
the units where ~ = c = 1.

II. MODEL

We are interested in su�ciently subhorizon dynam-
ics, and hence ignore Hubble expansion. In this case,
the dynamics of the multicomponent dark matter field is
described by the following non-relativistic Schrödinger-
Poisson (SP) system of equations:

i
@

@t
 a = �

1

2ma
r

2 a +ma� a

where r
2� = 4⇡G

X

a

ma  
⇤
a a. (1)

If ma = m for all “a”, then  a can be thought of as
components of a spin-s field. Here, “a” ranges from 1 to

N = 2s+1. In this case, the above system has a U(2s+1)
symmetry, leading to conservation of extra charges (apart
from mass conservation within each component) such as
iso-spin and/or spin [9].

More generally, each component  a can have a di↵erent
mass, in which case each component represents a collec-
tion of scalar particles (distinct from other components).
Correspondingly, owing to a separate U(1) symmetry in
each scalar sector, the total number of particles within
each sector is conserved.

We are interested in kinetic relaxation/condensation.
In the kinetic regime, the time-scales of interactions are
much longer than the oscillation time of the free waves.
In addition, the wavelengths are much smaller than the
size of the system under consideration. Physically, this
translates to having the dark matter halo size much larger
than the de-Broglie scale for the dark matter field.

III. KINETIC RELAXATION

A formal estimate for the time-scale of Bose-Einstein
condensation in the kinetic regime may be obtained by
means of the wave kinetic equation. While we derive a
general multicomponent wave kinetic equation (with ar-
bitrary 2 body interaction) using a random phase approx-
imation in appendix A, for our purposes in the present
paper we are only interested in gravitational interactions.
In this case, the wave kinetic equation for the occupation
number function fa

k/ma
= | a

k/ma
|
2 for species “a”, takes

the following form
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Here va and vb are incoming “velocities” for the species
“a” and “b” carrying momentum k = mava and
p = mbvb respectively, and ⇢̄c = mc(2⇡)�3

R
dk f c

k is
the average mass density for any cth species. Also,
Ek

a = k2/2ma is the free wave dispersion relation, and
the quantity d�ka+pb!qb+`a is the di↵erential cross
section for the process ka + pb ! qb + `a. The summa-
tion over “b” simply reflects the fact that any species
“a” gravitationally interacts with all the other species
(including species “a” itself), and can be readily con-
trasted with a single species/scalar case. Furthermore,

the above wave-kinetic equation can be contrasted with
its “non-wavelike” counterpart (i.e. the usual kinetic
equation for point like particles). The bracket terms
carrying the sum of occupation number functions are
simply unity in the latter case.

In general, on account of interactions, waves exchange
energy and the occupation number function evolves
with the characteristic time of this evolution being ⇠

(@ log f/@t)�1 (for every species). As a result, an im-
portant phenomenon of ‘condensation’ can occur. As we
shall see explicitly for the case of gravity, the occupation

3

number function for the condensing species develops an
increasing support over smaller k values. Once enough
support is developed, the gravitational potential energy
of such waves becomes capable of balancing their own
gradient pressure, hence the emergence/nucleation of a
solitonic like region. In order to make analytical progress
for the estimation of this condensation rate, we work with

an eikonal approximation where the change in relative
velocities of the outgoing waves in assumed to be small
(as compared to the relative velocities of the incoming
waves). Leaving a detailed calculation for appendix B,
the Boltzmann equation reduces to the following Fokker-
Planck form at leading order perturbation theory:
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, with u = va � ṽb (3)

Here, we have relabelled the occupation number func-
tions using “velocity” vectors, with va = ka/ma being
the incoming velocity vector for the a species, and ṽb

being the velocity vector for the incoming b species,
giving u = va � ṽb as the relative velocity between
the two. Also, ⇤ is the Coulomb logarithm (see B for
details). Eq. (3) is our master Boltzmann equation
(under an eikonal approximation) which dictates the
evolution of the occupation number functions. The
two terms on the right hand side are conveniently
understood by means of the (velocity dependent) dif-
fusion and friction coe�cients Dab

ij and F
ab
i respectively.1

For an interaction of wave type “a” with wave type
“b”, a physical e↵ect of the di↵usion term is to decrease
the occupation number function fa

va
at places where it is

convex, while increasing it at places where it is concave
(in the plane perpendicular to u, with ‘sheer stress’ of
the form ⇠ 1/u). On the other hand, an e↵ect of the
friction term is to enhance fa

va
due to the ‘friction force’

⇠ 1/u2 being directed towards va. Specifically, rvi
a
F

ab
i

includes 4⇡fa
va
f b
va
/(2⇡)3, which together with the factor

of fa
va
/mb may be regarded as a positive definite source

term for the evolution of fa
va
. This heuristic under-

standing is similar to the non-wavelike/particle like case,
albeit with the crucial di↵erence of there being extra
factors of f b

ṽb
and fa

va
in the di↵usion and friction terms

respectively due to wave dynamics. These extra terms,
sometimes referred to as Bose enhancement factors, have
an important role to play in nucleation of condensates.

We note that the above understanding of these e↵ects
of the di↵usion and friction terms, and a subsequent
nucleation of a condensate is reflected in a preliminary

1
The wave-kinetic equation di↵ers from the usual (non-

wavelike/particle) counterpart: the extra factors of fb
ṽb

and fa
va

in the di↵usion and friction coe�cients are absent in the latter.

calculation of moments of the distribution function fa
va
.

For instance even for a single species case, assuming
a Gaussian initial ansatz for the distribution function
(c.f. Eq. (7) ahead), we calculate the rate of change of
di↵erent moments at the initial instant. We find that
while dhvai/dt|t=0 < 0, dhvna i/dt|t=0 > 0 for n � 3,
with dhv2ai/dt|t=0 = 0 being the boundary case. This
indicates that the evolution of fv is such that it tries
to break into a condensate part where the friction
dominates over di↵usion (developing increasing support
towards smaller velocities), and a remaining part where
this may not be true.

For the purposes of condensate/soliton nucleation
within any species “a”, we may therefore focus on the
behavior of its occupation number function at small

velocities, i.e. the quantity limva!0
@fa

va
@t , due to all

the other species (including itself) in the bath. (We
of course do not make the same assumption about the
species being integrated over.) We assume homogene-
ity and isotropy (until the nucleation of the condensate)
along with an assumption of quadratic functional de-
pendence of occupation number functions at small ve-
locities. Under these assumptions, the di↵usion piece
rvi

a
rvj

a
fa
va
|va!0 ! ��̃a�ij fa

0 /�
2
a, giving the subsequent

velocity integral to be D
ab
ij �ij ! 2 ⇥ 2⇡�2

b (⇢̄
2
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8
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6
b )�

0
b.

Here, �b characterizes the initial Gaussian width of the
distributions, and ⇢̄b is the spatially averaged mass den-
sity of species b. Also, �̃b parameterizes deviations from
gaussianity of the ratio of the curvature of f b

0 versus f b
0

(measured in units of �a), while �0
b characterizes devia-

tions from gaussianity of the full integral in D
ab
ij .

2 For
the relevant piece in the friction term, we simply have

2
While in general time dependent, we expect the time variation

of both �0
b and �̃b to not be too significant throughout most

of the evolution of the occupation number functions before the

nucleation of condensates.
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2. Furthermore, to ex-

tract overall scalings of the distribution function f b
0 , we

define a function gb(t) such that

f b
0(t) ⌘ (2⇡)3/2

⇢̄b
m4

b�
3
b

⇥ gb(t) (4)

where gb(t) carries all the time-dependence of the distri-
bution function near small velocities, with gb(t = 0) = 1.
With these replacements, we finally arrive at the follow-
ing
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where we have combined �̃a and �0
b into a single �ab. As

a quick exercise for a single species, we can solve this
di↵erential equation and take the time when g changes
significantly, as an estimate for the nucleation time of
the condensate. Denoting ⌧gr ⌘ m3�6/(⇤(4⇡G)2⇢̄2), we
get ġ = ⌧gr(2g3 � �g), which gives ⌧0 ⇠ ⌧gr log(2/(2 �

�))/(2�) under the assumption of � = const. (and where
⌧0 is the time when g ! 1).

For concreteness, we also evaluate the above rate of
change at the initial instant �a ⌘ d log ga/dt|t=0:
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where the � parameters are simply informed by the initial
condition, and take this as an estimate for the rate of
condensate nucleation. The corresponding time of course
being ⌧a ⇠ ��1

a .3 Once again, for a single component case
with initial condition (7), we get ⌧0 ⇠ ⌧gr.

From the above estimates for the single component
case, the condensation time scales with relevant pa-
rameters similar to [3], but the numerical factors are
not identical. Our estimate is based on using Gaussian
initial conditions to calculate the right-hand side of (3)
explicitly, near vanishing momenta. To the best of
our understanding, authors in [3] replace derivatives,
integration measures, relative velocities and occupation
number functions with respective scalings in Eq. (3)
(specialized to a single component). They then fit
an order unity co-e�cient which depends on initial
conditions from simulations. We thus expect the scalings
to match, but not the explicit numerical factors. With
multiple species, however, the scaling with densities,
boson masses and initial velocity dispersions becomes
non-trivial and one needs to keep track of di↵erences
arising from the friction and di↵usion terms.

Before moving on, we would like to caution the reader
that Eqs. (5) and (6) are not the most general equations

3
Note that for a Gaussian initial ansatz (7), �ab = 1 at the initial

instant.

that capture behavior of any distribution function f
at vanishing momenta, at all times and at the initial
instant respectively. They only apply in so far as the
leading dependence of f on momenta is quadratic (at
small momenta). On the contrary, the Boltzmann
equation (3) of course contains all the necessary details
(in the leading order perturbation theory).

For simulations, in this paper we shall focus on two
di↵erent scenarios. First, we will consider a spin-s field
with N = 2s + 1 components, with the boson mass for
each component being equal. The other case would be
the opposite scenario where the di↵erent components are
simply scalar fields and therefore have naturally di↵erent
masses. For example this could be the case of dark mat-
ter comprising of Axiverse axions [20]. For this multi-
scalar case, we shall only consider the two-component
case in detail. Next, owing to violent relaxation in the
physical case of dark matter physics, we shall assume
that all the components have the same characteristic ve-
locity. For simulation purposes, we numerically evolve
the SP system (1), with the following initial distribu-
tion/occupation number function for every ath species4
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with �a = � for every species, and random phases for
every wavenumber (for each species). The details of the
initial conditions are provided in appendix C.

A. Equal mass, spin-s case

First we consider the case of a spin-s field with N =
2s+1 components, for which all the components have the
same mass m. Assuming equipartition of mass density,
i.e. ⇢̄a = ⇢̄/(2s+1) for all components where ⇢̄ is the total
average mass density, alongwith equal velocity dispersion
� for all components, the evolution equation (c.f (5)) for
any component becomes ġ = ⌧gr(2g3 � �g)/(2s + 1).5

Notice that the only di↵erence as compared to the scalar
(s = 0) case is that we have democratically populated
all the components, giving rise to an overall ⇢̄2/(2s+1)2

factor, and a 2s+ 1 factor owing to the summation over
the 2s + 1 components (due to universality of gravity).
The net result is a 1/(2s+1) factor in the rate of kinetic
relaxation. Equivalently, the rate defined in (6) evaluates

4
Note that the initial conditions used by [3], for the scalar s = 0

case, di↵ers by � ! �/
p
2. Also note that while we do not discuss

initial conditions that are Dirac-Delta functions in velocity space

at finite � (as investigated by [3]), we briefly mention what we

see in some sample simulations in appendix C, and how it relates

to the discussion in this section.
5
Here we have assumed that all the � factors are same, owing to

democratic initial conditions.
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FIG. 1. Top panel: Maximum density in the simulation vol-
ume as a function of time for scalar (s = 0), vector (s = 1)
and tensor fields (s = 2). The condensation time scales with
the number of components of the field as ⌧(s) ⇠ ⌧0⇥N , where
N = 2s + 1. The simulated data includes 14 simulations for
s = 0, 1, 2 each. For visual clarity, the output shown are sig-
nificantly under-sampled compared to what is available from
our simulations. Lower panels: In each row (corresponding
to scalar, vector and tensor fields respectively), the first two
panels show a projection of the mass density of the spin-s field
at initial and final times, while the third panel provides the
radial profile of the mass density (solid line is the expected
soliton profile) at the final time. Some simulation animations
are available here.

to �(s) = �0/(2s+1). The time of condensate nucleation
(within any component) is therefore estimated as

⌧(s) ⇠ ⌧0(2s+ 1) . (8)

To verify the above prediction, we have performed ⇠ 50
simulations for s = 0, 1 and 2 (corresponding to scalar,
vector and tensor wavelike dark matter). We provide
necessary details of the actual simulations in appendix C.
Fig. 1 shows our simulation results along with compar-

ison with analytics. The densities are normalized by
(�2m/

p
G)2, and length scales by 1/(m�).

For simulations, we take the condensation time to be
the time when there is a characteristic change in slope
(on a log-log scale) of the maximum density in the simu-
lation volume vs. time. Note that the ⌧0 used to normal-
ize the time axis in the top panel of Fig 1 is extracted
from simulations for the scalar case, chosen to highlight
the scaling of the condensation time with the number of
components.
The density in the box at initial times and after the

soliton is reasonably well formed (we decided this based
on a fixed density threshold ⇢̃max = 1) are also shown
in the lower panels. The soliton profile in total density
shows good agreement with theoretical expectations [9].
We also kept track of densities in individual components
of the fields. For the multicomponent cases (in particular
the tensor one), not all components have the same shape
of the density profile at the final snapshot shown. We
see an increasing approach to similar profile shapes as
time progresses and the agreement of the soliton profile
with the theoretically expected one improves. Note the
reduced interference e↵ects (seen as less contrast in the
colors, but the length scale of the patterns remains the
same) in the initial conditions or in the patterns away
from the soliton, as expected from [16]. The same phe-
nomenon was also seen in [21].
Furthermore, we calculate the spin densities (see [9,

16]) of the condensates at final times in the respective

FIG. 2. The simulation snapshots in the top and bottom
row show the initial and final projections of the magnitude of
the spin-density for vector and tensor cases respectively. The
rightmost column show the radial profile of the magnitude of
the spin density at the final time. Note that spin accumulates
with the density (compare with bottom two rows of Fig. 1).
Restoring factors of ~, the spin per boson in the simulation
volume is O(10�2)~, whereas in the core it concentrates to
O(1)~ . Unlike the magnitude of the radial spin density pro-
file, spin in the core and in the simulation volume is obtained
by vector summation of spin density at each location.
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FIG. 1. Top panel: Maximum density in the simulation vol-
ume as a function of time for scalar (s = 0), vector (s = 1)
and tensor fields (s = 2). The condensation time scales with
the number of components of the field as ⌧(s) ⇠ ⌧0⇥N , where
N = 2s + 1. The simulated data includes 14 simulations for
s = 0, 1, 2 each. For visual clarity, the output shown are sig-
nificantly under-sampled compared to what is available from
our simulations. Lower panels: In each row (corresponding
to scalar, vector and tensor fields respectively), the first two
panels show a projection of the mass density of the spin-s field
at initial and final times, while the third panel provides the
radial profile of the mass density (solid line is the expected
soliton profile) at the final time. Some simulation animations
are available here.

same mass m. Assuming equipartition of mass density,
i.e. ⇢̄a = ⇢̄/(2s+1) for all components where ⇢̄ is the total
average mass density, alongwith equal velocity dispersion
� for all components, the evolution equation (c.f (5)) for
any component becomes ġ = ⌧

�1
gr (2g3 � �g)/(2s + 1).7

7
Here we have assumed that all the � factors are same, owing to

democratic initial conditions.

Notice that the only di↵erence as compared to the scalar
(s = 0) case is that we have democratically populated
all the components, giving rise to an overall ⇢̄2/(2s+1)2

factor, and a 2s+ 1 factor owing to the summation over
the 2s + 1 components (due to universality of gravity).
The net result is a 1/(2s+1) factor in the rate of kinetic
relaxation. Equivalently, the rate defined in (6) evaluates
to �(s) = �0/(2s+1). The time of condensate nucleation
(within any component) is therefore estimated as

⌧(s) ⇠ ⌧0(2s+ 1) . (8)

To verify the above prediction, we have performed ⇠ 50
simulations for s = 0, 1 and 2 (corresponding to scalar,
vector and tensor wavelike dark matter).8 We provide
necessary details of the actual simulations in appendix C.
Fig. 1 shows our simulation results along with compar-
ison with analytics. The densities are normalized by
(�2

m/
p
G)2, and length scales by 1/(m�).

For simulations, we take the condensation time to be
the time when there is a characteristic change in slope
(on a log-log scale) of the maximum density in the simu-
lation volume vs. time. Note that the ⌧0 used to normal-
ize the time axis in the top panel of Fig 1 is extracted
from simulations for the scalar case, chosen to highlight

FIG. 2. The simulation snapshots in the top and bottom
row show the initial and final projections of the magnitude of
the spin-density for vector and tensor cases respectively. The
rightmost column show the radial profile of the magnitude of
the spin density at the final time. Note that spin accumulates
with the density (compare with bottom two rows of Fig. 1).
Restoring factors of ~, the spin per boson in the simulation
volume is O(10�2)~, whereas in the core it concentrates to
O(1)~ . Unlike the magnitude of the radial spin density pro-
file, spin in the core and in the simulation volume is obtained
by vector summation of spin density at each location.

8
To verify the robustness of our scaling result ⌧ ⇠ ⌧0 N , we also

performed ⇠ 10 simulations for N = 2 and N = 4 cases.
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Figure 6: The left panel shows the magnitude of the spin density at the end of the simulation, whereas
the zoomed inset shows the vector spin density in the central core. The time-averaged spin vector per
boson in the core (within 2rc) is shown in the middle, along with its typical precession around the mean
over a de-Broglie time scale. We take the smallness of the variation to be a sign that we have a central
soliton in this case. The top panel of the rightmost plot shows a correlation between the initial spin per
boson in our simulation (which is conserved) and the final spin per boson in the core. The red points
are ensemble mean of the magnitude of the time-averaged vector spin in the core, where the ensemble
consists of similar initial spin/boson simulations. The error bars show a 90% confidence interval within
this ensemble. The bottom panel shows the ensemble mean and standard deviation of the precession
of the core spin. We caution that there might be a core, but not necessarily a soliton present at the
centre in some of the cases. Note that a significant spin density in the core can be generated even at
small initial values of the total spin.

gular momentum) in the non-relativistic limit, the halo carries the rest of the spin (with an
opposite sign).

5 Observational Implications

We discuss three application areas of VDM to astrophysical observations of interest, and future
areas of study.

5.1 Dark matter substructure and dynamical heating

Density fluctuations resulting from wave interference in ultralight dark matter can dynamically
heat the old stellar population in the Milky Way, thickening the scale height of its disk-like
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FIG. 3. A visualization of the two distinct extremally polarized vector solitons. The left soliton has vanishing spin density
(� = 0), and W is oscillating along the z-axis. The right soliton has a spin density S = �| |2ẑ with � = 1. The big arrows
inside the soliton represent the direction of the field W , while the little arrows on the circles represent their motion in time.
The total spin |Stot| = �M/m ⇡ 60.7� (mpl/m)2(µ/m)1/2, where M is the total mass of the soliton.
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n̂ , (42)

where M is the total mass of the soliton. The numerical
co-e�cients are obtained from the universal profile
shown in Fig. 2. Heuristically (µ/m)1/2 ⇠ (1/mL)
where L is the characteristic size of the soliton, and
M ⇠ (mpl/m)2/L. Since in the non-relativistic regime
µ/m ⌧ 1, we expect the maximal values of the above
quantities (40) to be bounded from above by the case
µ ⇠ m. Significant deviations from the above expression
can be expected as one approaches this limit [12].

It is also worth noting that these solitons are perfectly
virialized, Ekin/Epot = �1/2, where Ekin is the term
containing gradients, and Epot is the other term (gravi-
tational potential energy) in (25).

1. Spin-0

For the case of spin-0, we have the following real field
solution for �(= F) in (15)

�(x, t) =

p
2 (x)
p

m
cos!t , (43)

where ! ⌘ m�µ, and there is of-course no intrinsic spin
angular momentum.

2. Spin-1

For the massive spin-1 case, we have three distinct
states corresponding to ±1 and 0 polarizations, which,
for n̂ = ẑ, are conveniently represented by the following
orthonormal set of vectors:

✏(±1)

1,ẑ
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1
p

2

0

@
1
±i
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1

A ; ✏(0)
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A . (44)

satisfying (27). For  (�) =  e
iµt✏(�)

1,ẑ
, we have S =

�| |
2
ẑ where � = 0, ±1. Extremally polarized solitons

in terms of the real-valued vector field W (= F) in (15)
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inside the soliton represent the direction of the field W , while the little arrows on the circles represent their motion in time.
The total spin |Stot| = �M/m ⇡ 60.7� (mpl/m)2(µ/m)1/2, where M is the total mass of the soliton.
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ẑ
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2.3 Solitons

Ground state solitons in VDM are characterized by the “chemical potential” µ and a unit
complex 3-vector ✏ (with ✏†✏ = 1):

 sol(t, x) =  sol(µ, r)eiµc
2t/~✏, (2.16)

where  sol is a real valued spherically symmetric function that satisfies

� µc2 sol = �~2 r
2

2m
 sol + m� sol, r

2� = 4⇡Gm 2
sol. (2.17)

Note that the profile for a VDM soliton satisfies the same time-independent equation as a SDM
soliton. The mass and spin of this soliton are given by

Msol ⇡ 60.7
m2

pl

m

r
µ

m
, Ssol ⇡ i(✏ ⇥ ✏†)60.7

m2
pl

m2

r
µ

m
~. (2.18)

The special cases of maximally polarized solitons configurations [20] are given by ✏(0) = ẑ
and ✏(1) = (x̂ + iŷ)/

p
2, along with their spatial rotations. Configurations with ✏ = ✏(0) are

linearly polarized, with zero total spin angular momentum. Whereas, configurations with ✏ =
✏(1) have a maximal spin angular momentum |Ssol| = ~Msol/m. For all other solitons, we expect
the spin angular momentum to lie between these maximal values. That is 0  |Ssol|  ~Msol/m.

In [8], the scalar soliton profile was parameterized by a characteristic width rc, so that the
density and mass can be characterized as

⇢sol(r) ⇡ 1.9 ⇥ 107m�2
22

(kpc/rc)
4

(1 + 0.091(r/rc)2)8
M�

kpc3
, Msol ⇡ 2.2 ⇥ 108

✓
kpc

rc

◆
m�2

22 M�. (2.19)

Using eq. (2.19) and eq. (2.17), we have rc = 6.8 ⇥ 10�5m�1
22

p
m/µ kpc. For the solitons in our

simulations we typically have µ/m ⇠ 10�12.
We re-iterate that the soliton profile is characterized by the same function in VDM and

SDM. The analysis is identical with ✏ ! ei' (a phase) for SDM.

3 Two soliton mergers

In this section we explore the merger of 2 solitons, as a warm up to the N -soliton case. For
simplicity, we restrict ourselves to head-on collisions only.

We begin with two identical VDM solitons with a characteristic radius rc ⇡ 1 kpc ⇥

(M4m2
20)

�1 and separation of ⇡ 10rc, with masses Msol,1 = Msol,2. We define M4 = (M/2.2 ⇥

104M�). We give each of them a small v/c ⇡ 3.3 ⇥ 10�7
M4m20 velocity towards each other

(the typical velocity expected in our N soliton simulations at this distance). Each VDM soliton
has its own complex unit vector ✏1,2 (see eq. (2.16)). After the collision, if a new soliton forms,
it has a mass Msol,f = fv(Msol,1 + Msol,2), where 1 � fv is mass fraction that does not end up in

– 6 –
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+c�1+c1

freedom (spin) of ultralight dark matter.
The key to understanding the di↵erences between SDM and VDM is that the wave-

interference e↵ects are smaller in VDM compared to SDM. As a simple example, if we consider
the interference of two plane waves with unit amplitude, then the typical amount of interfer-
ence in VDM is 1/

p
3 times that in SDM. More generally, for a spin-s field, the interference is

1/
p

2s + 1 times smaller than that in SDM.
The rest of the paper is organized as follows. In Sec. 2, we introduce our model for VDM

along with its nonrelativistic limit. We also provide an understanding of interference in VDM
waves, as well as solitons in VDM. We explore binary soliton mergers in Sec. 3, and calculate the
fraction of total mass that remains bound in the final soliton. In Sec. 4, we consider the merger
of N = O(10) solitons. We compare the results of the merger in VDM and SDM, including
core mass, density profiles, size of interference granules, as well as spin angular momentum
density. In Sec. 5, we briefly discuss observational implications including dynamical heating of
stars, cores of dwarf galaxies, and DM substructure. We summarize our main results, as well a
future outlook in 6. Details of the numerical simulation, as well as some details of our analytic
calculations are deferred to the Appendix.

2 Preliminaries

2.1 Model and equations of motion

A (dark) massive spin-1 field Wµ minimally coupled to gravity and without non-gravitational
self-interactions is described by the following action:

S =

Z
d4x

p
�g

h
�

1

4
gµ↵g⌫�

Gµ⌫G↵� +
1

2

m2c2

~2
gµ⌫WµW⌫ +

c3

16⇡G
R + ...

i
, (2.1)

where Gµ⌫ = @µW⌫ � @⌫Wµ. The ‘...’ in (2.1) represents the Standard Model Lagrangian and
other possible dark sector(s). Here, m is the mass of the vector boson. We can represent the
spatial part of the (real-valued) vector field W in terms of a complex vector  as

W (t, x) ⌘
~

p
2mc

<

h
 (t, x)e�imc2t/~

i
, (2.2)

where has dimensions of [length]�3/2. Similarly, W0(t, x) ⌘ ~/
p

2mc <

h
 0(t, x)e�imc2t/~

i
. We

are interested in the non-relativistic behaviour of the vector field where the spatial variation in
the field is slow compared to the Compton scale �m = ~/mc and we are in the Newtonian gravity
regime. We focus on su�ciently subhorizon dynamics, and hence ignore Hubble expansion. In
this case, the dynamics are described by the non-relativistic action for the complex vector field
 and the Newtonian gravitational potential �:

Snr =

Z
dtd3x

"
i~
2
 † ̇+ c.c. �

~2

2m
r †

· r +
1

8⇡G
�r

2� � m � † 

#
, (2.3)
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FIG. 1. A visual summary of some of the main results of our paper.

novel class of extremally polarized solitons with spin
Stot/~ = �M/m which can be macroscopically large for
M � m. Here, m is the mass of the field, M is the
mass of the soliton and � is the spin multiplicity. These
coherent solitons (along with fractionally polarized
ones mentioned earlier) might open up new avenues for
observationally probing higher-spin fields.

We find that even within Newtonian gravity it might
be possible to distinguish interacting solitons with dif-
ferent polarizations. Going beyond Newtonian gravity,
which we do not pursue here, might remove degeneracies
between di↵erent polarizations of the higher-spin fields
even further. We also discuss possibilities of probing
this higher-spin dark matter via non-gravitational
interactions, taking advantage of the polarization state
of the solitons.

The paper is organized as follows. In section II we
discuss our model for the case of dark scalar, vector,
and tensor massive fields, leaving additional details in
Appendix A. In section III we provide the e↵ective non-
relativistic action (which is the Schrödinger-Poisson sys-
tem) for these dark integer spin fields, and discuss the
various symmetries of the action. In section IV we dis-
cuss the gravitationally bound solitons. In section V we
discuss their distinguishability, primarily within Newto-
nian gravity, and also mention other non-gravitational
couplings that can probe the spin nature of the fields. In
section VI we summarize and also highlight some future
directions worth investigating.

II. MODELS

Our matter Lagrangian consists of the usual Standard
Model (SM) sector, along with some dark sector that
includes additional massive spin-0, spin-1, or even spin-2
fields. We take these fields to be real valued.

Explicitly, our general action has the form

S = SEH + Sdark + Svis , (1)

where SEH is the gravity sector, Sdark is some dark
sector (incluing dark integer spin fields), and Svis is
the visible sector (comprising of the SM). Our focus
is only on the gravity + dark sector in this paper.
We consider perturbations of di↵erent fields around
some background metric ḡµ⌫ which leads to the usual
massless spin-2 fluctuations: hµ⌫ (the graviton), along
with other perturbations in di↵erent fields. We will
focus on a given spin-s field + gravity, instead of
considering massive spin-0, 1 and 2 together, although
our formalism can accomodate the latter scenario as well.

For most part, we are interested in sub-horizon
physics where length scales associated with config-
urations of these dark fields are much smaller than
the Hubble horizon. As a result, we ignore Hub-
ble expansion, and take the background metric to be2

ḡµ⌫ = ⌘µ⌫ = diag(1, �1, �1, �1). We also take ~ = c = 1.

In the next three subsections, we provide the general
action up-to quadratic order in the fields of interest, along
with leading order gravitational interactions. For the
non-relativistic limit that we are interested in, the lead-
ing order actions provided here are su�cient. The full
nonlinear actions are discussed in the Appendix.

A. Spin-0

The quadratic (free) action for the spin-0 field �, and
metric fluctuations hµ⌫ , along with their leading interac-
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novel class of extremally polarized solitons with spin
Stot/~ = �M/m which can be macroscopically large for
M � m. Here, m is the mass of the field, M is the
mass of the soliton and � is the spin multiplicity. These
coherent solitons (along with fractionally polarized
ones mentioned earlier) might open up new avenues for
observationally probing higher-spin fields.

We find that even within Newtonian gravity it might
be possible to distinguish interacting solitons with dif-
ferent polarizations. Going beyond Newtonian gravity,
which we do not pursue here, might remove degeneracies
between di↵erent polarizations of the higher-spin fields
even further. We also discuss possibilities of probing
this higher-spin dark matter via non-gravitational
interactions, taking advantage of the polarization state
of the solitons.

The paper is organized as follows. In section II we
discuss our model for the case of dark scalar, vector,
and tensor massive fields, leaving additional details in
Appendix A. In section III we provide the e↵ective non-
relativistic action (which is the Schrödinger-Poisson sys-
tem) for these dark integer spin fields, and discuss the
various symmetries of the action. In section IV we dis-
cuss the gravitationally bound solitons. In section V we
discuss their distinguishability, primarily within Newto-
nian gravity, and also mention other non-gravitational
couplings that can probe the spin nature of the fields. In
section VI we summarize and also highlight some future
directions worth investigating.

II. MODELS

Our matter Lagrangian consists of the usual Standard
Model (SM) sector, along with some dark sector that
includes additional massive spin-0, spin-1, or even spin-2
fields. We take these fields to be real valued.

Explicitly, our general action has the form

S = SEH + Sdark + Svis , (1)

where SEH is the gravity sector, Sdark is some dark
sector (incluing dark integer spin fields), and Svis is
the visible sector (comprising of the SM). Our focus
is only on the gravity + dark sector in this paper.
We consider perturbations of di↵erent fields around
some background metric ḡµ⌫ which leads to the usual
massless spin-2 fluctuations: hµ⌫ (the graviton), along
with other perturbations in di↵erent fields. We will
focus on a given spin-s field + gravity, instead of
considering massive spin-0, 1 and 2 together, although
our formalism can accomodate the latter scenario as well.

For most part, we are interested in sub-horizon
physics where length scales associated with config-
urations of these dark fields are much smaller than
the Hubble horizon. As a result, we ignore Hub-
ble expansion, and take the background metric to be2

ḡµ⌫ = ⌘µ⌫ = diag(1, �1, �1, �1). We also take ~ = c = 1.

In the next three subsections, we provide the general
action up-to quadratic order in the fields of interest, along
with leading order gravitational interactions. For the
non-relativistic limit that we are interested in, the lead-
ing order actions provided here are su�cient. The full
nonlinear actions are discussed in the Appendix.

A. Spin-0

The quadratic (free) action for the spin-0 field �, and
metric fluctuations hµ⌫ , along with their leading interac-

2
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FIG. 4. The mass-radius relationship of the simulated Proca stars. In all panels the bars show ranges of the radial changes
observed in simulations (after a short initial “settling in” period of ??). For some stars, the bars are replaced by arrows,
indicating that the Proca star collapses into a black hole. The grey dashed lines show the lines of constant compactness, and
the dark grey line show the compactness of a black hole, with its photosphere as its radius, in isotropic coordinates. Left,
Middle and Right panels show the results for four hedgehog Proca stars, six linearly polarized Proca stars, and five circularly
polarized respectively. For C . 0.1, the middle and left panels demonstrate the stability of compact, gravitationally supported
polarized stars. Near the upper bound of this range, hedgehogs collapse at the lowest initial compactness (C ⇡ 0.06), followed
by linearly polarized (C ⇡ 0.08), and then (likely) circularly polarized stars (C > 0.08, although we were unable to simulate
collapse in circularly polarized stars). For non-collapsing polarized stars, the mean of the radial variations provides insight into
the mass-radius relationship at these compactness. Note that the orange line in the hedgehog panel shows the pertrubation-free
mass-radius relationship of the stable relativistic stationary hedgehogs solved in isotropic coordinates [19], such a line is not
yet available for the polarized cases in the high compactness regime.

erature [16, 17], the large amplitude here might bring
additional complications, see [31, 32].

IV. SUMMARY & IMPLICATIONS

We simulated two types of polarized Proca stars (lin-
ear and circularly polarized), along with hedgehog-like
Proca stars for comparison, using general relativistic field
equations. The initial conditions were based on field pro-
files of related Proca star solutions in Newtonian gravity
[15](see our Fig. 2), scaled to a higher compactness.

Our key results are as follows (see Fig. 4):

• We provided evidence that high-compactness po-
larized stars can be stable for C . 0.1.

• As we increase the initial compactness from ap-
proximately 0.01 to 0.1, the linearly polarized, cir-
cularly polarized, and hedgehog stars evolve away
from their initial configurations and towards new,
and slightly di↵erent fixed points.

• At su�ciently high compactness, some types of
stars collapse to black holes. We found that cir-
cularly polarized stars avoid collapse to black holes
at higher initial compactness than linearly polar-
ized ones or hedgehog-like stars. The large intrin-
sic spin angular momentum of circularly polarized

stars ~M/m [15](see Fig. 3) might be playing a role
here.

For circularly polarized stars, we did not observe collapse
to a black hole up to C = 0.08. We were unable to simu-
late stars with initial compactness & 0.08 due to numer-
ical limitations. An improved procedure for constructing
the initial data which allows for control of perturbations
away from the stationary solution is needed. This can be
either done by systematically and perturbatively incor-
porating relativistic corrections (for the scalar case, see
[33]), or by a numerically relaxing the field profiles (but
with reduced symmetry) as done for the hedgehog case
[19]. [TH: Not sure if these points address fun-

damentally the numerical issues we had. Doesn’t

hurt to mention alternatives either]

We hope our findings provide new phenomenology that
can be incorporated in the search for compact objects
(beyond black holes and neutron stars, and even scalar
boson stars [34]) through gravitational and electromag-
netic radiation. Polarized Proca stars can form in dark
photon/ vector dark matter fields [9–12], potentially pro-
viding access the nature of the dark sector. Also see foot-
note 1.
For the purpose of gravitational wave physics, both the

increased compactness, and the polarization of the stars,
can have important implications. The increased maximal
compactness of polarized stars in this paper (compared
to, for example, the previously examined hedgehog stars),
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novel class of extremally polarized solitons with spin
Stot/~ = �M/m which can be macroscopically large for
M � m. Here, m is the mass of the field, M is the
mass of the soliton and � is the spin multiplicity. These
coherent solitons (along with fractionally polarized
ones mentioned earlier) might open up new avenues for
observationally probing higher-spin fields.

We find that even within Newtonian gravity it might
be possible to distinguish interacting solitons with dif-
ferent polarizations. Going beyond Newtonian gravity,
which we do not pursue here, might remove degeneracies
between di↵erent polarizations of the higher-spin fields
even further. We also discuss possibilities of probing
this higher-spin dark matter via non-gravitational
interactions, taking advantage of the polarization state
of the solitons.

The paper is organized as follows. In section II we
discuss our model for the case of dark scalar, vector,
and tensor massive fields, leaving additional details in
Appendix A. In section III we provide the e↵ective non-
relativistic action (which is the Schrödinger-Poisson sys-
tem) for these dark integer spin fields, and discuss the
various symmetries of the action. In section IV we dis-
cuss the gravitationally bound solitons. In section V we
discuss their distinguishability, primarily within Newto-
nian gravity, and also mention other non-gravitational
couplings that can probe the spin nature of the fields. In
section VI we summarize and also highlight some future
directions worth investigating.

II. MODELS

Our matter Lagrangian consists of the usual Standard
Model (SM) sector, along with some dark sector that
includes additional massive spin-0, spin-1, or even spin-2
fields. We take these fields to be real valued.

Explicitly, our general action has the form

S = SEH + Sdark + Svis , (1)

where SEH is the gravity sector, Sdark is some dark
sector (incluing dark integer spin fields), and Svis is
the visible sector (comprising of the SM). Our focus
is only on the gravity + dark sector in this paper.
We consider perturbations of di↵erent fields around
some background metric ḡµ⌫ which leads to the usual
massless spin-2 fluctuations: hµ⌫ (the graviton), along
with other perturbations in di↵erent fields. We will
focus on a given spin-s field + gravity, instead of
considering massive spin-0, 1 and 2 together, although
our formalism can accomodate the latter scenario as well.

For most part, we are interested in sub-horizon
physics where length scales associated with config-
urations of these dark fields are much smaller than
the Hubble horizon. As a result, we ignore Hub-
ble expansion, and take the background metric to be2

ḡµ⌫ = ⌘µ⌫ = diag(1, �1, �1, �1). We also take ~ = c = 1.

In the next three subsections, we provide the general
action up-to quadratic order in the fields of interest, along
with leading order gravitational interactions. For the
non-relativistic limit that we are interested in, the lead-
ing order actions provided here are su�cient. The full
nonlinear actions are discussed in the Appendix.

A. Spin-0

The quadratic (free) action for the spin-0 field �, and
metric fluctuations hµ⌫ , along with their leading interac-

2
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novel class of extremally polarized solitons with spin
Stot/~ = �M/m which can be macroscopically large for
M � m. Here, m is the mass of the field, M is the
mass of the soliton and � is the spin multiplicity. These
coherent solitons (along with fractionally polarized
ones mentioned earlier) might open up new avenues for
observationally probing higher-spin fields.

We find that even within Newtonian gravity it might
be possible to distinguish interacting solitons with dif-
ferent polarizations. Going beyond Newtonian gravity,
which we do not pursue here, might remove degeneracies
between di↵erent polarizations of the higher-spin fields
even further. We also discuss possibilities of probing
this higher-spin dark matter via non-gravitational
interactions, taking advantage of the polarization state
of the solitons.

The paper is organized as follows. In section II we
discuss our model for the case of dark scalar, vector,
and tensor massive fields, leaving additional details in
Appendix A. In section III we provide the e↵ective non-
relativistic action (which is the Schrödinger-Poisson sys-
tem) for these dark integer spin fields, and discuss the
various symmetries of the action. In section IV we dis-
cuss the gravitationally bound solitons. In section V we
discuss their distinguishability, primarily within Newto-
nian gravity, and also mention other non-gravitational
couplings that can probe the spin nature of the fields. In
section VI we summarize and also highlight some future
directions worth investigating.

II. MODELS

Our matter Lagrangian consists of the usual Standard
Model (SM) sector, along with some dark sector that
includes additional massive spin-0, spin-1, or even spin-2
fields. We take these fields to be real valued.

Explicitly, our general action has the form

S = SEH + Sdark + Svis , (1)

where SEH is the gravity sector, Sdark is some dark
sector (incluing dark integer spin fields), and Svis is
the visible sector (comprising of the SM). Our focus
is only on the gravity + dark sector in this paper.
We consider perturbations of di↵erent fields around
some background metric ḡµ⌫ which leads to the usual
massless spin-2 fluctuations: hµ⌫ (the graviton), along
with other perturbations in di↵erent fields. We will
focus on a given spin-s field + gravity, instead of
considering massive spin-0, 1 and 2 together, although
our formalism can accomodate the latter scenario as well.

For most part, we are interested in sub-horizon
physics where length scales associated with config-
urations of these dark fields are much smaller than
the Hubble horizon. As a result, we ignore Hub-
ble expansion, and take the background metric to be2

ḡµ⌫ = ⌘µ⌫ = diag(1, �1, �1, �1). We also take ~ = c = 1.

In the next three subsections, we provide the general
action up-to quadratic order in the fields of interest, along
with leading order gravitational interactions. For the
non-relativistic limit that we are interested in, the lead-
ing order actions provided here are su�cient. The full
nonlinear actions are discussed in the Appendix.

A. Spin-0

The quadratic (free) action for the spin-0 field �, and
metric fluctuations hµ⌫ , along with their leading interac-
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novel class of extremally polarized solitons with spin
Stot/~ = �M/m which can be macroscopically large for
M � m. Here, m is the mass of the field, M is the
mass of the soliton and � is the spin multiplicity. These
coherent solitons (along with fractionally polarized
ones mentioned earlier) might open up new avenues for
observationally probing higher-spin fields.

We find that even within Newtonian gravity it might
be possible to distinguish interacting solitons with dif-
ferent polarizations. Going beyond Newtonian gravity,
which we do not pursue here, might remove degeneracies
between di↵erent polarizations of the higher-spin fields
even further. We also discuss possibilities of probing
this higher-spin dark matter via non-gravitational
interactions, taking advantage of the polarization state
of the solitons.

The paper is organized as follows. In section II we
discuss our model for the case of dark scalar, vector,
and tensor massive fields, leaving additional details in
Appendix A. In section III we provide the e↵ective non-
relativistic action (which is the Schrödinger-Poisson sys-
tem) for these dark integer spin fields, and discuss the
various symmetries of the action. In section IV we dis-
cuss the gravitationally bound solitons. In section V we
discuss their distinguishability, primarily within Newto-
nian gravity, and also mention other non-gravitational
couplings that can probe the spin nature of the fields. In
section VI we summarize and also highlight some future
directions worth investigating.

II. MODELS

Our matter Lagrangian consists of the usual Standard
Model (SM) sector, along with some dark sector that
includes additional massive spin-0, spin-1, or even spin-2
fields. We take these fields to be real valued.

Explicitly, our general action has the form

S = SEH + Sdark + Svis , (1)

where SEH is the gravity sector, Sdark is some dark
sector (incluing dark integer spin fields), and Svis is
the visible sector (comprising of the SM). Our focus
is only on the gravity + dark sector in this paper.
We consider perturbations of di↵erent fields around
some background metric ḡµ⌫ which leads to the usual
massless spin-2 fluctuations: hµ⌫ (the graviton), along
with other perturbations in di↵erent fields. We will
focus on a given spin-s field + gravity, instead of
considering massive spin-0, 1 and 2 together, although
our formalism can accomodate the latter scenario as well.

For most part, we are interested in sub-horizon
physics where length scales associated with config-
urations of these dark fields are much smaller than
the Hubble horizon. As a result, we ignore Hub-
ble expansion, and take the background metric to be2

ḡµ⌫ = ⌘µ⌫ = diag(1, �1, �1, �1). We also take ~ = c = 1.

In the next three subsections, we provide the general
action up-to quadratic order in the fields of interest, along
with leading order gravitational interactions. For the
non-relativistic limit that we are interested in, the lead-
ing order actions provided here are su�cient. The full
nonlinear actions are discussed in the Appendix.

A. Spin-0

The quadratic (free) action for the spin-0 field �, and
metric fluctuations hµ⌫ , along with their leading interac-

2
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novel class of extremally polarized solitons with spin
Stot/~ = �M/m which can be macroscopically large for
M � m. Here, m is the mass of the field, M is the
mass of the soliton and � is the spin multiplicity. These
coherent solitons (along with fractionally polarized
ones mentioned earlier) might open up new avenues for
observationally probing higher-spin fields.

We find that even within Newtonian gravity it might
be possible to distinguish interacting solitons with dif-
ferent polarizations. Going beyond Newtonian gravity,
which we do not pursue here, might remove degeneracies
between di↵erent polarizations of the higher-spin fields
even further. We also discuss possibilities of probing
this higher-spin dark matter via non-gravitational
interactions, taking advantage of the polarization state
of the solitons.

The paper is organized as follows. In section II we
discuss our model for the case of dark scalar, vector,
and tensor massive fields, leaving additional details in
Appendix A. In section III we provide the e↵ective non-
relativistic action (which is the Schrödinger-Poisson sys-
tem) for these dark integer spin fields, and discuss the
various symmetries of the action. In section IV we dis-
cuss the gravitationally bound solitons. In section V we
discuss their distinguishability, primarily within Newto-
nian gravity, and also mention other non-gravitational
couplings that can probe the spin nature of the fields. In
section VI we summarize and also highlight some future
directions worth investigating.

II. MODELS

Our matter Lagrangian consists of the usual Standard
Model (SM) sector, along with some dark sector that
includes additional massive spin-0, spin-1, or even spin-2
fields. We take these fields to be real valued.

Explicitly, our general action has the form

S = SEH + Sdark + Svis , (1)

where SEH is the gravity sector, Sdark is some dark
sector (incluing dark integer spin fields), and Svis is
the visible sector (comprising of the SM). Our focus
is only on the gravity + dark sector in this paper.
We consider perturbations of di↵erent fields around
some background metric ḡµ⌫ which leads to the usual
massless spin-2 fluctuations: hµ⌫ (the graviton), along
with other perturbations in di↵erent fields. We will
focus on a given spin-s field + gravity, instead of
considering massive spin-0, 1 and 2 together, although
our formalism can accomodate the latter scenario as well.

For most part, we are interested in sub-horizon
physics where length scales associated with config-
urations of these dark fields are much smaller than
the Hubble horizon. As a result, we ignore Hub-
ble expansion, and take the background metric to be2

ḡµ⌫ = ⌘µ⌫ = diag(1, �1, �1, �1). We also take ~ = c = 1.

In the next three subsections, we provide the general
action up-to quadratic order in the fields of interest, along
with leading order gravitational interactions. For the
non-relativistic limit that we are interested in, the lead-
ing order actions provided here are su�cient. The full
nonlinear actions are discussed in the Appendix.

A. Spin-0

The quadratic (free) action for the spin-0 field �, and
metric fluctuations hµ⌫ , along with their leading interac-
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to unity today.
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novel class of extremally polarized solitons with spin
Stot/~ = �M/m which can be macroscopically large for
M � m. Here, m is the mass of the field, M is the
mass of the soliton and � is the spin multiplicity. These
coherent solitons (along with fractionally polarized
ones mentioned earlier) might open up new avenues for
observationally probing higher-spin fields.

We find that even within Newtonian gravity it might
be possible to distinguish interacting solitons with dif-
ferent polarizations. Going beyond Newtonian gravity,
which we do not pursue here, might remove degeneracies
between di↵erent polarizations of the higher-spin fields
even further. We also discuss possibilities of probing
this higher-spin dark matter via non-gravitational
interactions, taking advantage of the polarization state
of the solitons.

The paper is organized as follows. In section II we
discuss our model for the case of dark scalar, vector,
and tensor massive fields, leaving additional details in
Appendix A. In section III we provide the e↵ective non-
relativistic action (which is the Schrödinger-Poisson sys-
tem) for these dark integer spin fields, and discuss the
various symmetries of the action. In section IV we dis-
cuss the gravitationally bound solitons. In section V we
discuss their distinguishability, primarily within Newto-
nian gravity, and also mention other non-gravitational
couplings that can probe the spin nature of the fields. In
section VI we summarize and also highlight some future
directions worth investigating.

II. MODELS

Our matter Lagrangian consists of the usual Standard
Model (SM) sector, along with some dark sector that
includes additional massive spin-0, spin-1, or even spin-2
fields. We take these fields to be real valued.

Explicitly, our general action has the form

S = SEH + Sdark + Svis , (1)

where SEH is the gravity sector, Sdark is some dark
sector (incluing dark integer spin fields), and Svis is
the visible sector (comprising of the SM). Our focus
is only on the gravity + dark sector in this paper.
We consider perturbations of di↵erent fields around
some background metric ḡµ� which leads to the usual
massless spin-2 fluctuations: hµ� (the graviton), along
with other perturbations in di↵erent fields. We will
focus on a given spin-s field + gravity, instead of
considering massive spin-0, 1 and 2 together, although
our formalism can accomodate the latter scenario as well.

For most part, we are interested in sub-horizon
physics where length scales associated with config-
urations of these dark fields are much smaller than
the Hubble horizon. As a result, we ignore Hub-
ble expansion, and take the background metric to be2

ḡµ� = �µ� = diag(1, �1, �1, �1). We also take ~ = c = 1.

In the next three subsections, we provide the general
action up-to quadratic order in the fields of interest, along
with leading order gravitational interactions. For the
non-relativistic limit that we are interested in, the lead-
ing order actions provided here are su�cient. The full
nonlinear actions are discussed in the Appendix.

A. Spin-0

The quadratic (free) action for the spin-0 field �, and
metric fluctuations hµ� , along with their leading interac-

2 We use ḡµ� = diag(1, �a2(t), �a2(t), �a2(t)) for an expanding
universe when needed. Here, a(t) is the scale factor normalized
to unity today.

2

Klein-Gordon (s =0) 

Proca           (s = 1) 

Fierz-Pauli    (s = 2)

2s+1 component 
Schrödinger non-relativistic limit

Ei
ns

te
in

 
   

 + s+1 solitons

s =
0

s = 1

s = 2

spin multiplicity = 0 1 2

Po
iss

on
 

   
 +

FIG. 1. A visual summary of some of the main results of our paper.

novel class of extremally polarized solitons with spin
Stot/~ = �M/m which can be macroscopically large for
M � m. Here, m is the mass of the field, M is the
mass of the soliton and � is the spin multiplicity. These
coherent solitons (along with fractionally polarized
ones mentioned earlier) might open up new avenues for
observationally probing higher-spin fields.

We find that even within Newtonian gravity it might
be possible to distinguish interacting solitons with dif-
ferent polarizations. Going beyond Newtonian gravity,
which we do not pursue here, might remove degeneracies
between di↵erent polarizations of the higher-spin fields
even further. We also discuss possibilities of probing
this higher-spin dark matter via non-gravitational
interactions, taking advantage of the polarization state
of the solitons.

The paper is organized as follows. In section II we
discuss our model for the case of dark scalar, vector,
and tensor massive fields, leaving additional details in
Appendix A. In section III we provide the e↵ective non-
relativistic action (which is the Schrödinger-Poisson sys-
tem) for these dark integer spin fields, and discuss the
various symmetries of the action. In section IV we dis-
cuss the gravitationally bound solitons. In section V we
discuss their distinguishability, primarily within Newto-
nian gravity, and also mention other non-gravitational
couplings that can probe the spin nature of the fields. In
section VI we summarize and also highlight some future
directions worth investigating.

II. MODELS

Our matter Lagrangian consists of the usual Standard
Model (SM) sector, along with some dark sector that
includes additional massive spin-0, spin-1, or even spin-2
fields. We take these fields to be real valued.

Explicitly, our general action has the form

S = SEH + Sdark + Svis , (1)

where SEH is the gravity sector, Sdark is some dark
sector (incluing dark integer spin fields), and Svis is
the visible sector (comprising of the SM). Our focus
is only on the gravity + dark sector in this paper.
We consider perturbations of di↵erent fields around
some background metric ḡµ� which leads to the usual
massless spin-2 fluctuations: hµ� (the graviton), along
with other perturbations in di↵erent fields. We will
focus on a given spin-s field + gravity, instead of
considering massive spin-0, 1 and 2 together, although
our formalism can accomodate the latter scenario as well.

For most part, we are interested in sub-horizon
physics where length scales associated with config-
urations of these dark fields are much smaller than
the Hubble horizon. As a result, we ignore Hub-
ble expansion, and take the background metric to be2

ḡµ� = �µ� = diag(1, �1, �1, �1). We also take ~ = c = 1.

In the next three subsections, we provide the general
action up-to quadratic order in the fields of interest, along
with leading order gravitational interactions. For the
non-relativistic limit that we are interested in, the lead-
ing order actions provided here are su�cient. The full
nonlinear actions are discussed in the Appendix.

A. Spin-0

The quadratic (free) action for the spin-0 field �, and
metric fluctuations hµ� , along with their leading interac-

2 We use ḡµ� = diag(1, �a2(t), �a2(t), �a2(t)) for an expanding
universe when needed. Here, a(t) is the scale factor normalized
to unity today.

Nonrelativistic ICscoll
aps

e to
 BH

increasing compactness

(for example phase of gravitational waves in the weak field limit. Let us assume that we have two
solitons of mass M1 and M2 whose separated by a distance r which is much larger than their radii
R1 and R2. The spin of the solitons are S1 and S2 respectively. The e↵ective potential governing
their dynamics can be written as [37, 38]

V = �
GM1M2

r

�
1 + O(v2

/c
2) �

2

rc
[r̂ ⇥ (v1 � v2)] ·

2�

a=1

Sa

Ma

+
1

r2c2

�
S1

M1
·

S2

M2
� 3

�
S1

M1
· r̂

� �
S2

M2
· r̂

�
+

2�

a=1

C
(a)
ES2

2M1M2

�
S

2
a � 3(Sa · r̂)2

�
�

+ . . .

� (0.1)

The third term on the first line is the spin-orbit interaction, and the 2nd line is the spin-spin

interaction, both of which are absent in configurations without spin. The coe�cient C
(a)
ES2 is a

property of the object, which the PI will calculate for the configurations of interest.4 Note that the
intuition is that the spin generates a quadrupole moment: Q ⇠ CES2S

2
/Mc

2, is not accurate since
the intrinsic spin still results in spherically symmetric objects (at leading order in the Newtonian
Limit).

The changes in the dynamics of a binary configuration, and emitted gravitational waves can
be estimated using the above e↵ective potential. Using these estimates as a guide, the PI and
collaborators will generate accurate templates of the gravitational waves from binary mergers using
GRChombo. These template would depend on the internal structure of the objects as well as the
spin of each configurations, and could be a valuable asset in the search for exotic compact objects.
They provide a direct probe of the underlying spin of the fields.

4Note that for a Kerr black-hole, C(a)
ES2 = 1, while it is larger (� 4 � 8) for spinning neutron stars, and is related

to the quadrupole distortion of the objects (and hence to the Love numbers).
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Figure 3. Left: Impact of macroscopic spin on the e↵ective gravitational potential for two orbiting bodies,
and hence gravitational wave emission before & during merger. Right: Full numerical relativity evolution
of circularly polarized (maximal spin) and linearly polarized (zero spin) solitons as they evolve from non-
relativistic initial conditions for 3 initial compactness per pair: C ⇡ 0.04, 0.06, 0.1 show in black [where we
expect relativistic corrections & 10%]. The maximal spin solitons S ⇡ ~Msol/m (orange) do not collapse
to a BH at the largest initial compactness considered, whereas the linearly polarized ones (blue) do. Spin
provides a barrier against collapse in this regime (preliminary). Middle: Hamiltonian constraint for the initial
configurations, showing convergence with increasing resolution and order of numerical algorithms.

Proposed Tasks & Expected Outputs.

(a) Spin & Maximal Compactness: Without relativistic corrections, all configurations with the
same total particle number have the same energy, independent of the spin: 0  |S|  ~Msol/m

[9]. However, with relativistic corrections, it is expected that this degeneracy is broken. The
spherical symmetry is also expected to be weakly broken [31]. Using GRChombo[81], the PI and
collaborators will determine which solutions are preferred in full general relativity, starting with
di↵erent Newtonian configurations (with arbitrary polarization). This task is challenging, however,
preliminary work guided by the limiting Newtonian solutions shows strong promise in terms of
results as well as technical aspects such as constraint preservation during the evolution (see middle
panel of Fig. 3). Each run takes ⇠ 104 CPU hrs.

Another output of this calculation will be determining the maximum compactness possible for
solitons with macroscopic spin, beyond which they collapse to BHs. For similar analysis of scalar
solitons, see [87, 88]. Preliminary investigations reveal that the compactness allowed is higher
for solitons with intrinsic spin, compared to those without. Hedgehog configurations which also
have zero spin, and are not extremally polarized (not shown here), collapse at an even smaller
compactness. Moreover, as compactness increases the M vs. R relationship di↵ers between solitons
with macroscopic spin and those without. See right panel of Fig. 3 for preliminary results, where
points represent time averages. The maximum compactness before collapse to BH determines
the amplitude of gravitational waves that can be generated from such objects in the final merger
phase. If an e�cient production mechanism exists, the above results also could potentially tell us a
relationship between spin and mass of the formed black holes from this process [89].

(b) Spin & Gravitational Waves: Consider two solitons of mass M1 and M2 separated by
a distance r, individual radii R1 and R2, and maximal, macroscopic intrinsic spin S1 and S2

respectively (see Fig. 3). The e↵ective potential governing their orbital dynamics [90, 91] is also
shown in the top left of Fig. 3. The third term on the first line is the spin-orbit interaction, and
the 2nd line is the spin-spin interaction, both of which are absent in configurations without spin.
Both a↵ect the orbital dynamics and emission of gravitational waves. The evolution of the phase
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FIG. 1. A visual summary of some of the main results of our paper.

novel class of extremally polarized solitons with spin
Stot/~ = �M/m which can be macroscopically large for
M � m. Here, m is the mass of the field, M is the
mass of the soliton and � is the spin multiplicity. These
coherent solitons (along with fractionally polarized
ones mentioned earlier) might open up new avenues for
observationally probing higher-spin fields.

We find that even within Newtonian gravity it might
be possible to distinguish interacting solitons with dif-
ferent polarizations. Going beyond Newtonian gravity,
which we do not pursue here, might remove degeneracies
between di↵erent polarizations of the higher-spin fields
even further. We also discuss possibilities of probing
this higher-spin dark matter via non-gravitational
interactions, taking advantage of the polarization state
of the solitons.

The paper is organized as follows. In section II we
discuss our model for the case of dark scalar, vector,
and tensor massive fields, leaving additional details in
Appendix A. In section III we provide the e↵ective non-
relativistic action (which is the Schrödinger-Poisson sys-
tem) for these dark integer spin fields, and discuss the
various symmetries of the action. In section IV we dis-
cuss the gravitationally bound solitons. In section V we
discuss their distinguishability, primarily within Newto-
nian gravity, and also mention other non-gravitational
couplings that can probe the spin nature of the fields. In
section VI we summarize and also highlight some future
directions worth investigating.

II. MODELS

Our matter Lagrangian consists of the usual Standard
Model (SM) sector, along with some dark sector that
includes additional massive spin-0, spin-1, or even spin-2
fields. We take these fields to be real valued.

Explicitly, our general action has the form

S = SEH + Sdark + Svis , (1)

where SEH is the gravity sector, Sdark is some dark
sector (incluing dark integer spin fields), and Svis is
the visible sector (comprising of the SM). Our focus
is only on the gravity + dark sector in this paper.
We consider perturbations of di↵erent fields around
some background metric ḡµ� which leads to the usual
massless spin-2 fluctuations: hµ� (the graviton), along
with other perturbations in di↵erent fields. We will
focus on a given spin-s field + gravity, instead of
considering massive spin-0, 1 and 2 together, although
our formalism can accomodate the latter scenario as well.

For most part, we are interested in sub-horizon
physics where length scales associated with config-
urations of these dark fields are much smaller than
the Hubble horizon. As a result, we ignore Hub-
ble expansion, and take the background metric to be2

ḡµ� = �µ� = diag(1, �1, �1, �1). We also take ~ = c = 1.

In the next three subsections, we provide the general
action up-to quadratic order in the fields of interest, along
with leading order gravitational interactions. For the
non-relativistic limit that we are interested in, the lead-
ing order actions provided here are su�cient. The full
nonlinear actions are discussed in the Appendix.

A. Spin-0

The quadratic (free) action for the spin-0 field �, and
metric fluctuations hµ� , along with their leading interac-

2 We use ḡµ� = diag(1, �a2(t), �a2(t), �a2(t)) for an expanding
universe when needed. Here, a(t) is the scale factor normalized
to unity today.
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FIG. 1. A visual summary of some of the main results of our paper.

novel class of extremally polarized solitons with spin
Stot/~ = �M/m which can be macroscopically large for
M � m. Here, m is the mass of the field, M is the
mass of the soliton and � is the spin multiplicity. These
coherent solitons (along with fractionally polarized
ones mentioned earlier) might open up new avenues for
observationally probing higher-spin fields.

We find that even within Newtonian gravity it might
be possible to distinguish interacting solitons with dif-
ferent polarizations. Going beyond Newtonian gravity,
which we do not pursue here, might remove degeneracies
between di↵erent polarizations of the higher-spin fields
even further. We also discuss possibilities of probing
this higher-spin dark matter via non-gravitational
interactions, taking advantage of the polarization state
of the solitons.

The paper is organized as follows. In section II we
discuss our model for the case of dark scalar, vector,
and tensor massive fields, leaving additional details in
Appendix A. In section III we provide the e↵ective non-
relativistic action (which is the Schrödinger-Poisson sys-
tem) for these dark integer spin fields, and discuss the
various symmetries of the action. In section IV we dis-
cuss the gravitationally bound solitons. In section V we
discuss their distinguishability, primarily within Newto-
nian gravity, and also mention other non-gravitational
couplings that can probe the spin nature of the fields. In
section VI we summarize and also highlight some future
directions worth investigating.

II. MODELS

Our matter Lagrangian consists of the usual Standard
Model (SM) sector, along with some dark sector that
includes additional massive spin-0, spin-1, or even spin-2
fields. We take these fields to be real valued.

Explicitly, our general action has the form

S = SEH + Sdark + Svis , (1)

where SEH is the gravity sector, Sdark is some dark
sector (incluing dark integer spin fields), and Svis is
the visible sector (comprising of the SM). Our focus
is only on the gravity + dark sector in this paper.
We consider perturbations of di↵erent fields around
some background metric ḡµ� which leads to the usual
massless spin-2 fluctuations: hµ� (the graviton), along
with other perturbations in di↵erent fields. We will
focus on a given spin-s field + gravity, instead of
considering massive spin-0, 1 and 2 together, although
our formalism can accomodate the latter scenario as well.

For most part, we are interested in sub-horizon
physics where length scales associated with config-
urations of these dark fields are much smaller than
the Hubble horizon. As a result, we ignore Hub-
ble expansion, and take the background metric to be2

ḡµ� = �µ� = diag(1, �1, �1, �1). We also take ~ = c = 1.

In the next three subsections, we provide the general
action up-to quadratic order in the fields of interest, along
with leading order gravitational interactions. For the
non-relativistic limit that we are interested in, the lead-
ing order actions provided here are su�cient. The full
nonlinear actions are discussed in the Appendix.

A. Spin-0

The quadratic (free) action for the spin-0 field �, and
metric fluctuations hµ� , along with their leading interac-

2 We use ḡµ� = diag(1, �a2(t), �a2(t), �a2(t)) for an expanding
universe when needed. Here, a(t) is the scale factor normalized
to unity today.

Nonrelativistic ICscoll
aps

e to
 BH

increasing compactness

(for example phase of gravitational waves in the weak field limit. Let us assume that we have two
solitons of mass M1 and M2 whose separated by a distance r which is much larger than their radii
R1 and R2. The spin of the solitons are S1 and S2 respectively. The e↵ective potential governing
their dynamics can be written as [37, 38]

V = �
GM1M2

r

�
1 + O(v2

/c
2) �

2

rc
[r̂ ⇥ (v1 � v2)] ·

2�

a=1

Sa

Ma

+
1

r2c2

�
S1

M1
·

S2

M2
� 3

�
S1

M1
· r̂

� �
S2

M2
· r̂

�
+

2�

a=1

C
(a)
ES2

2M1M2

�
S

2
a � 3(Sa · r̂)2

�
�

+ . . .

� (0.1)

The third term on the first line is the spin-orbit interaction, and the 2nd line is the spin-spin

interaction, both of which are absent in configurations without spin. The coe�cient C
(a)
ES2 is a

property of the object, which the PI will calculate for the configurations of interest.4 Note that the
intuition is that the spin generates a quadrupole moment: Q ⇠ CES2S

2
/Mc

2, is not accurate since
the intrinsic spin still results in spherically symmetric objects (at leading order in the Newtonian
Limit).

The changes in the dynamics of a binary configuration, and emitted gravitational waves can
be estimated using the above e↵ective potential. Using these estimates as a guide, the PI and
collaborators will generate accurate templates of the gravitational waves from binary mergers using
GRChombo. These template would depend on the internal structure of the objects as well as the
spin of each configurations, and could be a valuable asset in the search for exotic compact objects.
They provide a direct probe of the underlying spin of the fields.

4Note that for a Kerr black-hole, C(a)
ES2 = 1, while it is larger (� 4 � 8) for spinning neutron stars, and is related

to the quadrupole distortion of the objects (and hence to the Love numbers).
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Figure 3. Left: Impact of macroscopic spin on the e↵ective gravitational potential for two orbiting bodies,
and hence gravitational wave emission before & during merger. Right: Full numerical relativity evolution
of circularly polarized (maximal spin) and linearly polarized (zero spin) solitons as they evolve from non-
relativistic initial conditions for 3 initial compactness per pair: C ⇡ 0.04, 0.06, 0.1 show in black [where we
expect relativistic corrections & 10%]. The maximal spin solitons S ⇡ ~Msol/m (orange) do not collapse
to a BH at the largest initial compactness considered, whereas the linearly polarized ones (blue) do. Spin
provides a barrier against collapse in this regime (preliminary). Middle: Hamiltonian constraint for the initial
configurations, showing convergence with increasing resolution and order of numerical algorithms.

Proposed Tasks & Expected Outputs.

(a) Spin & Maximal Compactness: Without relativistic corrections, all configurations with the
same total particle number have the same energy, independent of the spin: 0  |S|  ~Msol/m

[9]. However, with relativistic corrections, it is expected that this degeneracy is broken. The
spherical symmetry is also expected to be weakly broken [31]. Using GRChombo[81], the PI and
collaborators will determine which solutions are preferred in full general relativity, starting with
di↵erent Newtonian configurations (with arbitrary polarization). This task is challenging, however,
preliminary work guided by the limiting Newtonian solutions shows strong promise in terms of
results as well as technical aspects such as constraint preservation during the evolution (see middle
panel of Fig. 3). Each run takes ⇠ 104 CPU hrs.

Another output of this calculation will be determining the maximum compactness possible for
solitons with macroscopic spin, beyond which they collapse to BHs. For similar analysis of scalar
solitons, see [87, 88]. Preliminary investigations reveal that the compactness allowed is higher
for solitons with intrinsic spin, compared to those without. Hedgehog configurations which also
have zero spin, and are not extremally polarized (not shown here), collapse at an even smaller
compactness. Moreover, as compactness increases the M vs. R relationship di↵ers between solitons
with macroscopic spin and those without. See right panel of Fig. 3 for preliminary results, where
points represent time averages. The maximum compactness before collapse to BH determines
the amplitude of gravitational waves that can be generated from such objects in the final merger
phase. If an e�cient production mechanism exists, the above results also could potentially tell us a
relationship between spin and mass of the formed black holes from this process [89].

(b) Spin & Gravitational Waves: Consider two solitons of mass M1 and M2 separated by
a distance r, individual radii R1 and R2, and maximal, macroscopic intrinsic spin S1 and S2

respectively (see Fig. 3). The e↵ective potential governing their orbital dynamics [90, 91] is also
shown in the top left of Fig. 3. The third term on the first line is the spin-orbit interaction, and
the 2nd line is the spin-spin interaction, both of which are absent in configurations without spin.
Both a↵ect the orbital dynamics and emission of gravitational waves. The evolution of the phase

8



spin of soliton & polarization of photons
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x
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z
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to setting rXµ = 0.1 The temporal component of the dark photon field, X0(x), is non-dynamical in
the theories that we study. Its equation of motion is an algebraic constraint equation, which has the
solution X0 =

�
r

2
�m2

��1�r·Ẋ), neglecting gravitational and electromagnetic interactions. Working
to leading order in the gradient expansion, we set X0(x) = 0.

2.2 Interactions with electromagnetism

Since we seek to study electromagnetic radiation from vector solitons, it is necessary to introduce a
coupling between the dark photon field Xµ(x) and the electromagnetic field Aµ(x). Working in the
context of e↵ective field theory (EFT), we consider all operators that are consistent with electromagnetic
gauge invariance, and we organize the operators based on their mass dimension. The only such operator
with mass dimension-4 is the so-called gauge-kinetic mixing [45, 46]

L (4)
int � Fµ⌫X↵� , (2.2)

where Fµ⌫ = @µA⌫ � @⌫Aµ is the usual electromagnetic field strength tensor and X↵� = @↵X� � @�X↵.
The Lorentz indices can be contracted using any combination of the diagonal inverse Minkowski metric
⌘µ⌫ and the totally-antisymmetric Levi-Civita symbol ✏µ⌫⇢�; we normalize �⌘00 = ⌘11 = ⌘22 = ⌘33 =
✏0123 = 1. The gauge kinetic mixing can be exchanged for a coupling to charged matter by performing a
field redefinition. In this work we consider systems in the absence of free charges, and the gauge-kinetic
mixing operators do not lead to electromagnetic radiation from a dark photon field. At mass dimension-
5 there are no operators coupling the vector soliton to electromagnetism, since such operators would
carry an odd number of Lorentz indices, which cannot be fully contracted using only the two-index
metric and the four-index Levi-Civita symbol. At dimension-6 the following operators are available:

L (6)
int � Fµ⌫F⇢�X↵X� , Fµ⌫F⇢�@↵X� , Fµ⌫X⇢X�@↵X� , Fµ⌫@⇢X�@↵X� , Fµ⌫@⇢@�@↵X� . (2.3)

The third, fourth, and fifth operators involve only one factor of the electromagnetic field Aµ(x). In the
presence of a background dark photon field Xµ(x), these operators provide a source for Aµ(x). The
radiation arising from such source terms is highly suppressed for long-wavelength background fields if
plasma e↵ects can be neglected [52], and we do not discuss these operators further here.

The dimension-6 operators that we study are summarized as follows:2

O1 = �
1
2Fµ⌫F̃

µ⌫(X · X) ⇡ 2(E · B)(X · X) (2.4a)

O2 = �
1
2Fµ⌫F

µ⌫(X · X) ⇡ (E · E)(X · X) � (B · B)(X · X) (2.4b)

O3 = Fµ⇢F
⌫⇢XµX⌫ ⇡ (B · B)(X · X) � (E · X)2 � (B · X)2 (2.4c)

O4 = F̃µ⇢F̃
⌫⇢XµX⌫ ⇡ (E · E)(X · X) � (E · X)2 � (B · X)2 (2.4d)

O5 = Fµ⇢F
⌫⇢@µX⌫ ⇡ (E ⇥ B) · Ẋ . (2.4e)

To move from the Lorentz-covariant expressions to the 3-vector expressions, we have dropped terms
containing X0 and spatial gradients rXµ, which is an excellent approximation for non-relativistic
modes of the dark photon field.

1
We work in the zero spatial gradient approximation locally, but indirectly take spatial gradients into account by

including the finite size e↵ects of dark photon configurations in the phenomenology.
2
Some of these operators are related to one another using integration by parts (dropping total derivatives) and equa-

tions of motion. For the non-relativistic dark photon field, a few other operators reduce to one of these; for instance

Fµ⇢F̃
⌫⇢XµX⌫ ⇡ �O1.
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3.0

<latexit sha1_base64="MzW+ItqCXwrss5RoM5rN1dCmmGY=">AAACEHicbVC7TsNAEDzzDOEVoKQ5ESGoIhtFQBlBQxkkAkiJFa0va3Lizrbu1ojIyifQ8Cs0FCBES0nH32CHFJAw1WhmVzs7QaKkJdf9cmZm5+YXFktL5eWV1bX1ysbmpY1TI7AlYhWb6wAsKhlhiyQpvE4Mgg4UXgW3p4V/dYfGyji6oEGCvoabSIZSAOVSt7LXCeOIQtBSDTKlzbDcoT4S8HaH8J4yA72hX+blbqXq1twR+DTxxqTKxmh2K5+dXixSjREJBda2PTchPwNDUijMz6QWExC3cIPtnEag0frZ6KEh382VHg9jw4t0fKT+3shAWzvQQT6pgfp20ivE/7x2SuGxn8koSQkj8XMoTBWnmBft8J40KEgNcgLCyDwrF30wICjvsCjBm3x5mlwe1LzDWv28Xm2cjOsosW22w/aZx45Yg52xJmsxwR7YE3thr86j8+y8Oe8/ozPOeGeL/YHz8Q2bb5zq</latexit> ✓[
ra

d]

<latexit sha1_base64="91qv1qdX0/Xla/Hn1a2EXSGj0z0="></latexit>

O3 andO4, linear pol.
<latexit sha1_base64="yT0wN8/L64ewXLU1DeSOrbOyN7s="></latexit>

O3 andO4, circular pol.

<latexit sha1_base64="ZirONJMStFJBCBPYUpUyy0ozbDw=">AAACD3icbVC7TsMwFHXKq4RXgJHFogK1AyWpKmCsYGEsEn1ITVo5rtNatZPIdpCiKH/Awq+wMIAQKysbf0PSdoCWMx2dc6/uuccNGZXKNL+1wsrq2vpGcVPf2t7Z3TP2D9oyiAQmLRywQHRdJAmjPmkpqhjphoIg7jLScSc3ud95IELSwL9XcUgcjkY+9ShGKpMGxqntBb7yEKcsTpgSqV6enPHKeXnUr9kuEkk37dd4ZWCUzKo5BVwm1pyUwBzNgfFlDwMcceIrzJCUPcsMlZMgoShmJNXtSJIQ4QkakV5GfcSJdJLpPyk8yZQh9AIB83Bwqv7eSBCXMuZuNsmRGstFLxf/83qR8q6chPphpIiPZ4e8iEEVwLwcOKSCYMXijCAsaJYV4jESCKusQj0rwVp8eZm0a1Xrolq/q5ca1/M6iuAIHIMysMAlaIBb0AQtgMEjeAav4E170l60d+1jNlrQ5juH4A+0zx+mE5vE</latexit>

(k �m)/(g2X̄2m)
<latexit sha1_base64="ZirONJMStFJBCBPYUpUyy0ozbDw=">AAACD3icbVC7TsMwFHXKq4RXgJHFogK1AyWpKmCsYGEsEn1ITVo5rtNatZPIdpCiKH/Awq+wMIAQKysbf0PSdoCWMx2dc6/uuccNGZXKNL+1wsrq2vpGcVPf2t7Z3TP2D9oyiAQmLRywQHRdJAmjPmkpqhjphoIg7jLScSc3ud95IELSwL9XcUgcjkY+9ShGKpMGxqntBb7yEKcsTpgSqV6enPHKeXnUr9kuEkk37dd4ZWCUzKo5BVwm1pyUwBzNgfFlDwMcceIrzJCUPcsMlZMgoShmJNXtSJIQ4QkakV5GfcSJdJLpPyk8yZQh9AIB83Bwqv7eSBCXMuZuNsmRGstFLxf/83qR8q6chPphpIiPZ4e8iEEVwLwcOKSCYMXijCAsaJYV4jESCKusQj0rwVp8eZm0a1Xrolq/q5ca1/M6iuAIHIMysMAlaIBb0AQtgMEjeAav4E170l60d+1jNlrQ5juH4A+0zx+mE5vE</latexit>

(k �m)/(g2X̄2m)
<latexit sha1_base64="ZirONJMStFJBCBPYUpUyy0ozbDw=">AAACD3icbVC7TsMwFHXKq4RXgJHFogK1AyWpKmCsYGEsEn1ITVo5rtNatZPIdpCiKH/Awq+wMIAQKysbf0PSdoCWMx2dc6/uuccNGZXKNL+1wsrq2vpGcVPf2t7Z3TP2D9oyiAQmLRywQHRdJAmjPmkpqhjphoIg7jLScSc3ud95IELSwL9XcUgcjkY+9ShGKpMGxqntBb7yEKcsTpgSqV6enPHKeXnUr9kuEkk37dd4ZWCUzKo5BVwm1pyUwBzNgfFlDwMcceIrzJCUPcsMlZMgoShmJNXtSJIQ4QkakV5GfcSJdJLpPyk8yZQh9AIB83Bwqv7eSBCXMuZuNsmRGstFLxf/83qR8q6chPphpIiPZ4e8iEEVwLwcOKSCYMXijCAsaJYV4jESCKusQj0rwVp8eZm0a1Xrolq/q5ca1/M6iuAIHIMysMAlaIBb0AQtgMEjeAav4E170l60d+1jNlrQ5juH4A+0zx+mE5vE</latexit>

(k �m)/(g2X̄2m)

<latexit sha1_base64="yNhzRblv8eLR1lSLUJnebNJ8kZs=">AAAB/nicbVDLSsNAFJ3UV42vqLhyM1gEN4ZEirosunFZwT6gDWUynbRD5xFmJkIIBX/FjQtF3Pod7vwbkzYLbT2rwzn3cs89YcyoNp73bVVWVtfWN6qb9tb2zu6es3/Q1jJRmLSwZFJ1Q6QJo4K0DDWMdGNFEA8Z6YST28LvPBKlqRQPJo1JwNFI0IhiZHJp4Bz1IylMhDhlaca4mtrnvusNnJrnejPAZeKXpAZKNAfOV38occKJMJghrXu+F5sgQ8pQzMjU7ieaxAhP0Ij0cioQJzrIZvGn8DRXhjCSChZZ4Ez9vZEhrnXKw3ySIzPWi14h/uf1EhNdBxkVcWKIwPNDUcKgkbDoAg6pItiwNCcIK5pnhXiMFMImb8zOS/AXX14m7QvXv3Tr9/Va46asowqOwQk4Az64Ag1wB5qgBTDIwDN4BW/Wk/VivVsf89GKVe4cgj+wPn8AcJ6VJA==</latexit>�1.0
<latexit sha1_base64="g5nAO3F7HEiJ+67L0M6RZPZJ2HY=">AAAB/nicbVDLSsNAFJ34rPEVFVduBovgxpBIfSyLblxWsA9oQ5lMJ+3QmUmYmQghFPwVNy4Ucet3uPNvnLRZaOtZHc65l3vuCRNGlfa8b2tpeWV1bb2yYW9ube/sOnv7LRWnEpMmjlksOyFShFFBmppqRjqJJIiHjLTD8W3htx+JVDQWDzpLSMDRUNCIYqSN1HcOe1EsdIQ4ZVnOuJzYZ5570XeqnutNAReJX5IqKNHoO1+9QYxTToTGDCnV9b1EBzmSmmJGJnYvVSRBeIyGpGuoQJyoIJ/Gn8ATowxgFEtYZIFT9fdGjrhSGQ/NJEd6pOa9QvzP66Y6ug5yKpJUE4Fnh6KUQR3Dogs4oJJgzTJDEJbUZIV4hCTC2jRmmxL8+ZcXSevc9S/d2n2tWr8p66iAI3AMToEPrkAd3IEGaAIMcvAMXsGb9WS9WO/Wx2x0ySp3DsAfWJ8/dqyVKA==</latexit>�0.5

<latexit sha1_base64="Wn42y88+IVibZvvyQaolEYrXVlw=">AAAB/nicbVDLSsNAFJ34rPEVFVduBovgqiRS1GXRjcsK9gFtKJPppB06jzAzEUIo+CtuXCji1u9w5984abPQ1rOZwzn3cs+cKGFUG9//dlZW19Y3Nitb7vbO7t6+d3DY1jJVmLSwZFJ1I6QJo4K0DDWMdBNFEI8Y6UST28LvPBKlqRQPJktIyNFI0JhiZKw08I77sRQmRpyyLGdcTV2/5rsDr2qfGeAyCUpSBSWaA++rP5Q45UQYzJDWvcBPTJgjZShmZOr2U00ShCdoRHqWCsSJDvNZ/Ck8s8oQxlLBIgucqb83csS1znhkJzkyY73oFeJ/Xi818XWYU5Gkhgg8PxSnDBoJiy7gkCqCDcssQVhRmxXiMVIIG9tYUUKw+OVl0r6oBZe1+n292rgp66iAE3AKzkEArkAD3IEmaAEMcvAMXsGb8+S8OO/Ox3x0xSl3jsAfOJ8/OhOVAA==</latexit>

0.0
<latexit sha1_base64="zvEyzzpbgQHYoQDFsE2m5O4ddA4=">AAAB/nicbVDLSsNAFJ3UV42vqLhyM1gEVyGR+lgW3bisYB/QhjKZTtqh8wgzEyGEgr/ixoUibv0Od/6NSZuFtp7V4Zx7ueeeMGZUG8/7tiorq2vrG9VNe2t7Z3fP2T9oa5koTFpYMqm6IdKEUUFahhpGurEiiIeMdMLJbeF3HonSVIoHk8Yk4GgkaEQxMrk0cI76kRQmQpyyNGNcTW3PvbAHTs1zvRngMvFLUgMlmgPnqz+UOOFEGMyQ1j3fi02QIWUoZmRq9xNNYoQnaER6ORWIEx1ks/hTeJorQxhJBYsscKb+3sgQ1zrlYT7JkRnrRa8Q//N6iYmug4yKODFE4PmhKGHQSFh0AYdUEWxYmhOEFc2zQjxGCmGTN1aU4C++vEza565/6dbv67XGTVlHFRyDE3AGfHAFGuAONEELYJCBZ/AK3qwn68V6tz7moxWr3DkEf2B9/gBBrJUF</latexit>

0.5
<latexit sha1_base64="4WlytiUafRxdq8pb6UEFBhAKKg4=">AAAB/nicbVDLSsNAFL3xWeMrKq7cDBbBVUmkqMuiG5cV7APaUCbTSTt0JhNmJkIIBX/FjQtF3Pod7vwbkzYLbT2rwzn3cs89QcyZNq77ba2srq1vbFa27O2d3b195+CwrWWiCG0RyaXqBlhTziLaMsxw2o0VxSLgtBNMbgu/80iVZjJ6MGlMfYFHEQsZwSaXBs5xP5SRCbFgPM24UFPbq7n2wKm6NXcGtEy8klShRHPgfPWHkiSCRoZwrHXPc2PjZ1gZRjid2v1E0xiTCR7RXk4jLKj2s1n8KTrLlSEKpUJFFjRTf29kWGidiiCfFNiM9aJXiP95vcSE137GojgxNCLzQ2HCkZGo6AINmaLE8DQnmCiWZ0VkjBUmJm+sKMFbfHmZtC9q3mWtfl+vNm7KOipwAqdwDh5cQQPuoAktIJDBM7zCm/VkvVjv1sd8dMUqd47gD6zPHzualQE=</latexit>

1.0
<latexit sha1_base64="yNhzRblv8eLR1lSLUJnebNJ8kZs=">AAAB/nicbVDLSsNAFJ3UV42vqLhyM1gEN4ZEirosunFZwT6gDWUynbRD5xFmJkIIBX/FjQtF3Pod7vwbkzYLbT2rwzn3cs89YcyoNp73bVVWVtfWN6qb9tb2zu6es3/Q1jJRmLSwZFJ1Q6QJo4K0DDWMdGNFEA8Z6YST28LvPBKlqRQPJo1JwNFI0IhiZHJp4Bz1IylMhDhlaca4mtrnvusNnJrnejPAZeKXpAZKNAfOV38occKJMJghrXu+F5sgQ8pQzMjU7ieaxAhP0Ij0cioQJzrIZvGn8DRXhjCSChZZ4Ez9vZEhrnXKw3ySIzPWi14h/uf1EhNdBxkVcWKIwPNDUcKgkbDoAg6pItiwNCcIK5pnhXiMFMImb8zOS/AXX14m7QvXv3Tr9/Va46asowqOwQk4Az64Ag1wB5qgBTDIwDN4BW/Wk/VivVsf89GKVe4cgj+wPn8AcJ6VJA==</latexit>�1.0

<latexit sha1_base64="g5nAO3F7HEiJ+67L0M6RZPZJ2HY=">AAAB/nicbVDLSsNAFJ34rPEVFVduBovgxpBIfSyLblxWsA9oQ5lMJ+3QmUmYmQghFPwVNy4Ucet3uPNvnLRZaOtZHc65l3vuCRNGlfa8b2tpeWV1bb2yYW9ube/sOnv7LRWnEpMmjlksOyFShFFBmppqRjqJJIiHjLTD8W3htx+JVDQWDzpLSMDRUNCIYqSN1HcOe1EsdIQ4ZVnOuJzYZ5570XeqnutNAReJX5IqKNHoO1+9QYxTToTGDCnV9b1EBzmSmmJGJnYvVSRBeIyGpGuoQJyoIJ/Gn8ATowxgFEtYZIFT9fdGjrhSGQ/NJEd6pOa9QvzP66Y6ug5yKpJUE4Fnh6KUQR3Dogs4oJJgzTJDEJbUZIV4hCTC2jRmmxL8+ZcXSevc9S/d2n2tWr8p66iAI3AMToEPrkAd3IEGaAIMcvAMXsGb9WS9WO/Wx2x0ySp3DsAfWJ8/dqyVKA==</latexit>�0.5
<latexit sha1_base64="Wn42y88+IVibZvvyQaolEYrXVlw=">AAAB/nicbVDLSsNAFJ34rPEVFVduBovgqiRS1GXRjcsK9gFtKJPppB06jzAzEUIo+CtuXCji1u9w5984abPQ1rOZwzn3cs+cKGFUG9//dlZW19Y3Nitb7vbO7t6+d3DY1jJVmLSwZFJ1I6QJo4K0DDWMdBNFEI8Y6UST28LvPBKlqRQPJktIyNFI0JhiZKw08I77sRQmRpyyLGdcTV2/5rsDr2qfGeAyCUpSBSWaA++rP5Q45UQYzJDWvcBPTJgjZShmZOr2U00ShCdoRHqWCsSJDvNZ/Ck8s8oQxlLBIgucqb83csS1znhkJzkyY73oFeJ/Xi818XWYU5Gkhgg8PxSnDBoJiy7gkCqCDcssQVhRmxXiMVIIG9tYUUKw+OVl0r6oBZe1+n292rgp66iAE3AKzkEArkAD3IEmaAEMcvAMXsGb8+S8OO/Ox3x0xSl3jsAfOJ8/OhOVAA==</latexit>

0.0
<latexit sha1_base64="zvEyzzpbgQHYoQDFsE2m5O4ddA4=">AAAB/nicbVDLSsNAFJ3UV42vqLhyM1gEVyGR+lgW3bisYB/QhjKZTtqh8wgzEyGEgr/ixoUibv0Od/6NSZuFtp7V4Zx7ueeeMGZUG8/7tiorq2vrG9VNe2t7Z3fP2T9oa5koTFpYMqm6IdKEUUFahhpGurEiiIeMdMLJbeF3HonSVIoHk8Yk4GgkaEQxMrk0cI76kRQmQpyyNGNcTW3PvbAHTs1zvRngMvFLUgMlmgPnqz+UOOFEGMyQ1j3fi02QIWUoZmRq9xNNYoQnaER6ORWIEx1ks/hTeJorQxhJBYsscKb+3sgQ1zrlYT7JkRnrRa8Q//N6iYmug4yKODFE4PmhKGHQSFh0AYdUEWxYmhOEFc2zQjxGCmGTN1aU4C++vEza565/6dbv67XGTVlHFRyDE3AGfHAFGuAONEELYJCBZ/AK3qwn68V6tz7moxWr3DkEf2B9/gBBrJUF</latexit>

0.5
<latexit sha1_base64="4WlytiUafRxdq8pb6UEFBhAKKg4=">AAAB/nicbVDLSsNAFL3xWeMrKq7cDBbBVUmkqMuiG5cV7APaUCbTSTt0JhNmJkIIBX/FjQtF3Pod7vwbkzYLbT2rwzn3cs89QcyZNq77ba2srq1vbFa27O2d3b195+CwrWWiCG0RyaXqBlhTziLaMsxw2o0VxSLgtBNMbgu/80iVZjJ6MGlMfYFHEQsZwSaXBs5xP5SRCbFgPM24UFPbq7n2wKm6NXcGtEy8klShRHPgfPWHkiSCRoZwrHXPc2PjZ1gZRjid2v1E0xiTCR7RXk4jLKj2s1n8KTrLlSEKpUJFFjRTf29kWGidiiCfFNiM9aJXiP95vcSE137GojgxNCLzQ2HCkZGo6AINmaLE8DQnmCiWZ0VkjBUmJm+sKMFbfHmZtC9q3mWtfl+vNm7KOipwAqdwDh5cQQPuoAktIJDBM7zCm/VkvVjv1sd8dMUqd47gD6zPHzualQE=</latexit>

1.0

<latexit sha1_base64="XAmQGsA2NyUVv0ATexGPoyeXWnA="></latexit>

O1 andO2, linear pol.

<latexit sha1_base64="bDbg3gm18jEXfL0HlXXQ9Dd6gMc="></latexit> µk,max

g2X̄2m

<latexit sha1_base64="/YLmYNuRvWr3AzO6OxfVGIJe+/U=">AAAB+3icbVC7TsMwFHXKq4RXKCOLRYXEVCWoAsYKFsYi0YfURpXjOq1V24lsBzWK8issDCDEyo+w8Tc4bQZoOdPROffqnnuCmFGlXffbqmxsbm3vVHftvf2DwyPnuNZVUSIx6eCIRbIfIEUYFaSjqWakH0uCeMBIL5jdFX7viUhFI/Go05j4HE0EDSlG2kgjpzYMI6FDxClLM6Zlbs9HTt1tuAvAdeKVpA5KtEfO13Ac4YQToTFDSg08N9Z+hqSmmJHcHiaKxAjP0IQMDBWIE+Vni+w5PDfKGIaRhEUQuFB/b2SIK5XywExypKdq1SvE/7xBosMbP6MiTjQReHkoTBjUESyKgGMqCdYsNQRhSU1WiKdIIqxNXbYpwVt9eZ10LxveVaP50Ky3bss6quAUnIEL4IFr0AL3oA06AIM5eAav4M3KrRfr3fpYjlascucE/IH1+QOPBZTJ</latexit>x
<latexit sha1_base64="wczNExxE7r0OXBQ0oOiQcS0WJAg=">AAAB+3icbVC7TsMwFHXKq4RXKCOLRYXEVCUIAWMFC2OR6ENqo8pxndaqH5HtIKKov8LCAEKs/Agbf4PTZoCWMx2dc6/uuSdKGNXG97+dytr6xuZWddvd2d3bP/AOax0tU4VJG0smVS9CmjAqSNtQw0gvUQTxiJFuNL0t/O4jUZpK8WCyhIQcjQWNKUbGSkOvNoilMDHilGU5M2rmZkOv7jf8OeAqCUpSByVaQ+9rMJI45UQYzJDW/cBPTJgjZShmZOYOUk0ShKdoTPqWCsSJDvN59hk8tcoIxlLBIgicq783csS1znhkJzkyE73sFeJ/Xj818XWYU5Gkhgi8OBSnDBoJiyLgiCqCDcssQVhRmxXiCVIIG1uXa0sIll9eJZ3zRnDZuLi/qDdvyjqq4BicgDMQgCvQBHegBdoAgyfwDF7BmzNzXpx352MxWnHKnSPwB87nD5CJlMo=</latexit>y

<latexit sha1_base64="nddzV7z7xTwI4rZkRg7szlB1a3A=">AAAB+3icbVC7TsMwFHXKq4RXKCOLRYXEVCWoAsYKFsYi0YfURpXjOq1V24lsBxGi/AoLAwix8iNs/A1OmwFaznR0zr26554gZlRp1/22KmvrG5tb1W17Z3dv/8A5rHVVlEhMOjhikewHSBFGBeloqhnpx5IgHjDSC2Y3hd97IFLRSNzrNCY+RxNBQ4qRNtLIqQ3DSOgQccrSjGmZ208jp+423DngKvFKUgcl2iPnaziOcMKJ0JghpQaeG2s/Q1JTzEhuDxNFYoRnaEIGhgrEifKzefYcnhplDMNIwiIInKu/NzLElUp5YCY50lO17BXif94g0eGVn1ERJ5oIvDgUJgzqCBZFwDGVBGuWGoKwpCYrxFMkEdamLtuU4C2/vEq65w3votG8a9Zb12UdVXAMTsAZ8MAlaIFb0AYdgMEjeAav4M3KrRfr3fpYjFascucI/IH1+QOSDZTL</latexit>z

<latexit sha1_base64="/YLmYNuRvWr3AzO6OxfVGIJe+/U=">AAAB+3icbVC7TsMwFHXKq4RXKCOLRYXEVCWoAsYKFsYi0YfURpXjOq1V24lsBzWK8issDCDEyo+w8Tc4bQZoOdPROffqnnuCmFGlXffbqmxsbm3vVHftvf2DwyPnuNZVUSIx6eCIRbIfIEUYFaSjqWakH0uCeMBIL5jdFX7viUhFI/Go05j4HE0EDSlG2kgjpzYMI6FDxClLM6Zlbs9HTt1tuAvAdeKVpA5KtEfO13Ac4YQToTFDSg08N9Z+hqSmmJHcHiaKxAjP0IQMDBWIE+Vni+w5PDfKGIaRhEUQuFB/b2SIK5XywExypKdq1SvE/7xBosMbP6MiTjQReHkoTBjUESyKgGMqCdYsNQRhSU1WiKdIIqxNXbYpwVt9eZ10LxveVaP50Ky3bss6quAUnIEL4IFr0AL3oA06AIM5eAav4M3KrRfr3fpYjlascucE/IH1+QOPBZTJ</latexit>x
<latexit sha1_base64="wczNExxE7r0OXBQ0oOiQcS0WJAg=">AAAB+3icbVC7TsMwFHXKq4RXKCOLRYXEVCUIAWMFC2OR6ENqo8pxndaqH5HtIKKov8LCAEKs/Agbf4PTZoCWMx2dc6/uuSdKGNXG97+dytr6xuZWddvd2d3bP/AOax0tU4VJG0smVS9CmjAqSNtQw0gvUQTxiJFuNL0t/O4jUZpK8WCyhIQcjQWNKUbGSkOvNoilMDHilGU5M2rmZkOv7jf8OeAqCUpSByVaQ+9rMJI45UQYzJDW/cBPTJgjZShmZOYOUk0ShKdoTPqWCsSJDvN59hk8tcoIxlLBIgicq783csS1znhkJzkyE73sFeJ/Xj818XWYU5Gkhgi8OBSnDBoJiyLgiCqCDcssQVhRmxXiCVIIG1uXa0sIll9eJZ3zRnDZuLi/qDdvyjqq4BicgDMQgCvQBHegBdoAgyfwDF7BmzNzXpx352MxWnHKnSPwB87nD5CJlMo=</latexit>y

<latexit sha1_base64="nddzV7z7xTwI4rZkRg7szlB1a3A=">AAAB+3icbVC7TsMwFHXKq4RXKCOLRYXEVCWoAsYKFsYi0YfURpXjOq1V24lsBxGi/AoLAwix8iNs/A1OmwFaznR0zr26554gZlRp1/22KmvrG5tb1W17Z3dv/8A5rHVVlEhMOjhikewHSBFGBeloqhnpx5IgHjDSC2Y3hd97IFLRSNzrNCY+RxNBQ4qRNtLIqQ3DSOgQccrSjGmZ208jp+423DngKvFKUgcl2iPnaziOcMKJ0JghpQaeG2s/Q1JTzEhuDxNFYoRnaEIGhgrEifKzefYcnhplDMNIwiIInKu/NzLElUp5YCY50lO17BXif94g0eGVn1ERJ5oIvDgUJgzqCBZFwDGVBGuWGoKwpCYrxFMkEdamLtuU4C2/vEq65w3votG8a9Zb12UdVXAMTsAZ8MAlaIFb0AYdgMEjeAav4M3KrRfr3fpYjFascucI/IH1+QOSDZTL</latexit>z
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O2

Figure 1: Electromagnetic radiation arising from a homogeneous dark photon field coupled to electro-
magnetism though several dimension-6 operators via the phenomenon of parametric resonance. Top:
The maximal Floquet exponent µk,max is shown as a function of the wavenumber k of the electro-
magnetic radiation and the polar angle ✓ such that cos ✓ = k · ẑ/k. The dominant Floquet band is
centered at k ⇡ m and has width O(g2X̄2m), where m is the dark photon mass, X̄ is the field am-
plitude, and g is the coupling to electromagnetism with Lint = g2Oi. The three panels correspond to
di↵erent operators Oi and di↵erent polarizations for the dark photon field. Bottom: These graphics
illustrate the orientation of the radiation’s polarization. The green arrows denote the polarization of
the dark photon field (e.g., vector soliton), while the red and blue arrows denote the polarization of
the emitted radiation (for di↵erent operators). For operators O1 and O2 (bottom-left) the radiation
is emitted isotropically, and has no preferred polarization direction. For operators O3 and O4 with
a linearly-polarized dark photon field (bottom-middle) the radiation is predominatly emitted in the
directions normal to ẑ, whereas for a circularly-polarized dark photon field (bottom-right) the emission
is predominantly aligned with ±ẑ.

Next we discuss operators O3 and O4. The analytic calculations are facilitated by moving to a
circular polarization basis for the outgoing radiation. The top-right panel of figure 1 shows the Floquet
chart for operator O3, and the chart for O4 is indistinguishable. The Floquet exponent is maximized for
✓ = 0 and ⇡, corresponding to radiation in the direction normal to the plane of the dark photon field,
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FIG. 1. A visual summary of some of the main results of our paper.

novel class of extremally polarized solitons with spin
Stot/~ = �M/m which can be macroscopically large for
M � m. Here, m is the mass of the field, M is the
mass of the soliton and � is the spin multiplicity. These
coherent solitons (along with fractionally polarized
ones mentioned earlier) might open up new avenues for
observationally probing higher-spin fields.

We find that even within Newtonian gravity it might
be possible to distinguish interacting solitons with dif-
ferent polarizations. Going beyond Newtonian gravity,
which we do not pursue here, might remove degeneracies
between di↵erent polarizations of the higher-spin fields
even further. We also discuss possibilities of probing
this higher-spin dark matter via non-gravitational
interactions, taking advantage of the polarization state
of the solitons.

The paper is organized as follows. In section II we
discuss our model for the case of dark scalar, vector,
and tensor massive fields, leaving additional details in
Appendix A. In section III we provide the e↵ective non-
relativistic action (which is the Schrödinger-Poisson sys-
tem) for these dark integer spin fields, and discuss the
various symmetries of the action. In section IV we dis-
cuss the gravitationally bound solitons. In section V we
discuss their distinguishability, primarily within Newto-
nian gravity, and also mention other non-gravitational
couplings that can probe the spin nature of the fields. In
section VI we summarize and also highlight some future
directions worth investigating.

II. MODELS

Our matter Lagrangian consists of the usual Standard
Model (SM) sector, along with some dark sector that
includes additional massive spin-0, spin-1, or even spin-2
fields. We take these fields to be real valued.

Explicitly, our general action has the form

S = SEH + Sdark + Svis , (1)

where SEH is the gravity sector, Sdark is some dark
sector (incluing dark integer spin fields), and Svis is
the visible sector (comprising of the SM). Our focus
is only on the gravity + dark sector in this paper.
We consider perturbations of di↵erent fields around
some background metric ḡµ� which leads to the usual
massless spin-2 fluctuations: hµ� (the graviton), along
with other perturbations in di↵erent fields. We will
focus on a given spin-s field + gravity, instead of
considering massive spin-0, 1 and 2 together, although
our formalism can accomodate the latter scenario as well.

For most part, we are interested in sub-horizon
physics where length scales associated with config-
urations of these dark fields are much smaller than
the Hubble horizon. As a result, we ignore Hub-
ble expansion, and take the background metric to be2

ḡµ� = �µ� = diag(1, �1, �1, �1). We also take ~ = c = 1.

In the next three subsections, we provide the general
action up-to quadratic order in the fields of interest, along
with leading order gravitational interactions. For the
non-relativistic limit that we are interested in, the lead-
ing order actions provided here are su�cient. The full
nonlinear actions are discussed in the Appendix.

A. Spin-0

The quadratic (free) action for the spin-0 field �, and
metric fluctuations hµ� , along with their leading interac-

2 We use ḡµ� = diag(1, �a2(t), �a2(t), �a2(t)) for an expanding
universe when needed. Here, a(t) is the scale factor normalized
to unity today.
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novel class of extremally polarized solitons with spin
Stot/~ = �M/m which can be macroscopically large for
M � m. Here, m is the mass of the field, M is the
mass of the soliton and � is the spin multiplicity. These
coherent solitons (along with fractionally polarized
ones mentioned earlier) might open up new avenues for
observationally probing higher-spin fields.

We find that even within Newtonian gravity it might
be possible to distinguish interacting solitons with dif-
ferent polarizations. Going beyond Newtonian gravity,
which we do not pursue here, might remove degeneracies
between di↵erent polarizations of the higher-spin fields
even further. We also discuss possibilities of probing
this higher-spin dark matter via non-gravitational
interactions, taking advantage of the polarization state
of the solitons.

The paper is organized as follows. In section II we
discuss our model for the case of dark scalar, vector,
and tensor massive fields, leaving additional details in
Appendix A. In section III we provide the e↵ective non-
relativistic action (which is the Schrödinger-Poisson sys-
tem) for these dark integer spin fields, and discuss the
various symmetries of the action. In section IV we dis-
cuss the gravitationally bound solitons. In section V we
discuss their distinguishability, primarily within Newto-
nian gravity, and also mention other non-gravitational
couplings that can probe the spin nature of the fields. In
section VI we summarize and also highlight some future
directions worth investigating.

II. MODELS

Our matter Lagrangian consists of the usual Standard
Model (SM) sector, along with some dark sector that
includes additional massive spin-0, spin-1, or even spin-2
fields. We take these fields to be real valued.

Explicitly, our general action has the form

S = SEH + Sdark + Svis , (1)

where SEH is the gravity sector, Sdark is some dark
sector (incluing dark integer spin fields), and Svis is
the visible sector (comprising of the SM). Our focus
is only on the gravity + dark sector in this paper.
We consider perturbations of di↵erent fields around
some background metric ḡµ� which leads to the usual
massless spin-2 fluctuations: hµ� (the graviton), along
with other perturbations in di↵erent fields. We will
focus on a given spin-s field + gravity, instead of
considering massive spin-0, 1 and 2 together, although
our formalism can accomodate the latter scenario as well.

For most part, we are interested in sub-horizon
physics where length scales associated with config-
urations of these dark fields are much smaller than
the Hubble horizon. As a result, we ignore Hub-
ble expansion, and take the background metric to be2

ḡµ� = �µ� = diag(1, �1, �1, �1). We also take ~ = c = 1.

In the next three subsections, we provide the general
action up-to quadratic order in the fields of interest, along
with leading order gravitational interactions. For the
non-relativistic limit that we are interested in, the lead-
ing order actions provided here are su�cient. The full
nonlinear actions are discussed in the Appendix.

A. Spin-0

The quadratic (free) action for the spin-0 field �, and
metric fluctuations hµ� , along with their leading interac-

2 We use ḡµ� = diag(1, �a2(t), �a2(t), �a2(t)) for an expanding
universe when needed. Here, a(t) is the scale factor normalized
to unity today.

Nonrelativistic ICscoll
aps

e to
 BH

increasing compactness

(for example phase of gravitational waves in the weak field limit. Let us assume that we have two
solitons of mass M1 and M2 whose separated by a distance r which is much larger than their radii
R1 and R2. The spin of the solitons are S1 and S2 respectively. The e↵ective potential governing
their dynamics can be written as [37, 38]

V = �
GM1M2

r

�
1 + O(v2

/c
2) �

2

rc
[r̂ ⇥ (v1 � v2)] ·

2�

a=1

Sa

Ma

+
1

r2c2

�
S1

M1
·

S2

M2
� 3

�
S1

M1
· r̂

� �
S2

M2
· r̂

�
+

2�

a=1

C
(a)
ES2

2M1M2

�
S

2
a � 3(Sa · r̂)2

�
�

+ . . .

� (0.1)

The third term on the first line is the spin-orbit interaction, and the 2nd line is the spin-spin

interaction, both of which are absent in configurations without spin. The coe�cient C
(a)
ES2 is a

property of the object, which the PI will calculate for the configurations of interest.4 Note that the
intuition is that the spin generates a quadrupole moment: Q ⇠ CES2S

2
/Mc

2, is not accurate since
the intrinsic spin still results in spherically symmetric objects (at leading order in the Newtonian
Limit).

The changes in the dynamics of a binary configuration, and emitted gravitational waves can
be estimated using the above e↵ective potential. Using these estimates as a guide, the PI and
collaborators will generate accurate templates of the gravitational waves from binary mergers using
GRChombo. These template would depend on the internal structure of the objects as well as the
spin of each configurations, and could be a valuable asset in the search for exotic compact objects.
They provide a direct probe of the underlying spin of the fields.

4Note that for a Kerr black-hole, C(a)
ES2 = 1, while it is larger (� 4 � 8) for spinning neutron stars, and is related

to the quadrupole distortion of the objects (and hence to the Love numbers).
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ḡ
µ� which

leads to
the

usual

massless spin-2
fluctuations:

h
µ� (the

graviton), along

with
other

perturbations
in

di↵erent
fields.

W
e

will

focus
on

a
given

spin-s
field

+
gravity,

instead
of

considering
massive spin-0, 1

and
2

together, although

our formalism
can accomodate the latter scenario as well.

For
most

part,
we

are
interested

in
sub-horizon

physics
where

length
scales

associated
with

config-

urations
of

these
dark

fields
are

much
smaller

than

the
Hubble

horizon.
As

a
result,

we
ignore

Hub-

ble
expansion, and

take
the

background
metric

to
be 2

ḡ
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Figure 3. Left: Impact of macroscopic spin on the e↵ective gravitational potential for two orbiting bodies,
and hence gravitational wave emission before & during merger. Right: Full numerical relativity evolution
of circularly polarized (maximal spin) and linearly polarized (zero spin) solitons as they evolve from non-
relativistic initial conditions for 3 initial compactness per pair: C ⇡ 0.04, 0.06, 0.1 show in black [where we
expect relativistic corrections & 10%]. The maximal spin solitons S ⇡ ~Msol/m (orange) do not collapse
to a BH at the largest initial compactness considered, whereas the linearly polarized ones (blue) do. Spin
provides a barrier against collapse in this regime (preliminary). Middle: Hamiltonian constraint for the initial
configurations, showing convergence with increasing resolution and order of numerical algorithms.

Proposed Tasks & Expected Outputs.

(a) Spin & Maximal Compactness: Without relativistic corrections, all configurations with the
same total particle number have the same energy, independent of the spin: 0  |S|  ~Msol/m

[9]. However, with relativistic corrections, it is expected that this degeneracy is broken. The
spherical symmetry is also expected to be weakly broken [31]. Using GRChombo[81], the PI and
collaborators will determine which solutions are preferred in full general relativity, starting with
di↵erent Newtonian configurations (with arbitrary polarization). This task is challenging, however,
preliminary work guided by the limiting Newtonian solutions shows strong promise in terms of
results as well as technical aspects such as constraint preservation during the evolution (see middle
panel of Fig. 3). Each run takes ⇠ 104 CPU hrs.

Another output of this calculation will be determining the maximum compactness possible for
solitons with macroscopic spin, beyond which they collapse to BHs. For similar analysis of scalar
solitons, see [87, 88]. Preliminary investigations reveal that the compactness allowed is higher
for solitons with intrinsic spin, compared to those without. Hedgehog configurations which also
have zero spin, and are not extremally polarized (not shown here), collapse at an even smaller
compactness. Moreover, as compactness increases the M vs. R relationship di↵ers between solitons
with macroscopic spin and those without. See right panel of Fig. 3 for preliminary results, where
points represent time averages. The maximum compactness before collapse to BH determines
the amplitude of gravitational waves that can be generated from such objects in the final merger
phase. If an e�cient production mechanism exists, the above results also could potentially tell us a
relationship between spin and mass of the formed black holes from this process [89].

(b) Spin & Gravitational Waves: Consider two solitons of mass M1 and M2 separated by
a distance r, individual radii R1 and R2, and maximal, macroscopic intrinsic spin S1 and S2

respectively (see Fig. 3). The e↵ective potential governing their orbital dynamics [90, 91] is also
shown in the top left of Fig. 3. The third term on the first line is the spin-orbit interaction, and
the 2nd line is the spin-spin interaction, both of which are absent in configurations without spin.
Both a↵ect the orbital dynamics and emission of gravitational waves. The evolution of the phase
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Figure 3: Left panel (3a): Angle averaged late time central core+halo profiles for ⇠ 160 simulations
spanning a range of initial conditions including di↵erent total mass, initial number of solitons, locations
of solitons, phases and spins of solitons (i.e. ⌅ spans an order of magnitude). The radial coordinate
and density are normalized by rc and ⇢(r = 0) to highlight the di↵erences in profile shape of VDM and
SDM coalesced cores independent of the initial conditions. Solid lines indicate average over di↵erent
simulations, the shaded regions indicate the spread in all profiles. A marker at r/rc ⇡ 3.5 shows a
general transition between core/halo regions in both SDM and VDM scenarios. Right panel (3b): Final
radial density from 11 simulations (time averaged over roughly 1 period of radial oscillations of the
core), where the initial mass is narrowly distributed around Mtot = 2.3 ⇥ 105 M� ⇥ M5, the size of
the simulation volume is L = 100 kpc ⇥ (M5m

2
20)

�1 and the number of initial solitons was fixed at
21. Solitons in VDM are less dense, and wider than those in SDM for identical initial conditions. An
approximately ⇠ r

�3 power law is see for both SDM and VDM at large radii.

Beginning with N solitons of mass M i
sol each, and distributed randomly throughout the

box, the total energy is (scaled to yield a dimensionless scale-invariant measure ⌅)

⌅ ⌘
|Etot|

M3
tot(Gm/~)2

⇡
1

M3
tot(Gm/~)2


N

G(M i
sol)

2

2Ri
sol

+ (1.88)N(N � 1)
G(M i

sol)
2

L

�
, (4.1)

⇡
1

20N2
. (4.2)

In the first line, L is the box size and Ri
sol ⌧ L is the initial solitons’ radius. In the last equality,

we have assumed that the first term in eq. (4.1) dominates over the second.4

4Note that R
i
sol ⌘ 9.95~2

/(GM
i
solm

2) contains 99% of the soliton’s mass, and we also include gradient con-
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FIG. 1. A visual summary of some of the main results of our paper.

novel class of extremally polarized solitons with spin
Stot/~ = �M/m which can be macroscopically large for
M � m. Here, m is the mass of the field, M is the
mass of the soliton and � is the spin multiplicity. These
coherent solitons (along with fractionally polarized
ones mentioned earlier) might open up new avenues for
observationally probing higher-spin fields.

We find that even within Newtonian gravity it might
be possible to distinguish interacting solitons with dif-
ferent polarizations. Going beyond Newtonian gravity,
which we do not pursue here, might remove degeneracies
between di↵erent polarizations of the higher-spin fields
even further. We also discuss possibilities of probing
this higher-spin dark matter via non-gravitational
interactions, taking advantage of the polarization state
of the solitons.

The paper is organized as follows. In section II we
discuss our model for the case of dark scalar, vector,
and tensor massive fields, leaving additional details in
Appendix A. In section III we provide the e↵ective non-
relativistic action (which is the Schrödinger-Poisson sys-
tem) for these dark integer spin fields, and discuss the
various symmetries of the action. In section IV we dis-
cuss the gravitationally bound solitons. In section V we
discuss their distinguishability, primarily within Newto-
nian gravity, and also mention other non-gravitational
couplings that can probe the spin nature of the fields. In
section VI we summarize and also highlight some future
directions worth investigating.

II. MODELS

Our matter Lagrangian consists of the usual Standard
Model (SM) sector, along with some dark sector that
includes additional massive spin-0, spin-1, or even spin-2
fields. We take these fields to be real valued.

Explicitly, our general action has the form

S = SEH + Sdark + Svis , (1)

where SEH is the gravity sector, Sdark is some dark
sector (incluing dark integer spin fields), and Svis is
the visible sector (comprising of the SM). Our focus
is only on the gravity + dark sector in this paper.
We consider perturbations of di↵erent fields around
some background metric ḡµ⌫ which leads to the usual
massless spin-2 fluctuations: hµ⌫ (the graviton), along
with other perturbations in di↵erent fields. We will
focus on a given spin-s field + gravity, instead of
considering massive spin-0, 1 and 2 together, although
our formalism can accomodate the latter scenario as well.

For most part, we are interested in sub-horizon
physics where length scales associated with config-
urations of these dark fields are much smaller than
the Hubble horizon. As a result, we ignore Hub-
ble expansion, and take the background metric to be2

ḡµ⌫ = ⌘µ⌫ = diag(1, �1, �1, �1). We also take ~ = c = 1.

In the next three subsections, we provide the general
action up-to quadratic order in the fields of interest, along
with leading order gravitational interactions. For the
non-relativistic limit that we are interested in, the lead-
ing order actions provided here are su�cient. The full
nonlinear actions are discussed in the Appendix.

A. Spin-0

The quadratic (free) action for the spin-0 field �, and
metric fluctuations hµ⌫ , along with their leading interac-

2
We use ḡµ⌫ = diag(1,�a2(t),�a2(t),�a2(t)) for an expanding

universe when needed. Here, a(t) is the scale factor normalized

to unity today.
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novel class of extremally polarized solitons with spin
Stot/~ = �M/m which can be macroscopically large for
M � m. Here, m is the mass of the field, M is the
mass of the soliton and � is the spin multiplicity. These
coherent solitons (along with fractionally polarized
ones mentioned earlier) might open up new avenues for
observationally probing higher-spin fields.

We find that even within Newtonian gravity it might
be possible to distinguish interacting solitons with dif-
ferent polarizations. Going beyond Newtonian gravity,
which we do not pursue here, might remove degeneracies
between di↵erent polarizations of the higher-spin fields
even further. We also discuss possibilities of probing
this higher-spin dark matter via non-gravitational
interactions, taking advantage of the polarization state
of the solitons.

The paper is organized as follows. In section II we
discuss our model for the case of dark scalar, vector,
and tensor massive fields, leaving additional details in
Appendix A. In section III we provide the e↵ective non-
relativistic action (which is the Schrödinger-Poisson sys-
tem) for these dark integer spin fields, and discuss the
various symmetries of the action. In section IV we dis-
cuss the gravitationally bound solitons. In section V we
discuss their distinguishability, primarily within Newto-
nian gravity, and also mention other non-gravitational
couplings that can probe the spin nature of the fields. In
section VI we summarize and also highlight some future
directions worth investigating.

II. MODELS

Our matter Lagrangian consists of the usual Standard
Model (SM) sector, along with some dark sector that
includes additional massive spin-0, spin-1, or even spin-2
fields. We take these fields to be real valued.

Explicitly, our general action has the form

S = SEH + Sdark + Svis , (1)

where SEH is the gravity sector, Sdark is some dark
sector (incluing dark integer spin fields), and Svis is
the visible sector (comprising of the SM). Our focus
is only on the gravity + dark sector in this paper.
We consider perturbations of di↵erent fields around
some background metric ḡµ⌫ which leads to the usual
massless spin-2 fluctuations: hµ⌫ (the graviton), along
with other perturbations in di↵erent fields. We will
focus on a given spin-s field + gravity, instead of
considering massive spin-0, 1 and 2 together, although
our formalism can accomodate the latter scenario as well.

For most part, we are interested in sub-horizon
physics where length scales associated with config-
urations of these dark fields are much smaller than
the Hubble horizon. As a result, we ignore Hub-
ble expansion, and take the background metric to be2

ḡµ⌫ = ⌘µ⌫ = diag(1, �1, �1, �1). We also take ~ = c = 1.

In the next three subsections, we provide the general
action up-to quadratic order in the fields of interest, along
with leading order gravitational interactions. For the
non-relativistic limit that we are interested in, the lead-
ing order actions provided here are su�cient. The full
nonlinear actions are discussed in the Appendix.

A. Spin-0

The quadratic (free) action for the spin-0 field �, and
metric fluctuations hµ⌫ , along with their leading interac-

2
We use ḡµ⌫ = diag(1,�a2(t),�a2(t),�a2(t)) for an expanding

universe when needed. Here, a(t) is the scale factor normalized

to unity today.
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Figure 1. Example surface mass density maps (^ , in units of the critical density ⌃2) with the model lensed images in orange contours (top row) and the
corresponding reconstructed source surface brightness maps (� , in units of the peak surface brightness �max; bottom row) for three random realizations of MG
J0751+2716 in an FDM cosmology. Critical curves and caustics are plotted in white. The lensing e�ect of the FDM granules is apparent: The critical curves
wiggle back and forth across the lensed arcs, which would require the presence of multiple images of the same region of the source along the arc. In the absence
of such features in the observed data, the morphology of the inferred source is disrupted as the model attempts to fit the observation.

form of a Gaussian random field with correlation length oj and a
position-dependent variance given by

hX^2
i =
oj

p
c

⌃2
2

π
d2

DM 3;, (2)

where the integral is along the line of sight, dDM is the smooth 3D
density profile of the dark matter component of the lens, ⌃2 is the
lensing critical surface mass density, and oj = \/(<jfE ) corre-
sponds to the (reduced) de Broglie wavelength of the dark matter
particle. In practice, we generate realizations of X^ by first generat-
ing a white noise field modulated by the variance in equation (2),
then correlating using a Gaussian kernel of width oj via an FFT-
based convolution. We then solve for the resulting perturbation to the
lensing potential X using another FFT.

The correlation length oj is inversely proportional to fE , the ve-
locity dispersion of the dark matter in the lens galaxy, which is a proxy
for the depth of the gravitational potential well in which the dark mat-
ter field resides. There are no resolved kinematic data on this lens
system, so it must be estimated using the Einstein radius of the lens.
Alloin et al. (2007) found fE = 101 km s�1, using a cored pseudo-
isothermal density profile. We derive fE = 108 km s�1, assuming
a singular isothermal profile. To accommodate this uncertainty, we
draw fE from a uniform prior between 100 and 110 km s�1 (see
Table 1).

An additional source of uncertainty in generating FDM lens real-
izations is the dark matter fraction in the lens, 5DM, which directly
determines the granule amplitude. Our composite smooth model
from Powell et al. (2022) gives a baryonic mass (measured within
the critical curve) of 8.6⇥109 M� . This number is in good agreement
with observations by the Hubble Space Telescope (HST) WFPC2 as
part of the CfA-Arizona Space Telescope LEns Survey (CASTLES)
project (e.g. Kochanek et al. 2000); a fit to the +- and �-band lens
galaxy photometry using �������� (Blanton & Roweis 2007) yields

a baryonic mass of 8.0⇥109 M� . The total projected mass of the lens
within the critical curve is set by the Einstein radius at 2.7⇥1010 M� .
Allowing for an uncertainty of ±0.2 dex in the baryonic mass, we
adopt a uniform prior on 5DM between 0.5 and 0.8 (see Table 1).
This prior range is consistent with dark matter fractions in massive
early-type lens galaxies studied by Oldham & Auger (2018).

We assume that all small-scale inhomogeneities in the lensing
convergence are produced by FDM granules in the lens itself. We do
not explicitly consider the e�ects of a central soliton core in the FDM
halo; such a core would be much smaller than the Einstein radius of
the lens (Schive et al. 2014; Chan et al. 2020), and would therefore be
absorbed in the smooth lens model. Unlike the analysis by Laroche
et al. (2022), we do not include subhalo or line-of-sight (LOS) halo
populations in our lens model. This choice is justified because in
the mass range of <j ⇠ 10�22 to 10�20.5 eV, in which our analysis
is most sensitive, an FDM cosmology cannot produce subhaloes or
LOS haloes that are highly concentrated or numerous enough to
mimic the signal of FDM granules (Schive et al. 2016; see also Fig.
5 of Laroche et al. 2022); indeed, any large-scale contribution to the
lens model by di�use low-mass haloes would already be accounted
for in the smooth model. The practical e�ects of excluding low-mass
haloes from our model are the loss of some sensitivity to <j and the
inability to place an upper bound on <j .

3 RESULTS

We show example convergence maps for three FDM lens realizations
with their corresponding maximum a-posteriori (MAP) source sur-
face brightness reconstructions in Fig. 1. For <j . 10�21 eV, the
critical curves (plotted in white) cross back and forth many times
across the lensed arcs. Such a configuration of critical curves would
imply the presence of many images of alternating parity along the arc

MNRAS 000, 1–5 (2019)

Figure 4: Left: The evolution of the maximum value ⇢max of the energy density field of the vector through
MRE, in a simulation with volume (3.75�?)3. Time is parameterised by the scale factor a relative to
that at MRE, aeq. The mean vector energy density ⇢ is also plotted. At early times ⇢max follows ⇢, with
small fluctuations due to the oscillation of modes with k & kJ , driven by quantum pressure. The collapse
of overdensities with � & 1, which in the absence of quantum pressure would occur at a/aeq ' 1/�,
is hindered until after MRE. Once kJ/k? / a

1/4 has grown su�ciently, overdensities collapse. After
the collapse, the maximum density is at a point inside a soliton. The soliton is produced with excited
quasinormal modes, so the maximum density subsequently oscillates. Right: A slice of the energy density
at a/aeq = 7, in the same simulation as is plotted in the left panel. The slice passes through the point
that has the largest density at this time, which is at the centre of a soliton. The soliton (red region
in inset) is surrounded by a spherical ‘fuzzy’ halo (yellow/green region) and there are cosmic filaments
connecting it to other solitons. Spherical waves can be seen around the soliton, which are due to the
emission of energy from quasinormal modes. A video showing the evolution can be found at [58].

study the growth of density perturbations and the evolution of the density power spectrum in more detail
in Appendix D.

In Figure 4 (right) we plot the density field ⇢ through the slice of the same simulation that contains
the point with the largest density, at a/aeq = 7. There is a central soliton (red region). The soliton is
surrounded by a spherical fuzzy halo (yellow/green region) extending far from its core, the maximum
density of which is about two orders of magnitude smaller than the soliton core density. Finally, the early
stages of a cosmic web connecting di↵erent solitons have formed (see also Figure 1 left, where we show a
3D version of the same energy density). Spherical waves can be seen beyond the halo. These are due to
energy released by the decay of the soliton’s quasi-normal modes.

To understand the nature of the collapsed objects, in Figure 5 (left) we plot the spherically averaged
density profile around the centre of the objects at a/aeq = 5, averaged over all the objects in our full set
of simulations. To enable the profiles of objects with di↵erent mass to be combined, for each object the
density profile is normalised to its central density ⇢s and the distance from its centre to the quantum
Jeans length �J(⇢s) corresponding to its central density ⇢s. As it is clear from Section 3.1, in terms of
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i-SPin:  An integrator for multicomponent 

Schrodinger-Poisson systems with self-interactions 

Mudit Jain & Mustafa Amin

i-SPin: An algorithm (and publicly available code) to numerically evolve multicomponent 
Schrodinger-Poisson (SP) systems, including attractive/repulsive self-interactions + gravity  

problem: If SP system represents the non-relativistic limit of a massive vector !eld, non-
gravitational self-interactions (in particular, spin-spin type interactions) introduce new challenges 
related to mass and spin conservation which are not present in purely gravitational systems.  

solution: Above challenges addressed with a novel analytical solution for the non-trivial ‘kick’ 
step in the algorithm (sec 4.3.2) 

features: (i) second order accurate evolution (ii) spin and mass conserved to machine precision 
(iii) reversible 

generalizations: n-component !elds with SO(n) symmetry, an expanding universe relevant for 
cosmology, and the inclusion of external potentials relevant for laboratory settings  

arXiv: 2211.08433
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Figure 1: Mass and spin conservation: Top panel shows snapshots of projected mass density
at three instants t = 0, 13, and 40 (upper panel). Lower panel are snapshots of magnitude of
spin density at the same times. One of the solitons is initialized with maximal spin, whereas
the other two have zero spin initially. The bottom plot shows quantitative measures of total
spin (blue curve) and total mass (red curve) conservation; both are conserved to better than
one part in 1011.
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Figure 2: Tracking reversibility: Top panel shows snapshots of projected mass density at
three instants t = 0, 13, and 40 (upper panel). The self-interaction was chosen to be repulsive
(� = �0.01). Lower panel include snapshots from the backward evolution at the same instants.
The unwinding of the final state to the initial state gives a qualitative proof of reversibility of
our algorithm. In the bottom graph we show the asymmetry parameter �(t) . 10�19, which
provides a quantitative measure of reversibility.
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our work. A collection of appendices provide a derivation of the nonrelativistic action, fluid
and spin conservation equations, and polarized soliton solutions in vector fields including both
gravitational and non-gravitational interactions.

2 Spin-1 Schrödinger-Poisson system

We begin with a 3-component Schrödinger-Poisson system with SO(3) symmetry with non-
relativistic and massive spin-1 vector fields in mind. That is, the Schrödinger field  =
( 1, 2, 3) transforms as  i ! Rij j with R 2 SO(3), but leaves the action unchanged.1

On account of this, we have the following general action that includes both Newtonian gravity
and point self-interactions
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Here, the first two terms dictate the usual free field evolution (of each of the field component
 i), while the third and fourth terms account for the Gauss’ law for Newtonian gravity where
only the mass density m † · = m 

⇤

i  i contributes to the Newtonian potential �. Finally, the
last term accounts for point interactions of the vector field  , and takes the following specific
form for quartic self-interaction
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The above form of the potential in eq. (2.2) arises from the relativistic quartic potential

Vrel = ��(WµW
µ)2 , (2.5)

upon taking the non-relativistic limit of an e↵ective theory of a self-interacting massive spin-1
field Wµ that is minimally coupled to gravity. See [14, 55] for details. For completeness, we also
provide salient aspects of this derivation in appendix A.1.
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