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distinct phenomenology in (ultra)light vector dark matter

•  interference patterns, and halo density profiles
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Figure 3: Left panel (3a): Angle averaged late time central core+halo profiles for ⇠ 160 simulations
spanning a range of initial conditions including di↵erent total mass, initial number of solitons, locations
of solitons, phases and spins of solitons (i.e. ⌅ spans an order of magnitude). The radial coordinate
and density are normalized by rc and ⇢(r = 0) to highlight the di↵erences in profile shape of VDM and
SDM coalesced cores independent of the initial conditions. Solid lines indicate average over di↵erent
simulations, the shaded regions indicate the spread in all profiles. A marker at r/rc ⇡ 3.5 shows a
general transition between core/halo regions in both SDM and VDM scenarios. Right panel (3b): Final
radial density from 11 simulations (time averaged over roughly 1 period of radial oscillations of the
core), where the initial mass is narrowly distributed around Mtot = 2.3 ⇥ 105 M� ⇥ M5, the size of
the simulation volume is L = 100 kpc ⇥ (M5m

2
20)

�1 and the number of initial solitons was fixed at
21. Solitons in VDM are less dense, and wider than those in SDM for identical initial conditions. An
approximately ⇠ r

�3 power law is see for both SDM and VDM at large radii.

Beginning with N solitons of mass M i
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In the first line, L is the box size and Ri
sol ⌧ L is the initial solitons’ radius. In the last equality,

we have assumed that the first term in eq. (4.1) dominates over the second.4
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distinct phenomenology in (ultra)light vector dark matter

•  new class of polarized vector solitons with 
macroscopic spin

•  interference patterns, and halo density profiles

MA, Jain, Karur & Mocz (2022)

• VDM formation and soliton nucleation 
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m & 10�18 eV• post-inflationary formation of any dark matter

lower bound on the massMA & Mirbabayi (2022)
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motivation & introduction



dark matter mass ?

Ultra-light dark matter 3

Fig. 1 Sketch (not to scale) of the huge range of possible DM models that have been conceived. They span many orders of magnitude
in mass, with DM represented by very distinct phenomena, ranging from new elementary particles to black holes.

structures we see in our universe today, as is evident in observations of the large scale structure of our universe
(Anderson et al. 2014; Tegmark et al. 2004).

With all this evidence coming from precise astrophysical and cosmological observations, cosmologists have con-
verged to a phenomenological model to describe our universe, the ⇤CDM model. This model is currently the
concordance model of cosmology and it accumulates a number of observational successes. It exhibits outstanding
agreement with current cosmological observations (Anderson et al. 2014), which is manifested in the parameters
of this model being constrained at the percent and sub-percent level. This incredibly simple model is described by
only six parameters and parametrizes a large amount of the universe’s history. It describes a universe that is flat
and seeded by nearly scale invariant perturbations, composed of baryons, which amount to approximately 5% of
the energy density of the universe, a small radiation component, but in its majority is composed of two unknown
ingredients. The energy budget of the universe is dominated (⇠ 70%) by a component responsible for the current
accelerated expansion of the universe called dark energy, and a clustering component, the dark matter, making up
to ⇠ 25% of our universe. These large-scale observations give a coarse-grained description of these non-baryonic
components in the hydrodynamical limit where dark matter is described as a perfect fluid with very small pressure
(w ⇡ 0) and sound speed, cs ⇡ 0, that does not interact, at least strongly, with baryonic matter. Dark energy is
parametrized by a cosmological constant, the simplest model for the present accelerated expansion of our universe.

Therefore, within ⇤CDM, the Cold Dark Matter (CDM) paradigm emerged from the large scale observations
and describes the component responsible for the formation of the structures of our universe through gravitational
clustering. In the CDM model, DM is described by a perfect fluid that must be massive, su�ciently cold, which
means non-relativistic at the time of structure formation, and collisionless in order to explain the observational data
on large linear scales. This coarse-grained description of a CDM is very successful in fitting the linear, large scales
observations from the CMB, LSS, to clusters, and general properties of galaxies.

However, even though we know the hydrodynamical properties of DM on large scales to a very high precision, the
microphysics of the DM component remains unknown. This allows for the creation of a plethora of possible models
of DM. Those models recover the large scale properties of CDM, but invoke very di↵erent objects and phenomena
to play the role of DM.

This incredible variety of viable models of DM can be seen in the huge range of masses those models cover, as
shown in Fig. 1. This figure shows many di↵erent broad classes of DM models, and each of which might contain
many di↵erent specific models. It spans more than 80 orders of magnitude and shows very di↵erent hypothesis for
DM, from new elementary particles, to composite objects (Jacobs et al. 2015; Khlopov 2019), up to astrophysical
size primordial black holes (for a review on recent bounds see (Carr et al. 2020; Carr and Kuhnel 2020)). This shows
us that although we have gathered a lot of knowledge about the gravitational properties of DM, the nature of DM
is still elusive, with the current data still allowing a huge amount of highly di↵erent models.

The possibility that dark matter could be a long lived particle is very appealing. Specially if these candidates
are expected candidates from extensions of the standard model of particle physics. One class of models that became
the preferred candidates for the DM particles are WIMP, weakly interacting massive particles, which represent new
elementary particles that interact with baryons not only gravitationally but also through the weak force or a new
force of comparable strength (Roszkowski et al. 2018; Lin 2019). The strong motivation for this candidate is because
if it is thermally produced in the early universe, the relic abundance of particles that have mass of the order of the
electroweak scale, and a coupling of order one, corresponds precisely to the abundance of DM in our universe. The
possibility that WIMP could also be discovered by direct detection experiments is also an important motivation to
search for this candidate. There is a great experimental e↵ort to constrain the properties of WIMP DM with the
parameter space being very restricted over the past few years. Given the complex phenomenology from the possible
models of WIMP DM and their interaction with the standard model particles, the translation of those bounds to the

image credit: E. Ferreira
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Fig. 1 Sketch (not to scale) of the huge range of possible DM models that have been conceived. They span many orders of magnitude
in mass, with DM represented by very distinct phenomena, ranging from new elementary particles to black holes.

structures we see in our universe today, as is evident in observations of the large scale structure of our universe
(Anderson et al. 2014; Tegmark et al. 2004).

With all this evidence coming from precise astrophysical and cosmological observations, cosmologists have con-
verged to a phenomenological model to describe our universe, the ⇤CDM model. This model is currently the
concordance model of cosmology and it accumulates a number of observational successes. It exhibits outstanding
agreement with current cosmological observations (Anderson et al. 2014), which is manifested in the parameters
of this model being constrained at the percent and sub-percent level. This incredibly simple model is described by
only six parameters and parametrizes a large amount of the universe’s history. It describes a universe that is flat
and seeded by nearly scale invariant perturbations, composed of baryons, which amount to approximately 5% of
the energy density of the universe, a small radiation component, but in its majority is composed of two unknown
ingredients. The energy budget of the universe is dominated (⇠ 70%) by a component responsible for the current
accelerated expansion of the universe called dark energy, and a clustering component, the dark matter, making up
to ⇠ 25% of our universe. These large-scale observations give a coarse-grained description of these non-baryonic
components in the hydrodynamical limit where dark matter is described as a perfect fluid with very small pressure
(w ⇡ 0) and sound speed, cs ⇡ 0, that does not interact, at least strongly, with baryonic matter. Dark energy is
parametrized by a cosmological constant, the simplest model for the present accelerated expansion of our universe.

Therefore, within ⇤CDM, the Cold Dark Matter (CDM) paradigm emerged from the large scale observations
and describes the component responsible for the formation of the structures of our universe through gravitational
clustering. In the CDM model, DM is described by a perfect fluid that must be massive, su�ciently cold, which
means non-relativistic at the time of structure formation, and collisionless in order to explain the observational data
on large linear scales. This coarse-grained description of a CDM is very successful in fitting the linear, large scales
observations from the CMB, LSS, to clusters, and general properties of galaxies.

However, even though we know the hydrodynamical properties of DM on large scales to a very high precision, the
microphysics of the DM component remains unknown. This allows for the creation of a plethora of possible models
of DM. Those models recover the large scale properties of CDM, but invoke very di↵erent objects and phenomena
to play the role of DM.

This incredible variety of viable models of DM can be seen in the huge range of masses those models cover, as
shown in Fig. 1. This figure shows many di↵erent broad classes of DM models, and each of which might contain
many di↵erent specific models. It spans more than 80 orders of magnitude and shows very di↵erent hypothesis for
DM, from new elementary particles, to composite objects (Jacobs et al. 2015; Khlopov 2019), up to astrophysical
size primordial black holes (for a review on recent bounds see (Carr et al. 2020; Carr and Kuhnel 2020)). This shows
us that although we have gathered a lot of knowledge about the gravitational properties of DM, the nature of DM
is still elusive, with the current data still allowing a huge amount of highly di↵erent models.

The possibility that dark matter could be a long lived particle is very appealing. Specially if these candidates
are expected candidates from extensions of the standard model of particle physics. One class of models that became
the preferred candidates for the DM particles are WIMP, weakly interacting massive particles, which represent new
elementary particles that interact with baryons not only gravitationally but also through the weak force or a new
force of comparable strength (Roszkowski et al. 2018; Lin 2019). The strong motivation for this candidate is because
if it is thermally produced in the early universe, the relic abundance of particles that have mass of the order of the
electroweak scale, and a coupling of order one, corresponds precisely to the abundance of DM in our universe. The
possibility that WIMP could also be discovered by direct detection experiments is also an important motivation to
search for this candidate. There is a great experimental e↵ort to constrain the properties of WIMP DM with the
parameter space being very restricted over the past few years. Given the complex phenomenology from the possible
models of WIMP DM and their interaction with the standard model particles, the translation of those bounds to the
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Fig. 1 Sketch (not to scale) of the huge range of possible DM models that have been conceived. They span many orders of magnitude
in mass, with DM represented by very distinct phenomena, ranging from new elementary particles to black holes.

structures we see in our universe today, as is evident in observations of the large scale structure of our universe
(Anderson et al. 2014; Tegmark et al. 2004).

With all this evidence coming from precise astrophysical and cosmological observations, cosmologists have con-
verged to a phenomenological model to describe our universe, the ⇤CDM model. This model is currently the
concordance model of cosmology and it accumulates a number of observational successes. It exhibits outstanding
agreement with current cosmological observations (Anderson et al. 2014), which is manifested in the parameters
of this model being constrained at the percent and sub-percent level. This incredibly simple model is described by
only six parameters and parametrizes a large amount of the universe’s history. It describes a universe that is flat
and seeded by nearly scale invariant perturbations, composed of baryons, which amount to approximately 5% of
the energy density of the universe, a small radiation component, but in its majority is composed of two unknown
ingredients. The energy budget of the universe is dominated (⇠ 70%) by a component responsible for the current
accelerated expansion of the universe called dark energy, and a clustering component, the dark matter, making up
to ⇠ 25% of our universe. These large-scale observations give a coarse-grained description of these non-baryonic
components in the hydrodynamical limit where dark matter is described as a perfect fluid with very small pressure
(w ⇡ 0) and sound speed, cs ⇡ 0, that does not interact, at least strongly, with baryonic matter. Dark energy is
parametrized by a cosmological constant, the simplest model for the present accelerated expansion of our universe.

Therefore, within ⇤CDM, the Cold Dark Matter (CDM) paradigm emerged from the large scale observations
and describes the component responsible for the formation of the structures of our universe through gravitational
clustering. In the CDM model, DM is described by a perfect fluid that must be massive, su�ciently cold, which
means non-relativistic at the time of structure formation, and collisionless in order to explain the observational data
on large linear scales. This coarse-grained description of a CDM is very successful in fitting the linear, large scales
observations from the CMB, LSS, to clusters, and general properties of galaxies.

However, even though we know the hydrodynamical properties of DM on large scales to a very high precision, the
microphysics of the DM component remains unknown. This allows for the creation of a plethora of possible models
of DM. Those models recover the large scale properties of CDM, but invoke very di↵erent objects and phenomena
to play the role of DM.

This incredible variety of viable models of DM can be seen in the huge range of masses those models cover, as
shown in Fig. 1. This figure shows many di↵erent broad classes of DM models, and each of which might contain
many di↵erent specific models. It spans more than 80 orders of magnitude and shows very di↵erent hypothesis for
DM, from new elementary particles, to composite objects (Jacobs et al. 2015; Khlopov 2019), up to astrophysical
size primordial black holes (for a review on recent bounds see (Carr et al. 2020; Carr and Kuhnel 2020)). This shows
us that although we have gathered a lot of knowledge about the gravitational properties of DM, the nature of DM
is still elusive, with the current data still allowing a huge amount of highly di↵erent models.

The possibility that dark matter could be a long lived particle is very appealing. Specially if these candidates
are expected candidates from extensions of the standard model of particle physics. One class of models that became
the preferred candidates for the DM particles are WIMP, weakly interacting massive particles, which represent new
elementary particles that interact with baryons not only gravitationally but also through the weak force or a new
force of comparable strength (Roszkowski et al. 2018; Lin 2019). The strong motivation for this candidate is because
if it is thermally produced in the early universe, the relic abundance of particles that have mass of the order of the
electroweak scale, and a coupling of order one, corresponds precisely to the abundance of DM in our universe. The
possibility that WIMP could also be discovered by direct detection experiments is also an important motivation to
search for this candidate. There is a great experimental e↵ort to constrain the properties of WIMP DM with the
parameter space being very restricted over the past few years. Given the complex phenomenology from the possible
models of WIMP DM and their interaction with the standard model particles, the translation of those bounds to the
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Fig. 1 Sketch (not to scale) of the huge range of possible DM models that have been conceived. They span many orders of magnitude
in mass, with DM represented by very distinct phenomena, ranging from new elementary particles to black holes.

structures we see in our universe today, as is evident in observations of the large scale structure of our universe
(Anderson et al. 2014; Tegmark et al. 2004).

With all this evidence coming from precise astrophysical and cosmological observations, cosmologists have con-
verged to a phenomenological model to describe our universe, the ⇤CDM model. This model is currently the
concordance model of cosmology and it accumulates a number of observational successes. It exhibits outstanding
agreement with current cosmological observations (Anderson et al. 2014), which is manifested in the parameters
of this model being constrained at the percent and sub-percent level. This incredibly simple model is described by
only six parameters and parametrizes a large amount of the universe’s history. It describes a universe that is flat
and seeded by nearly scale invariant perturbations, composed of baryons, which amount to approximately 5% of
the energy density of the universe, a small radiation component, but in its majority is composed of two unknown
ingredients. The energy budget of the universe is dominated (⇠ 70%) by a component responsible for the current
accelerated expansion of the universe called dark energy, and a clustering component, the dark matter, making up
to ⇠ 25% of our universe. These large-scale observations give a coarse-grained description of these non-baryonic
components in the hydrodynamical limit where dark matter is described as a perfect fluid with very small pressure
(w ⇡ 0) and sound speed, cs ⇡ 0, that does not interact, at least strongly, with baryonic matter. Dark energy is
parametrized by a cosmological constant, the simplest model for the present accelerated expansion of our universe.

Therefore, within ⇤CDM, the Cold Dark Matter (CDM) paradigm emerged from the large scale observations
and describes the component responsible for the formation of the structures of our universe through gravitational
clustering. In the CDM model, DM is described by a perfect fluid that must be massive, su�ciently cold, which
means non-relativistic at the time of structure formation, and collisionless in order to explain the observational data
on large linear scales. This coarse-grained description of a CDM is very successful in fitting the linear, large scales
observations from the CMB, LSS, to clusters, and general properties of galaxies.

However, even though we know the hydrodynamical properties of DM on large scales to a very high precision, the
microphysics of the DM component remains unknown. This allows for the creation of a plethora of possible models
of DM. Those models recover the large scale properties of CDM, but invoke very di↵erent objects and phenomena
to play the role of DM.

This incredible variety of viable models of DM can be seen in the huge range of masses those models cover, as
shown in Fig. 1. This figure shows many di↵erent broad classes of DM models, and each of which might contain
many di↵erent specific models. It spans more than 80 orders of magnitude and shows very di↵erent hypothesis for
DM, from new elementary particles, to composite objects (Jacobs et al. 2015; Khlopov 2019), up to astrophysical
size primordial black holes (for a review on recent bounds see (Carr et al. 2020; Carr and Kuhnel 2020)). This shows
us that although we have gathered a lot of knowledge about the gravitational properties of DM, the nature of DM
is still elusive, with the current data still allowing a huge amount of highly di↵erent models.

The possibility that dark matter could be a long lived particle is very appealing. Specially if these candidates
are expected candidates from extensions of the standard model of particle physics. One class of models that became
the preferred candidates for the DM particles are WIMP, weakly interacting massive particles, which represent new
elementary particles that interact with baryons not only gravitationally but also through the weak force or a new
force of comparable strength (Roszkowski et al. 2018; Lin 2019). The strong motivation for this candidate is because
if it is thermally produced in the early universe, the relic abundance of particles that have mass of the order of the
electroweak scale, and a coupling of order one, corresponds precisely to the abundance of DM in our universe. The
possibility that WIMP could also be discovered by direct detection experiments is also an important motivation to
search for this candidate. There is a great experimental e↵ort to constrain the properties of WIMP DM with the
parameter space being very restricted over the past few years. Given the complex phenomenology from the possible
models of WIMP DM and their interaction with the standard model particles, the translation of those bounds to the
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Figure 2 | A slice of the density field of the  DM simulation on various
scales at z=0.1. This scaled sequence (each of thickness 60 pc) shows
how quantum interference patterns can be clearly seen everywhere from
the large-scale filaments, tangential fringes near the virial boundaries, to
the granular structure inside the haloes. Distinct solitonic cores with radii
⇠0.3–1.6kpc are found within collapsed haloes (which have virial masses
Mvir ⇠ 109˘1011 M�). The density shown here spans over nine orders of
magnitude, from 10�1 to 108 (normalized to the cosmic mean density). The
colour map scales logarithmically, with cyan corresponding to density .10.

giving rise to a co-moving Jeans length, �J / (1+z)1/4m�1/2
B , during

the matter-dominated epoch17. The insensitivity of �J to redshift, z ,
generates a sharp cuto�mass belowwhich structures are suppressed.
Cosmological simulations in this context turn out to be much
more challenging than standard N-body simulations, as the highest
frequency oscillations, !, given approximately by the matter wave
dispersion relation, ! /m�1

B �
�2, where � is the wavelength, occur

on the smallest scales, requiring very fine temporal resolution even
formoderate spatial resolution (Supplementary Fig. 1). In this work,
we optimize an adaptive-mesh-refinement (AMR) scheme, with
graphic processing unit acceleration, improving performance by
almost two orders of magnitude22 (see Supplementary Section 1
for details).

Figure 1 demonstrates that despite the completely di�erent
calculations employed, the pattern of filaments and voids generated
by a conventional N-body particle3CDM simulation is remarkably
indistinguishable from the wavelike 3 DM for the same linear
power spectrum (Supplementary Fig. 3). Here 3 represents the
cosmological constant. This agreement is desirable given the
success of standard 3CDM in describing the statistics of large-scale
structure. To examine the wave nature that distinguishes DM from
CDM on small scales, we re-simulate with a very high maximum
resolution of 60 pc for a 2 Mpc co-moving box, so that the densest
objects formed of &300 pc size are well resolved with ⇠103 grids. A
slice through this box is shown in Fig. 2, revealing fine interference
fringes defining long filaments, with tangential fringes near the
boundaries of virialized objects, where the de Broglie wavelengths
depend on the local velocity of matter. An unexpected feature of
our DMsimulations is the generation of prominent dense coherent
standing waves of dark matter in the centre of every gravitational
bound object, forming a flat core with a sharp boundary (Figs 2
and 3). These dark matter cores grow as material is accreted and
are surrounded by virialized haloes of material with fine-scale,
large-amplitude cellular interference, which continuously fluctuate
in density and velocity, generating quantum and turbulent pressure
support against gravity.

The central density profiles of all our collapsed cores fit well
the stable soliton solution of the Schrödinger–Poisson equation, as
shown in Fig. 3 (see also Supplementary Section 2 and Figs 2 and 4).
On the other hand, except for the lightest halo, which has just formed
and is not yet virialized, the outer profiles of other haloes possess a
steepening logarithmic slope, similar to the Navarro–Frenk–White
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Figure 3 | Radial density profiles of haloes formed in the  DMmodel.
Dashed lines with various symbols show six examples of the halo profiles
normalized to the cosmic mean density. All haloes are found to possess a
distinct inner core fitted extremely well by the soliton solution (solid lines).
A detailed soliton fit for the largest halo is inset, where the error is the root-
mean-square scatter of density in each radial bin. A Navarro–Frenk–White
(NFW) profile representing standard CDM is also shown for comparison
(black dot-dashed line, with a very large scale radius of 10kpc), which fits
well the profiles outside the cores. The yellow hatched area indicates the
⇢300 of the dSph satellites around the Milky Way3,24, which is consistent
with the majority of galaxy haloes formed in the  DM simulations.

(NFW) profile23 of standard CDM. These solitonic cores, which are
gravitationally self-bound and appear as additional mass clumps
superposed on the NFW profile, are clearly distinct from the cores
formed by WDM and collisional CDM, which truncate the NFW
cuspy inner profile at lower values and require an external halo for
confinement. The radius of the soliton scales inversely with mass,
such that the widest cores are the least massive and are hosted by the
least massive galaxies. Eighty percent of the haloes in the simulation
have an average density within 300 pc (defined as ⇢300) in the range
5.3⇥ 10�3–6.1⇥ 10�1 M�/pc3, consistent with the dSph satellites
around the Milky Way3,24, and objects like these are resilient to
close interaction with massive galaxies. By contrast, the very lowest
mass objects in our simulation have ⇢300 ⇠ 4.0⇥ 10�4 M�/pc3 and
Mvir ⇠108 M�, but exist only briefly as they are vulnerable to tidal
disruption by large galaxies in our simulations. Together with the
cuto� in the power spectrum at the Jeans scale (Supplementary
Fig. 3), this leads to a marked suppression of substructure below
a few times 108 M� relative to the prediction of standard CDM
(refs 8,9). A quantitative evaluation of the mass function of satellite
galaxies predicted by  DM with larger simulations is thus another
crucial test to be addressed.

The prominent solitonic cores uncovered in our simulations
provide an opportunity to estimate the boson mass, mB, by
comparison with observations, particularly for dSph galaxies where
dark matter dominates. The local Fornax dSph galaxy is the best
studied case, with thousands of stellar velocity measurements,
allowing a detailed comparison with our soliton mass profile.
We perform a Jeans analysis for the dominant intermediate
metallicity stellar population, which exhibits a nearly uniform
projected velocity dispersion (�k; ref. 25). We simultaneously
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Fig. 1 Sketch (not to scale) of the huge range of possible DM models that have been conceived. They span many orders of magnitude
in mass, with DM represented by very distinct phenomena, ranging from new elementary particles to black holes.

structures we see in our universe today, as is evident in observations of the large scale structure of our universe
(Anderson et al. 2014; Tegmark et al. 2004).

With all this evidence coming from precise astrophysical and cosmological observations, cosmologists have con-
verged to a phenomenological model to describe our universe, the ⇤CDM model. This model is currently the
concordance model of cosmology and it accumulates a number of observational successes. It exhibits outstanding
agreement with current cosmological observations (Anderson et al. 2014), which is manifested in the parameters
of this model being constrained at the percent and sub-percent level. This incredibly simple model is described by
only six parameters and parametrizes a large amount of the universe’s history. It describes a universe that is flat
and seeded by nearly scale invariant perturbations, composed of baryons, which amount to approximately 5% of
the energy density of the universe, a small radiation component, but in its majority is composed of two unknown
ingredients. The energy budget of the universe is dominated (⇠ 70%) by a component responsible for the current
accelerated expansion of the universe called dark energy, and a clustering component, the dark matter, making up
to ⇠ 25% of our universe. These large-scale observations give a coarse-grained description of these non-baryonic
components in the hydrodynamical limit where dark matter is described as a perfect fluid with very small pressure
(w ⇡ 0) and sound speed, cs ⇡ 0, that does not interact, at least strongly, with baryonic matter. Dark energy is
parametrized by a cosmological constant, the simplest model for the present accelerated expansion of our universe.

Therefore, within ⇤CDM, the Cold Dark Matter (CDM) paradigm emerged from the large scale observations
and describes the component responsible for the formation of the structures of our universe through gravitational
clustering. In the CDM model, DM is described by a perfect fluid that must be massive, su�ciently cold, which
means non-relativistic at the time of structure formation, and collisionless in order to explain the observational data
on large linear scales. This coarse-grained description of a CDM is very successful in fitting the linear, large scales
observations from the CMB, LSS, to clusters, and general properties of galaxies.

However, even though we know the hydrodynamical properties of DM on large scales to a very high precision, the
microphysics of the DM component remains unknown. This allows for the creation of a plethora of possible models
of DM. Those models recover the large scale properties of CDM, but invoke very di↵erent objects and phenomena
to play the role of DM.

This incredible variety of viable models of DM can be seen in the huge range of masses those models cover, as
shown in Fig. 1. This figure shows many di↵erent broad classes of DM models, and each of which might contain
many di↵erent specific models. It spans more than 80 orders of magnitude and shows very di↵erent hypothesis for
DM, from new elementary particles, to composite objects (Jacobs et al. 2015; Khlopov 2019), up to astrophysical
size primordial black holes (for a review on recent bounds see (Carr et al. 2020; Carr and Kuhnel 2020)). This shows
us that although we have gathered a lot of knowledge about the gravitational properties of DM, the nature of DM
is still elusive, with the current data still allowing a huge amount of highly di↵erent models.

The possibility that dark matter could be a long lived particle is very appealing. Specially if these candidates
are expected candidates from extensions of the standard model of particle physics. One class of models that became
the preferred candidates for the DM particles are WIMP, weakly interacting massive particles, which represent new
elementary particles that interact with baryons not only gravitationally but also through the weak force or a new
force of comparable strength (Roszkowski et al. 2018; Lin 2019). The strong motivation for this candidate is because
if it is thermally produced in the early universe, the relic abundance of particles that have mass of the order of the
electroweak scale, and a coupling of order one, corresponds precisely to the abundance of DM in our universe. The
possibility that WIMP could also be discovered by direct detection experiments is also an important motivation to
search for this candidate. There is a great experimental e↵ort to constrain the properties of WIMP DM with the
parameter space being very restricted over the past few years. Given the complex phenomenology from the possible
models of WIMP DM and their interaction with the standard model particles, the translation of those bounds to the
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freedom (spin) of ultralight dark matter.
The key to understanding the di↵erences between SDM and VDM is that the wave-

interference e↵ects are smaller in VDM compared to SDM. As a simple example, if we consider
the interference of two plane waves with unit amplitude, then the typical amount of interfer-
ence in VDM is 1/

p
3 times that in SDM. More generally, for a spin-s field, the interference is

1/
p

2s + 1 times smaller than that in SDM.
The rest of the paper is organized as follows. In Sec. 2, we introduce our model for VDM

along with its nonrelativistic limit. We also provide an understanding of interference in VDM
waves, as well as solitons in VDM. We explore binary soliton mergers in Sec. 3, and calculate the
fraction of total mass that remains bound in the final soliton. In Sec. 4, we consider the merger
of N = O(10) solitons. We compare the results of the merger in VDM and SDM, including
core mass, density profiles, size of interference granules, as well as spin angular momentum
density. In Sec. 5, we briefly discuss observational implications including dynamical heating of
stars, cores of dwarf galaxies, and DM substructure. We summarize our main results, as well a
future outlook in 6. Details of the numerical simulation, as well as some details of our analytic
calculations are deferred to the Appendix.

2 Preliminaries

2.1 Model and equations of motion

A (dark) massive spin-1 field Wµ minimally coupled to gravity and without non-gravitational
self-interactions is described by the following action:
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where Gµ⌫ = @µW⌫ � @⌫Wµ. The ‘...’ in (2.1) represents the Standard Model Lagrangian and
other possible dark sector(s). Here, m is the mass of the vector boson. We can represent the
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are interested in the non-relativistic behaviour of the vector field where the spatial variation in
the field is slow compared to the Compton scale �m = ~/mc and we are in the Newtonian gravity
regime. We focus on su�ciently subhorizon dynamics, and hence ignore Hubble expansion. In
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and the corresponding multi-component Schrödinger-Poisson (SP) system of equations of mo-
tion:1
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2 + m � , r
2� = 4⇡Gm † . (2.4)

This is our master equation that we work with throughout this work. We re-iterate that  a
complex 3-tuple with components [ ]i =  i with i = 1, 2, 3 and  † =

P3
i=1 | i|

2. For scalar
dark matter, we have a single component field (which leads to the “usual” Schrödinger-Poisson
system). For a generalization to the spin-s case, see [20].

2.1.1 Conserved Quantities

Note that in our convention the number density, mass density, and spin density are
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Note that spin and orbital angular momentum are separately conserved in the non-relativistic
system. Importantly, by definition, spin angular momentum is identically zero for SDM (but
not VDM). For details of the non-relativistic action and conserved quantities for a general spin-s
bosonic field (including VDM) see [20].

2.1.2 Fluid equations

We can also transform our multicomponent SP system eq. (2.4) into a set of three, coupled fluid
equations (following the Madelung transform commonly used in SDM [22]). With the following
field re-definition,  j =
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1To include the e↵ects of Hubble expansion, simply replace r ! r/a and @t ! @t + 3H/2 where a is the
scalefactor and H = ȧ/a.
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dark matter, we have a single component field (which leads to the “usual” Schrödinger-Poisson
system). For a generalization to the spin-s case, see [20].

2.1.1 Conserved Quantities

Note that in our convention the number density, mass density, and spin density are

N (t, x) =  † , ⇢(t, x) = m † , and s = i~ ⇥ †. (2.5)

The conserved quantities associated with our non-relativistic VDM are:

N =

Z
d3x † , and M = mN, (particle number and rest mass) (2.6)

E =

Z
d3x

h ~2

2m
r †

· r �
Gm2

2
 † 

Z
d3y

4⇡|x � y|
 †(y) (y)

i
, (energy) (2.7)

S = ~
Z

d3x i ⇥ † , (spin angular momentum) (2.8)

L = ~
Z

d3x <
�
i †

r ⇥ x
�
. (orbital angular momentum) (2.9)

Note that spin and orbital angular momentum are separately conserved in the non-relativistic
system. Importantly, by definition, spin angular momentum is identically zero for SDM (but
not VDM). For details of the non-relativistic action and conserved quantities for a general spin-s
bosonic field (including VDM) see [20].

2.1.2 Fluid equations

We can also transform our multicomponent SP system eq. (2.4) into a set of three, coupled fluid
equations (following the Madelung transform commonly used in SDM [22]). With the following
field re-definition,  j =

p
⇢j/m eiSj , and defining the velocity ui = ~rSi/m, we have

@⇢j
@t

+ r · (⇢juj) = 0 ,
@uj

@t
+ (uj · r)uj =

1

m
r(Qj � m�), where j = 1, 2, 3 (2.10)

where Qj = (~2/2m)r2p⇢j/
p
⇢j. The spin density si = i(~/m2)✏ijk

p
⇢j⇢kei(Sj�Sk). The vortic-

ity for each of the three fluids !j = r ⇥ uj = 0 if ⇢j 6= 0. Note that zero vorticity does not
imply zero spin density. If !i 6= 0 for some fixed i (with !j 6=i = 0), then s = siî.

We numerically solve eq. (2.4), but the conservation/fluid equations can be useful in gaining
physical intuition for the behaviour of the system (including for example, vortices [12] in three
fluids.).

1To include the e↵ects of Hubble expansion, simply replace r ! r/a and @t ! @t + 3H/2 where a is the
scalefactor and H = ȧ/a.
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reduced wave interference in VDM
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2.1.3 Scales and scalings

The SP system (Eq. (2.4)) has certain scaling symmetries, which significantly increases the
generality of the results. Specifically, if we have a solution  (t, x) for a system with total mass
M and vector boson mass m, then  ��(t, x) = �5/2�2 (�2�3t, ��2x) is a solution for a system
with mass �M and �m. Moreover,

{m, M} ! {�m, �M} =) {t, r, ⇢, S} ! {t/(�2�3), r/(��2), �4�6⇢, (�/�)S}. (2.11)

For ease of comparison with astrophysical scales, let us define

m20 ⌘
mc2

10�20 eV
, M5 ⌘

M

2.3 ⇥ 105M�
. (2.12)

The Compton length and time scales are then given by

�m = ~/(mc) = 6.4 ⇥ 10�7 kpc/m20, ⌧m = ~/(mc2) = 2.1 ⇥ 10�3 yr/m20. (2.13)

2.2 Wave Interference

Consider the density resulting from the superposition of two unit amplitude plane waves in a
spin-s field (s = 0 for SDM and s = 1 for VDM):  a(x) = ✏(s)a eika·x, where a = 1, 2, and ✏(s)a is
a unit complex vector (a complex 2s + 1-tuple):

| a(x) + b(x)|2 = 2
�
1 + <

⇥
✏(s)†a · ✏(s)a e�i(ka�kb)·x

⇤�
= 2

�
1 + int(s))

�
(2.14)

where 2 is the number of waves and int(s) is the interference term. The subscript “s” indicates
that we are dealing with a spin-s field. Without loss of generality, we set x = 0. The interference
term is simply the cosine of the angle between the two waves (in 4s + 2 dimensions since we
have 2s+1 dimensional complex vectors). The heads of these vectors lie on a unit 4s+1-sphere.
Assuming a uniform distribution on the sphere, the cosine of the angle between these waves
int(s) = x = cos ✓ is distributed p(s)(x) = ⇡�1/2

{�(2s + 1)/�(2s + 1/2)} (1 � x2)(4s�1)/2. While
the mean is zero, the standard deviation

q
hint2(s)i =

1p
2(2s + 1)

, with

q
hint2(1)i

q
hint2(0)i

=
1

p
3
. (2.15)

That is, interference decreases for higher spin fields. This is a reflection of the intuitive fact
that in a larger component field, orthogonal components do not interfere. This simple fact has
important implications for di↵erences between VDM and SDM.
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We numerically solve eq. (2.4), but the conservation/fluid equations can be useful in gaining
physical intuition for the behaviour of the system (including for example, vortices [12] in three
fluids.).

2.1.3 Scales and scalings

The SP system (Eq. (2.4)) has certain scaling symmetries, which significantly increases the
generality of the results. Specifically, if we have a solution  (t, x) for a system with total mass
M and vector boson mass m, then  ��(t, x) = �5/2�2 (�2�3t, ��2x) is a solution for a system
with mass �M and �m. Moreover,

{m, M} ! {�m, �M} =) {t, r, ⇢, S} ! {t/(�2�3), r/(��2), �4�6⇢, (�/�)S}. (2.11)

For ease of comparison with astrophysical scales, let us define

m20 ⌘
mc2

10�20 eV
, M5 ⌘

M

2.3 ⇥ 105M�
. (2.12)

The Compton length and time scales are then given by

�m = ~/(mc) = 6.4 ⇥ 10�7 kpc/m20, ⌧m = ~/(mc2) = 2.1 ⇥ 10�3 yr/m20. (2.13)

2.2 Wave Interference

Consider the density resulting from the superposition of two unit amplitude plane waves in a
spin-s field (s = 0 for SDM and s = 1 for VDM):  a(x) = ✏(s)a eika·x, where a = 1, 2, and ✏(s)a is
a unit complex vector (a complex 2s + 1-tuple):

| a(x) + b(x)|2 = 2
�
1 + <

⇥
✏(s)†a · ✏(s)a e�i(ka�kb)·x

⇤�
= 2

�
1 + int(s))

�
(2.14)

where 2 is the number of waves and int(s) is the interference term. The subscript “s” indicates
that we are dealing with a spin-s field. Without loss of generality, we set x = 0. The interference
term is simply the cosine of the angle between the two waves (in 4s + 2 dimensions since we
have 2s+1 dimensional complex vectors). The heads of these vectors lie on a unit 4s+1-sphere.
Assuming a uniform distribution on the sphere, the cosine of the angle between these waves
int(s) = x = cos ✓ is distributed p(s)(x) = ⇡�1/2

{�(2s + 1)/�(2s + 1/2)} (1 � x2)(4s�1)/2. While
the mean is zero, the standard deviation

q
hint2(s)i =

1p
2(2s + 1)

, with

q
hint2(1)i

q
hint2(0)i

=
1

p
3
. (2.15)

That is, interference decreases for higher spin fields. This is a reflection of the intuitive fact
that in a larger component field, orthogonal components do not interfere. This simple fact has
important implications for di↵erences between VDM and SDM.

– 5 –

where Qj = (~2/2m)r2p⇢j/
p

⇢j. The spin density si = i(~/m2)✏ijk
p

⇢j⇢kei(Sj�Sk). The vortic-
ity for each of the three fluids !j = r ⇥ uj = 0 if ⇢j 6= 0. Note that zero vorticity does not
imply zero spin density. If !i 6= 0 for some fixed i (with !j 6=i = 0), then s = siî.
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soliton ?

•  discovered in nonlinear waves in water in canals (John Scott Russell, 1834)
• optics, hydrodynamics, BECs, high energy physics, and cosmology
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solitons in massive spin-0 (scalar fields)

2.3 Solitons

Ground state solitons in VDM are characterized by the “chemical potential” µ and a unit
complex 3-vector ✏ (with ✏†✏ = 1):

 sol(t, x) =  sol(µ, r)eiµc
2t/~✏, (2.16)

where  sol is a real valued spherically symmetric function that satisfies

� µc2 sol = �~2 r
2

2m
 sol + m� sol, r

2� = 4⇡Gm 2
sol. (2.17)

Note that the profile for a VDM soliton satisfies the same time-independent equation as a SDM
soliton. The mass and spin of this soliton are given by

Msol ⇡ 60.7
m2

pl

m

r
µ

m
, Ssol ⇡ i(✏ ⇥ ✏†)60.7

m2
pl

m2

r
µ

m
~. (2.18)

The special cases of maximally polarized solitons configurations [20] are given by ✏(0) = ẑ
and ✏(1) = (x̂ + iŷ)/

p
2, along with their spatial rotations. Configurations with ✏ = ✏(0) are

linearly polarized, with zero total spin angular momentum. Whereas, configurations with ✏ =
✏(1) have a maximal spin angular momentum |Ssol| = ~Msol/m. For all other solitons, we expect
the spin angular momentum to lie between these maximal values. That is 0  |Ssol|  ~Msol/m.

In [8], the scalar soliton profile was parameterized by a characteristic width rc, so that the
density and mass can be characterized as

⇢sol(r) ⇡ 1.9 ⇥ 107m�2
22

(kpc/rc)
4

(1 + 0.091(r/rc)2)8
M�

kpc3
, Msol ⇡ 2.2 ⇥ 108

✓
kpc

rc

◆
m�2

22 M�. (2.19)

Using eq. (2.19) and eq. (2.17), we have rc = 6.8 ⇥ 10�5m�1
22

p
m/µ kpc. For the solitons in our

simulations we typically have µ/m ⇠ 10�12.
We re-iterate that the soliton profile is characterized by the same function in VDM and

SDM. The analysis is identical with ✏ ! ei' (a phase) for SDM.

3 Two soliton mergers

In this section we explore the merger of 2 solitons, as a warm up to the N -soliton case. For
simplicity, we restrict ourselves to head-on collisions only.

We begin with two identical VDM solitons with a characteristic radius rc ⇡ 1 kpc ⇥

(M4m2
20)

�1 and separation of ⇡ 10rc, with masses Msol,1 = Msol,2. We define M4 = (M/2.2 ⇥

104M�). We give each of them a small v/c ⇡ 3.3 ⇥ 10�7
M4m20 velocity towards each other

(the typical velocity expected in our N soliton simulations at this distance). Each VDM soliton
has its own complex unit vector ✏1,2 (see eq. (2.16)). After the collision, if a new soliton forms,
it has a mass Msol,f = fv(Msol,1 + Msol,2), where 1 � fv is mass fraction that does not end up in
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 sol(t,x) =  sol(µ,x)e
iµc2t/~

lowest energy solution for fixed 
total Mass (in non-relativistic limit) 

�(t,x) =
~p
2mc

<[ sol(µ,x)e
imc2t/~]

Rsol ⇠
r

m

µ

~
mc

µ/m ⌧ 1



“polarized” vector solitons

Polarized Solitons in Higher-Spin Wave Dark Matter
Mudit Jain & Mustafa A.  Amin

arXiv:  2109.04892

x
y

z

� = 0 � = ±1 � = ±2

Stot = ~0 Stot = Stot =

x
y

z

� = 0 � = ±1

Stot = ~0 Stot =

Klein-Gordon (s =0) 

Proca           (s = 1) 

Fierz-Pauli    (s = 2)

2s+1 component 
Schrödinger non-relativistic limit

Ei
ns

te
in

 
   

 + s+1 solitons

s =
0

s = 1

s = 2

spin multiplicity = 0 1 2

Po
iss

on
 

   
 +

x
y

z

� = 0 � = ±1 � = ±2

Stot = ~0 Stot = Stot =

x
y

z

� = 0 � = ±1

Stot = ~0 Stot =

x
y

z

� = 0 � = ±1 � = ±2

Stot = ~0 Stot = Stot =

s = 1

s = 2

vector

tensor

s+ 1 extremally

polarized solitons

� = 0 � = 1 � = 2

macroscopic spin  
N =  # of particles in soliton

Stot/~ = �Nẑ
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and ✏(1) = (x̂ + iŷ)/

p
2, along with their spatial rotations. Configurations with ✏ = ✏(0) are

linearly polarized, with zero total spin angular momentum. Whereas, configurations with ✏ =
✏(1) have a maximal spin angular momentum |Ssol| = ~Msol/m. For all other solitons, we expect
the spin angular momentum to lie between these maximal values. That is 0  |Ssol|  ~Msol/m.

In [8], the scalar soliton profile was parameterized by a characteristic width rc, so that the
density and mass can be characterized as

⇢sol(r) ⇡ 1.9 ⇥ 107m�2
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Using eq. (2.19) and eq. (2.17), we have rc = 6.8 ⇥ 10�5m�1
22

p
m/µ kpc. For the solitons in our

simulations we typically have µ/m ⇠ 10�12.
We re-iterate that the soliton profile is characterized by the same function in VDM and

SDM. The analysis is identical with ✏ ! ei' (a phase) for SDM.

3 Two soliton mergers

In this section we explore the merger of 2 solitons, as a warm up to the N -soliton case. For
simplicity, we restrict ourselves to head-on collisions only.

We begin with two identical VDM solitons with a characteristic radius rc ⇡ 1 kpc ⇥

(M4m2
20)

�1 and separation of ⇡ 10rc, with masses Msol,1 = Msol,2. We define M4 = (M/2.2 ⇥

104M�). We give each of them a small v/c ⇡ 3.3 ⇥ 10�7
M4m20 velocity towards each other

(the typical velocity expected in our N soliton simulations at this distance). Each VDM soliton
has its own complex unit vector ✏1,2 (see eq. (2.16)). After the collision, if a new soliton forms,
it has a mass Msol,f = fv(Msol,1 + Msol,2), where 1 � fv is mass fraction that does not end up in
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freedom (spin) of ultralight dark matter.
The key to understanding the di↵erences between SDM and VDM is that the wave-

interference e↵ects are smaller in VDM compared to SDM. As a simple example, if we consider
the interference of two plane waves with unit amplitude, then the typical amount of interfer-
ence in VDM is 1/

p
3 times that in SDM. More generally, for a spin-s field, the interference is

1/
p

2s + 1 times smaller than that in SDM.
The rest of the paper is organized as follows. In Sec. 2, we introduce our model for VDM

along with its nonrelativistic limit. We also provide an understanding of interference in VDM
waves, as well as solitons in VDM. We explore binary soliton mergers in Sec. 3, and calculate the
fraction of total mass that remains bound in the final soliton. In Sec. 4, we consider the merger
of N = O(10) solitons. We compare the results of the merger in VDM and SDM, including
core mass, density profiles, size of interference granules, as well as spin angular momentum
density. In Sec. 5, we briefly discuss observational implications including dynamical heating of
stars, cores of dwarf galaxies, and DM substructure. We summarize our main results, as well a
future outlook in 6. Details of the numerical simulation, as well as some details of our analytic
calculations are deferred to the Appendix.

2 Preliminaries
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FIG. 3. A visualization of the two distinct extremally polarized vector solitons. The left soliton has vanishing spin density
(� = 0), and W is oscillating along the z-axis. The right soliton has a spin density S = �| |2ẑ with � = 1. The big arrows
inside the soliton represent the direction of the field W , while the little arrows on the circles represent their motion in time.
The total spin |Stot| = �M/m ⇡ 60.7� (mpl/m)2(µ/m)1/2, where M is the total mass of the soliton.
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where M is the total mass of the soliton. The numerical
co-e�cients are obtained from the universal profile
shown in Fig. 2. Heuristically (µ/m)1/2 ⇠ (1/mL)
where L is the characteristic size of the soliton, and
M ⇠ (mpl/m)2/L. Since in the non-relativistic regime
µ/m ⌧ 1, we expect the maximal values of the above
quantities (40) to be bounded from above by the case
µ ⇠ m. Significant deviations from the above expression
can be expected as one approaches this limit [12].

It is also worth noting that these solitons are perfectly
virialized, Ekin/Epot = �1/2, where Ekin is the term
containing gradients, and Epot is the other term (gravi-
tational potential energy) in (25).

1. Spin-0

For the case of spin-0, we have the following real field
solution for �(= F) in (15)

�(x, t) =

p
2 (x)
p

m
cos!t , (43)

where ! ⌘ m�µ, and there is of-course no intrinsic spin
angular momentum.

2. Spin-1

For the massive spin-1 case, we have three distinct
states corresponding to ±1 and 0 polarizations, which,
for n̂ = ẑ, are conveniently represented by the following
orthonormal set of vectors:
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1,ẑ
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1
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2

0

@
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1

A ; ✏(0)

1,ẑ
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A . (44)

satisfying (27). For  (�) =  e
iµt✏(�)

1,ẑ
, we have S =

�| |
2
ẑ where � = 0, ±1. Extremally polarized solitons

in terms of the real-valued vector field W (= F) in (15)
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2.3 Solitons

Ground state solitons in VDM are characterized by the “chemical potential” µ and a unit
complex 3-vector ✏ (with ✏†✏ = 1):

 sol(t, x) =  sol(µ, r)eiµc
2t/~✏, (2.16)

where  sol is a real valued spherically symmetric function that satisfies

� µc2 sol = �~2 r
2

2m
 sol + m� sol, r

2� = 4⇡Gm 2
sol. (2.17)

Note that the profile for a VDM soliton satisfies the same time-independent equation as a SDM
soliton. The mass and spin of this soliton are given by
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m
, Ssol ⇡ i(✏ ⇥ ✏†)60.7
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The special cases of maximally polarized solitons configurations [20] are given by ✏(0) = ẑ
and ✏(1) = (x̂ + iŷ)/

p
2, along with their spatial rotations. Configurations with ✏ = ✏(0) are

linearly polarized, with zero total spin angular momentum. Whereas, configurations with ✏ =
✏(1) have a maximal spin angular momentum |Ssol| = ~Msol/m. For all other solitons, we expect
the spin angular momentum to lie between these maximal values. That is 0  |Ssol|  ~Msol/m.

In [8], the scalar soliton profile was parameterized by a characteristic width rc, so that the
density and mass can be characterized as

⇢sol(r) ⇡ 1.9 ⇥ 107m�2
22

(kpc/rc)
4

(1 + 0.091(r/rc)2)8
M�

kpc3
, Msol ⇡ 2.2 ⇥ 108

✓
kpc

rc

◆
m�2

22 M�. (2.19)

Using eq. (2.19) and eq. (2.17), we have rc = 6.8 ⇥ 10�5m�1
22

p
m/µ kpc. For the solitons in our

simulations we typically have µ/m ⇠ 10�12.
We re-iterate that the soliton profile is characterized by the same function in VDM and

SDM. The analysis is identical with ✏ ! ei' (a phase) for SDM.

3 Two soliton mergers

In this section we explore the merger of 2 solitons, as a warm up to the N -soliton case. For
simplicity, we restrict ourselves to head-on collisions only.

We begin with two identical VDM solitons with a characteristic radius rc ⇡ 1 kpc ⇥

(M4m2
20)

�1 and separation of ⇡ 10rc, with masses Msol,1 = Msol,2. We define M4 = (M/2.2 ⇥

104M�). We give each of them a small v/c ⇡ 3.3 ⇥ 10�7
M4m20 velocity towards each other

(the typical velocity expected in our N soliton simulations at this distance). Each VDM soliton
has its own complex unit vector ✏1,2 (see eq. (2.16)). After the collision, if a new soliton forms,
it has a mass Msol,f = fv(Msol,1 + Msol,2), where 1 � fv is mass fraction that does not end up in
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p
2, along with their spatial rotations. Configurations with ✏ = ✏(0) are

linearly polarized, with zero total spin angular momentum. Whereas, configurations with ✏ =
✏(1) have a maximal spin angular momentum |Ssol| = ~Msol/m. For all other solitons, we expect
the spin angular momentum to lie between these maximal values. That is 0  |Ssol|  ~Msol/m.

In [8], the scalar soliton profile was parameterized by a characteristic width rc, so that the
density and mass can be characterized as

⇢sol(r) ⇡ 1.9 ⇥ 107m�2
22

(kpc/rc)
4

(1 + 0.091(r/rc)2)8
M�

kpc3
, Msol ⇡ 2.2 ⇥ 108

✓
kpc

rc

◆
m�2

22 M�. (2.19)

Using eq. (2.19) and eq. (2.17), we have rc = 6.8 ⇥ 10�5m�1
22

p
m/µ kpc. For the solitons in our

simulations we typically have µ/m ⇠ 10�12.
We re-iterate that the soliton profile is characterized by the same function in VDM and

SDM. The analysis is identical with ✏ ! ei' (a phase) for SDM.

3 Two soliton mergers

In this section we explore the merger of 2 solitons, as a warm up to the N -soliton case. For
simplicity, we restrict ourselves to head-on collisions only.

We begin with two identical VDM solitons with a characteristic radius rc ⇡ 1 kpc ⇥

(M4m2
20)

�1 and separation of ⇡ 10rc, with masses Msol,1 = Msol,2. We define M4 = (M/2.2 ⇥

104M�). We give each of them a small v/c ⇡ 3.3 ⇥ 10�7
M4m20 velocity towards each other

(the typical velocity expected in our N soliton simulations at this distance). Each VDM soliton
has its own complex unit vector ✏1,2 (see eq. (2.16)). After the collision, if a new soliton forms,
it has a mass Msol,f = fv(Msol,1 + Msol,2), where 1 � fv is mass fraction that does not end up in

– 6 –

freedom (spin) of ultralight dark matter.
The key to understanding the di↵erences between SDM and VDM is that the wave-

interference e↵ects are smaller in VDM compared to SDM. As a simple example, if we consider
the interference of two plane waves with unit amplitude, then the typical amount of interfer-
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along with its nonrelativistic limit. We also provide an understanding of interference in VDM
waves, as well as solitons in VDM. We explore binary soliton mergers in Sec. 3, and calculate the
fraction of total mass that remains bound in the final soliton. In Sec. 4, we consider the merger
of N = O(10) solitons. We compare the results of the merger in VDM and SDM, including
core mass, density profiles, size of interference granules, as well as spin angular momentum
density. In Sec. 5, we briefly discuss observational implications including dynamical heating of
stars, cores of dwarf galaxies, and DM substructure. We summarize our main results, as well a
future outlook in 6. Details of the numerical simulation, as well as some details of our analytic
calculations are deferred to the Appendix.

2 Preliminaries

2.1 Model and equations of motion

A (dark) massive spin-1 field Wµ minimally coupled to gravity and without non-gravitational
self-interactions is described by the following action:

S =
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where Gµ⌫ = @µW⌫ � @⌫Wµ. The ‘...’ in (2.1) represents the Standard Model Lagrangian and
other possible dark sector(s). Here, m is the mass of the vector boson. We can represent the
spatial part of the (real-valued) vector field W in terms of a complex vector  as

W (t, x) ⌘
~

p
2mc

<

h
 (t, x)e�imc2t/~

i
, (2.2)

where has dimensions of [length]�3/2. Similarly, W0(t, x) ⌘ ~/
p

2mc <

h
 0(t, x)e�imc2t/~

i
. We

are interested in the non-relativistic behaviour of the vector field where the spatial variation in
the field is slow compared to the Compton scale �m = ~/mc and we are in the Newtonian gravity
regime. We focus on su�ciently subhorizon dynamics, and hence ignore Hubble expansion. In
this case, the dynamics are described by the non-relativistic action for the complex vector field
 and the Newtonian gravitational potential �:

Snr =

Z
dtd3x
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2m
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2� � m � † 

#
, (2.3)
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2.3 Solitons

Ground state solitons in VDM are characterized by the “chemical potential” µ and a unit
complex 3-vector ✏ (with ✏†✏ = 1):

 sol(t, x) =  sol(µ, r)eiµc
2t/~✏, (2.16)

where  sol is a real valued spherically symmetric function that satisfies

� µc2 sol = �~2 r
2

2m
 sol + m� sol, r

2� = 4⇡Gm 2
sol. (2.17)

Note that the profile for a VDM soliton satisfies the same time-independent equation as a SDM
soliton. The mass and spin of this soliton are given by

Msol ⇡ 60.7
m2

pl

m

r
µ

m
, Ssol ⇡ i(✏ ⇥ ✏†)60.7

m2
pl

m2

r
µ

m
~. (2.18)

The special cases of maximally polarized solitons configurations [20] are given by ✏(0) = ẑ
and ✏(1) = (x̂ + iŷ)/

p
2, along with their spatial rotations. Configurations with ✏ = ✏(0) are

linearly polarized, with zero total spin angular momentum. Whereas, configurations with ✏ =
✏(1) have a maximal spin angular momentum |Ssol| = ~Msol/m. For all other solitons, we expect
the spin angular momentum to lie between these maximal values. That is 0  |Ssol|  ~Msol/m.

In [8], the scalar soliton profile was parameterized by a characteristic width rc, so that the
density and mass can be characterized as

⇢sol(r) ⇡ 1.9 ⇥ 107m�2
22

(kpc/rc)
4

(1 + 0.091(r/rc)2)8
M�

kpc3
, Msol ⇡ 2.2 ⇥ 108

✓
kpc

rc

◆
m�2

22 M�. (2.19)

Using eq. (2.19) and eq. (2.17), we have rc = 6.8 ⇥ 10�5m�1
22

p
m/µ kpc. For the solitons in our

simulations we typically have µ/m ⇠ 10�12.
We re-iterate that the soliton profile is characterized by the same function in VDM and

SDM. The analysis is identical with ✏ ! ei' (a phase) for SDM.

3 Two soliton mergers

In this section we explore the merger of 2 solitons, as a warm up to the N -soliton case. For
simplicity, we restrict ourselves to head-on collisions only.

We begin with two identical VDM solitons with a characteristic radius rc ⇡ 1 kpc ⇥

(M4m2
20)

�1 and separation of ⇡ 10rc, with masses Msol,1 = Msol,2. We define M4 = (M/2.2 ⇥

104M�). We give each of them a small v/c ⇡ 3.3 ⇥ 10�7
M4m20 velocity towards each other

(the typical velocity expected in our N soliton simulations at this distance). Each VDM soliton
has its own complex unit vector ✏1,2 (see eq. (2.16)). After the collision, if a new soliton forms,
it has a mass Msol,f = fv(Msol,1 + Msol,2), where 1 � fv is mass fraction that does not end up in
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p
2, along with their spatial rotations. Configurations with ✏ = ✏(0) are

linearly polarized, with zero total spin angular momentum. Whereas, configurations with ✏ =
✏(1) have a maximal spin angular momentum |Ssol| = ~Msol/m. For all other solitons, we expect
the spin angular momentum to lie between these maximal values. That is 0  |Ssol|  ~Msol/m.

In [8], the scalar soliton profile was parameterized by a characteristic width rc, so that the
density and mass can be characterized as

⇢sol(r) ⇡ 1.9 ⇥ 107m�2
22

(kpc/rc)
4

(1 + 0.091(r/rc)2)8
M�

kpc3
, Msol ⇡ 2.2 ⇥ 108

✓
kpc

rc

◆
m�2

22 M�. (2.19)

Using eq. (2.19) and eq. (2.17), we have rc = 6.8 ⇥ 10�5m�1
22

p
m/µ kpc. For the solitons in our

simulations we typically have µ/m ⇠ 10�12.
We re-iterate that the soliton profile is characterized by the same function in VDM and

SDM. The analysis is identical with ✏ ! ei' (a phase) for SDM.

3 Two soliton mergers

In this section we explore the merger of 2 solitons, as a warm up to the N -soliton case. For
simplicity, we restrict ourselves to head-on collisions only.

We begin with two identical VDM solitons with a characteristic radius rc ⇡ 1 kpc ⇥

(M4m2
20)

�1 and separation of ⇡ 10rc, with masses Msol,1 = Msol,2. We define M4 = (M/2.2 ⇥

104M�). We give each of them a small v/c ⇡ 3.3 ⇥ 10�7
M4m20 velocity towards each other

(the typical velocity expected in our N soliton simulations at this distance). Each VDM soliton
has its own complex unit vector ✏1,2 (see eq. (2.16)). After the collision, if a new soliton forms,
it has a mass Msol,f = fv(Msol,1 + Msol,2), where 1 � fv is mass fraction that does not end up in

– 6 –

9

x

y

z

� = 0 � = ±1 � = ±2

Stot = ~0 Stot = Stot =

FIG. 4. The three distinct extremally polarized tensor solitons. For visualization, we plot the eigenvectors of the traceless, 3⇥3
matrix H

(�) representing the polarized solitons in the massive spin-2 field. The eignevectors are scaled by their corresponding
eigenvalues. The leftmost soliton has a vanishing spin density, with each eigenvector (along the co-ordinate axes) of H

(�)

oscillating in phase. The middle soliton has a spin density S = �| |2ẑ with � = 1. The rightmost soliton has a spin density
S = �| |2ẑ with � = 2. The total spin |Stot| = �M/m ⇡ 60.7� (mpl/m)2(µ/m)1/2 which can be macroscopically large for
� 6= 0.
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In fig. 3 we show these extremally polarized solitons.

We note that in [13], the authors provide ground
state solitons  =  (r)eiµt{wx, wy, wz} where wi are
components of a complex unit vector. For the extremally
polarized cases, this corresponds to the choices (44) for
their wi. Our focus on the spin aspect of fields dictated
this choice, which naturally leads to extremally polarized
solitons. More general solitons with arbitrary wi are
discussed in IVB.

3. Spin-2

For the massive spin-2 case we have 5 polarization
states corresponding to spin multiplicities ±2, ±1, and 0.

Again, for n̂ = ẑ, these are represented by the following
orthonormal (and trace free) set of tensors10
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1

A (46)

For  (�) =  e
iµt✏(�)

2,ẑ
, we have the spin density S =

�| |
2
ẑ where � = 0, ±1, ±2.

The five extremally polarized solitons in the real-
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These can be obtained through tensor products of the spin-1

polarization vectors: ✏
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p
6.

freedom (spin) of ultralight dark matter.
The key to understanding the di↵erences between SDM and VDM is that the wave-

interference e↵ects are smaller in VDM compared to SDM. As a simple example, if we consider
the interference of two plane waves with unit amplitude, then the typical amount of interfer-
ence in VDM is 1/

p
3 times that in SDM. More generally, for a spin-s field, the interference is

1/
p

2s + 1 times smaller than that in SDM.
The rest of the paper is organized as follows. In Sec. 2, we introduce our model for VDM

along with its nonrelativistic limit. We also provide an understanding of interference in VDM
waves, as well as solitons in VDM. We explore binary soliton mergers in Sec. 3, and calculate the
fraction of total mass that remains bound in the final soliton. In Sec. 4, we consider the merger
of N = O(10) solitons. We compare the results of the merger in VDM and SDM, including
core mass, density profiles, size of interference granules, as well as spin angular momentum
density. In Sec. 5, we briefly discuss observational implications including dynamical heating of
stars, cores of dwarf galaxies, and DM substructure. We summarize our main results, as well a
future outlook in 6. Details of the numerical simulation, as well as some details of our analytic
calculations are deferred to the Appendix.

2 Preliminaries

2.1 Model and equations of motion

A (dark) massive spin-1 field Wµ minimally coupled to gravity and without non-gravitational
self-interactions is described by the following action:
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where Gµ⌫ = @µW⌫ � @⌫Wµ. The ‘...’ in (2.1) represents the Standard Model Lagrangian and
other possible dark sector(s). Here, m is the mass of the vector boson. We can represent the
spatial part of the (real-valued) vector field W in terms of a complex vector  as

W (t, x) ⌘
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2mc
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h
 (t, x)e�imc2t/~
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where has dimensions of [length]�3/2. Similarly, W0(t, x) ⌘ ~/
p

2mc <

h
 0(t, x)e�imc2t/~

i
. We

are interested in the non-relativistic behaviour of the vector field where the spatial variation in
the field is slow compared to the Compton scale �m = ~/mc and we are in the Newtonian gravity
regime. We focus on su�ciently subhorizon dynamics, and hence ignore Hubble expansion. In
this case, the dynamics are described by the non-relativistic action for the complex vector field
 and the Newtonian gravitational potential �:

Snr =
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- all lowest energy for fixed M 

- bases for partially-polarized solitons
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2.3 Solitons

Ground state solitons in VDM are characterized by the “chemical potential” µ and a unit
complex 3-vector ✏ (with ✏†✏ = 1):
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where  sol is a real valued spherically symmetric function that satisfies
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Note that the profile for a VDM soliton satisfies the same time-independent equation as a SDM
soliton. The mass and spin of this soliton are given by
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The special cases of maximally polarized solitons configurations [20] are given by ✏(0) = ẑ
and ✏(1) = (x̂ + iŷ)/

p
2, along with their spatial rotations. Configurations with ✏ = ✏(0) are

linearly polarized, with zero total spin angular momentum. Whereas, configurations with ✏ =
✏(1) have a maximal spin angular momentum |Ssol| = ~Msol/m. For all other solitons, we expect
the spin angular momentum to lie between these maximal values. That is 0  |Ssol|  ~Msol/m.

In [8], the scalar soliton profile was parameterized by a characteristic width rc, so that the
density and mass can be characterized as
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Using eq. (2.19) and eq. (2.17), we have rc = 6.8 ⇥ 10�5m�1
22

p
m/µ kpc. For the solitons in our

simulations we typically have µ/m ⇠ 10�12.
We re-iterate that the soliton profile is characterized by the same function in VDM and

SDM. The analysis is identical with ✏ ! ei' (a phase) for SDM.
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a different higher energy soliton: the “hedgehogs”

11

FIG. 5. The left panel shows collisions between vector solitons that can be replicated by solitons in a single scalar field. The
right panel shows examples of collisions which cannot be replicated by solitons in a single scalar field.

D. Beyond ground-state solitons

Spherically symmetric, single node solitons for the
spin-1 and spin-2 fields are the ‘hedgehog’-like configura-
tions, with Cartesian components [13, 14]11

Wj(x, t) = f(r)
x
j

r
cos!t ,

Hij(x, t) = g(r)

✓
3
x
i
x
j

r2
� �ij

◆
cos!t , (52)

where f(0) = g(0) = 0. That is, there is a node in the
profile at the origin. Both hedgehogs have higher ener-
gies (at a fixed particle number) compared to the ground
state solitons discussed earlier, and have zero spin and
orbital angular momentum. Explicitly, after fixing the
particle number to be the same as the polarized solitons
(Ns

hh
= N), we have E

s=1

hh
⇡ 0.33E and E

s=2

hh
⇡ 0.17E

where E < 0 and N are given in (40). Note that
�E = E

s

hh
� E > 0. A linear stability analysis was pro-

vided in [14] to argue that the hedgehogs in spin-2 case
are unstable and might transition to p-solitons. As with
scalar solitons, excited configurations with additional
nodes and orbital angular momentum might be pos-
sible with higher-spin fields, albeit with shorter lifetimes.

So far we have only allowed for spherically symmet-
ric energy densities. It is possible to construct non-
spherically symmetric configurations, such as domain
walls, strings/vortices etc. [13]; the possible space of ex-
tended field configurations with higher-spin fields is likely
to be quite rich. The full classification is beyond the
scope of the present paper, but it is worth pursuing since
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it might provide new avenues to probe these higher-spin
fields.

V. DISTINGUISHABILITY & PROBES OF
POLARIZED SOLITONS

Having shown that we have quite a rich space of soliton
solutions, we briefly discuss some of the phenomenolog-
ical implications. Alongside these implications, we ad-
dress some conceptual questions: Can higher-spin soli-
tons be distinguished from scalar solitons? Can solitons
with di↵erent polarizations be distinguished using only
gravitational interactions?

A. Gravitational interactions

Let us consider collisions between solitons A and B

in a spin-s field. We show below that only if the two
solitons di↵er by just an overall phase, can the collision be
mimicked by two scalar solitons. Otherwise, in general,
the higher-spin nature of the fields will leave an imprint in
the observables related to the collision of the two solitons.

For simplicity, let us consider a collision between two
extremally polarized solitons, initially far away from each
other, such that the field admits the following ansatz
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FIG. 5. The left panel shows collisions between vector solitons that can be replicated by solitons in a single scalar field. The
right panel shows examples of collisions which cannot be replicated by solitons in a single scalar field.
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vided in [14] to argue that the hedgehogs in spin-2 case
are unstable and might transition to p-solitons. As with
scalar solitons, excited configurations with additional
nodes and orbital angular momentum might be pos-
sible with higher-spin fields, albeit with shorter lifetimes.

So far we have only allowed for spherically symmet-
ric energy densities. It is possible to construct non-
spherically symmetric configurations, such as domain
walls, strings/vortices etc. [13]; the possible space of ex-
tended field configurations with higher-spin fields is likely
to be quite rich. The full classification is beyond the
scope of the present paper, but it is worth pursuing since
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ical implications. Alongside these implications, we ad-
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tons be distinguished from scalar solitons? Can solitons
with di↵erent polarizations be distinguished using only
gravitational interactions?

A. Gravitational interactions

Let us consider collisions between solitons A and B

in a spin-s field. We show below that only if the two
solitons di↵er by just an overall phase, can the collision be
mimicked by two scalar solitons. Otherwise, in general,
the higher-spin nature of the fields will leave an imprint in
the observables related to the collision of the two solitons.

For simplicity, let us consider a collision between two
extremally polarized solitons, initially far away from each
other, such that the field admits the following ansatz
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distinguishable via collisions, 
non-grav. couplings, g-waves etc. 

Polarized Solitons in Higher-Spin Wave Dark Matter
Mudit Jain & Mustafa A.  Amin

arXiv:  2109.04892

x
y

z

� = 0 � = ±1 � = ±2

Stot = ~0 Stot = Stot =

x
y

z

� = 0 � = ±1

Stot = ~0 Stot =

Klein-Gordon (s =0) 

Proca           (s = 1) 

Fierz-Pauli    (s = 2)

2s+1 component 
Schrödinger non-relativistic limit

Ei
ns

te
in

 
   

 + s+1 solitons

s =
0

s = 1

s = 2

spin multiplicity = 0 1 2

Po
iss

on
 

   
 +

x
y

z

� = 0 � = ±1 � = ±2

Stot = ~0 Stot = Stot =

x
y

z

� = 0 � = ±1

Stot = ~0 Stot =

x
y

z

� = 0 � = ±1 � = ±2

Stot = ~0 Stot = Stot =

s = 1

s = 2

vector

tensor

s+ 1 extremally

polarized solitons

� = 0 � = 1 � = 2

macroscopic spin  
N =  # of particles in soliton

Stot/~ = �Nẑ
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distinguishable via collisions, 
non-grav. couplings, g-waves etc. 

c0

Polarized Solitons in Higher-Spin Wave Dark Matter
Mudit Jain & Mustafa A.  Amin

arXiv:  2109.04892

x
y

z

� = 0 � = ±1 � = ±2

Stot = ~0 Stot = Stot =

x
y

z

� = 0 � = ±1

Stot = ~0 Stot =

Klein-Gordon (s =0) 

Proca           (s = 1) 

Fierz-Pauli    (s = 2)

2s+1 component 
Schrödinger non-relativistic limit

Einstein 

    + s+1 solitons

s =0

s = 1

s =
 2

spin multiplicity = 0 1 2

Poisson 

    +

x
y

z

� = 0 � = ±1 � = ±2

Stot = ~0 Stot = Stot =

x
y

z

� = 0 � = ±1

Stot = ~0 Stot =

x
y

z

� = 0 � = ±1 � = ±2

Stot = ~0 Stot = Stot =

s = 1

s = 2

vector

tensor

s+ 1 extremally

polarized solitons

� = 0 � = 1 � = 2

macroscopic spin  
N =  # of particles in soliton

Stot/~ = �Nẑ
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distinguishable via collisions, 
non-grav. couplings, g-waves etc. 

Polarized Solitons in Higher-Spin Wave Dark Matter
Mudit Jain & Mustafa A.  Amin

arXiv:  2109.04892

x
y

z

� = 0 � = ±1 � = ±2

Stot = ~0 Stot = Stot =

x
y

z

� = 0 � = ±1

Stot = ~0 Stot =

Klein-Gordon (s =0) 

Proca           (s = 1) 

Fierz-Pauli    (s = 2)

2s+1 component 
Schrödinger non-relativistic limit

Ei
ns

te
in

 
   

 + s+1 solitons

s =
0

s = 1

s = 2

spin multiplicity = 0 1 2

Po
iss

on
 

   
 +

x
y

z

� = 0 � = ±1 � = ±2

Stot = ~0 Stot = Stot =

x
y

z

� = 0 � = ±1

Stot = ~0 Stot =

x
y

z

� = 0 � = ±1 � = ±2

Stot = ~0 Stot = Stot =

s = 1

s = 2

vector

tensor

s+ 1 extremally

polarized solitons

� = 0 � = 1 � = 2

macroscopic spin  
N =  # of particles in soliton

Stot/~ = �Nẑ
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distinguishable via collisions, 
non-grav. couplings, g-waves etc. 

Polarized Solitons in Higher-Spin Wave Dark Matter
Mudit Jain & Mustafa A.  Amin

arXiv:  2109.04892

x
y

z

� = 0 � = ±1 � = ±2

Stot = ~0 Stot = Stot =

x
y

z

� = 0 � = ±1

Stot = ~0 Stot =

Klein-Gordon (s =0) 

Proca           (s = 1) 

Fierz-Pauli    (s = 2)

2s+1 component 
Schrödinger non-relativistic limit

Ei
ns

te
in

 
   

 + s+1 solitons

s =
0

s = 1

s = 2

spin multiplicity = 0 1 2

Po
iss

on
 

   
 +

x
y

z

� = 0 � = ±1 � = ±2

Stot = ~0 Stot = Stot =

x
y

z

� = 0 � = ±1

Stot = ~0 Stot =

x
y

z

� = 0 � = ±1 � = ±2

Stot = ~0 Stot = Stot =

s = 1

s = 2

vector

tensor

s+ 1 extremally

polarized solitons

� = 0 � = 1 � = 2

macroscopic spin  
N =  # of particles in soliton

Stot/~ = �Nẑ
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distinguishable via collisions, 
non-grav. couplings, g-waves etc. 

Polarized Solitons in Higher-Spin Wave Dark Matter
Mudit Jain & Mustafa A.  Amin

arXiv:  2109.04892

x
y

z

� = 0 � = ±1 � = ±2

Stot = ~0 Stot = Stot =

x
y

z

� = 0 � = ±1

Stot = ~0 Stot =

Klein-Gordon (s =0) 

Proca           (s = 1) 

Fierz-Pauli    (s = 2)

2s+1 component 
Schrödinger non-relativistic limit

Ei
ns

te
in

 
   

 + s+1 solitons

s =
0

s = 1

s = 2

spin multiplicity = 0 1 2

Po
iss

on
 

   
 +

x
y

z

� = 0 � = ±1 � = ±2

Stot = ~0 Stot = Stot =

x
y

z

� = 0 � = ±1

Stot = ~0 Stot =

x
y

z

� = 0 � = ±1 � = ±2

Stot = ~0 Stot = Stot =

s = 1

s = 2

vector

tensor

s+ 1 extremally

polarized solitons

� = 0 � = 1 � = 2

macroscopic spin  
N =  # of particles in soliton

Stot/~ = �Nẑ
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vector vs. scalar DM: 
two key differences 

interference 

polarized solitons

3+1 dimensional simulations



V
D

M
SD

M

t/tdyn �!

0.340 1.36

Figure 1: Starting with a collection of N = 21 solitons, we eventually evolve to an an approximately
spherically symmetric configuration with a central core surrounded by a halo. Top row is vector dark
matter (VDM), bottom row is scalar dark matter (SDM). For identical initial conditions in density,
the central core is less dense in VDM compared to SDM and the halo shows less interference in VDM
compared to SDM. The core to halo transition is also smoother in VDM compared to SDM. In the
above images, the color represents the projected mass density in simulation volume. Lighter colors
correspond to higher mass density.

note that that our fs ⇡ 0.61 is less than ⇡ 0.7 quoted in the literature [23], which could be
due to di↵erent ways in which the mass loss fraction is calculated as well as the initial relative
velocities used.

4 Many soliton mergers

We begin with N ⇠ O[10] solitons whose positions are chosen randomly within our simulation
volume. As we let the system evolve, gravitational interactions bring the solitons closer. Field
interference and nonlinear evolution leads to a complex transient phase, after which, the density
settles into an approximately spherically symmetric density configuration. The typical time-
scale of this transient phase is less than the dynamical time scale tdyn = 1/

p
G⇢̄ of our systen.
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Difference between  

Vector &  Scalar Dark Matter
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Figure 3: Left panel (3a): Angle averaged late time central core+halo profiles for ⇠ 160 simulations
spanning a range of initial conditions including di↵erent total mass, initial number of solitons, locations
of solitons, phases and spins of solitons (i.e. ⌅ spans an order of magnitude). The radial coordinate
and density are normalized by rc and ⇢(r = 0) to highlight the di↵erences in profile shape of VDM and
SDM coalesced cores independent of the initial conditions. Solid lines indicate average over di↵erent
simulations, the shaded regions indicate the spread in all profiles. A marker at r/rc ⇡ 3.5 shows a
general transition between core/halo regions in both SDM and VDM scenarios. Right panel (3b): Final
radial density from 11 simulations (time averaged over roughly 1 period of radial oscillations of the
core), where the initial mass is narrowly distributed around Mtot = 2.3 ⇥ 105 M� ⇥ M5, the size of
the simulation volume is L = 100 kpc ⇥ (M5m

2
20)

�1 and the number of initial solitons was fixed at
21. Solitons in VDM are less dense, and wider than those in SDM for identical initial conditions. An
approximately ⇠ r

�3 power law is see for both SDM and VDM at large radii.

Beginning with N solitons of mass M i
sol each, and distributed randomly throughout the

box, the total energy is (scaled to yield a dimensionless scale-invariant measure ⌅)

⌅ ⌘
|Etot|

M3
tot(Gm/~)2

⇡
1

M3
tot(Gm/~)2


N

G(M i
sol)

2

2Ri
sol

+ (1.88)N(N � 1)
G(M i

sol)
2

L

�
, (4.1)

⇡
1

20N2
. (4.2)

In the first line, L is the box size and Ri
sol ⌧ L is the initial solitons’ radius. In the last equality,

we have assumed that the first term in eq. (4.1) dominates over the second.4

4Note that R
i
sol ⌘ 9.95~2

/(GM
i
solm

2) contains 99% of the soliton’s mass, and we also include gradient con-
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radial density profiles

scalar vs. vector dark matter

•    less dense & broader core
• smoother transition to r -3 tail
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Figure 4: The 1-point function (normalized histogram of density) of a SDM and a VDM simulation,
each with Mtot = 2.3 ⇥ 105 M� ⇥ M5. At low densities compared to the mean (⇢/⇢̄ ⌧ 1), we see
important qualitative di↵erences between SDM and VDM (4a) (left panel), with a dearth of ultra-low
density regions in VDM due to reduced interference. In the right panel, (4b), we see a lack of ultra-
high densities in VDM, again due to reduced interference. The general PDF shapes of SDM and VDM
densities, especially at low densities, are found to be robust for a wide range of initial conditions.

• For both VDM and SDM, a soliton-like core is clearly visible for r/rc . 1. At r/rc & 1,
the profile starts dropping rapidly. A transition from core to an r�e tail, occurs between
1 . r/rc . 10. For r/rc & 10, we see ⇢/⇢c / (r/rc)�3.6 The transition region is
qualitatively delineated by r/rc = 3.5 in Fig. 3a.

The key distinguishing feature between VDM and SDM is that

• the transition from the soliton-like profile to r�3 profile occurs a lot more smoothly in
VDM compared to SDM. This shape information is relatively independent of our initial
conditions.

The power law regime joins the soliton profile for r/rc ⇠ 1 in case of VDM. For SDM, the
soliton-like profile persists for r/rc & 1, after which there is a transitory power law (shallower
than r�3), before joining the r�3 tail at r/rc ⇠ 10.

6The periodic box makes it di�cult to trust the detailed power law when the radii become comparable to the
size of the box, so the r

�3 is not robust.
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same length scale of interference patterns 

�dB(VDM)⇡�dB(SDM)



but different amplitude of density fluctuations

(�⇢/⇢)VDM ⇡ (�⇢/⇢)SDM/
p
3 generalization 3 —> (2s+1)

also see similar result for multiple scalar fields case: 
Gosenca et. al (2023)



gravitational implications (examples)

- dynamical heating of stars 

MA, Jain, Karur & Mocz (2022)

m & 1

(2s+ 1)1/3
⇥
3⇥ 10�19eV

⇤

Dalal & Kratsov (2022)



gravitational implications (examples)

- lensing 

m & 1

(2s+ 1)

⇥
4.4⇥ 10�21 eV

⇤

Fuzzy dark matter and MG J0751+2716 L3

m� = 3.2 � 10�22 eV, fDM = 0.63
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m� = 1.5 � 10�21 eV, fDM = 0.74 m� = 6.5 � 10�21 eV, fDM = 0.66 m� = 2.8 � 10�20 eV, fDM = 0.65
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Figure 1. Example surface mass density maps (^ , in units of the critical density ⌃2) with the model lensed images in orange contours (top row) and the
corresponding reconstructed source surface brightness maps (� , in units of the peak surface brightness �max; bottom row) for three random realizations of MG
J0751+2716 in an FDM cosmology. Critical curves and caustics are plotted in white. The lensing e�ect of the FDM granules is apparent: The critical curves
wiggle back and forth across the lensed arcs, which would require the presence of multiple images of the same region of the source along the arc. In the absence
of such features in the observed data, the morphology of the inferred source is disrupted as the model attempts to fit the observation.

form of a Gaussian random field with correlation length oj and a
position-dependent variance given by

hX^2
i =
oj

p
c

⌃2
2

π
d2

DM 3;, (2)

where the integral is along the line of sight, dDM is the smooth 3D
density profile of the dark matter component of the lens, ⌃2 is the
lensing critical surface mass density, and oj = \/(<jfE ) corre-
sponds to the (reduced) de Broglie wavelength of the dark matter
particle. In practice, we generate realizations of X^ by first generat-
ing a white noise field modulated by the variance in equation (2),
then correlating using a Gaussian kernel of width oj via an FFT-
based convolution. We then solve for the resulting perturbation to the
lensing potential X using another FFT.

The correlation length oj is inversely proportional to fE , the ve-
locity dispersion of the dark matter in the lens galaxy, which is a proxy
for the depth of the gravitational potential well in which the dark mat-
ter field resides. There are no resolved kinematic data on this lens
system, so it must be estimated using the Einstein radius of the lens.
Alloin et al. (2007) found fE = 101 km s�1, using a cored pseudo-
isothermal density profile. We derive fE = 108 km s�1, assuming
a singular isothermal profile. To accommodate this uncertainty, we
draw fE from a uniform prior between 100 and 110 km s�1 (see
Table 1).

An additional source of uncertainty in generating FDM lens real-
izations is the dark matter fraction in the lens, 5DM, which directly
determines the granule amplitude. Our composite smooth model
from Powell et al. (2022) gives a baryonic mass (measured within
the critical curve) of 8.6⇥109 M� . This number is in good agreement
with observations by the Hubble Space Telescope (HST) WFPC2 as
part of the CfA-Arizona Space Telescope LEns Survey (CASTLES)
project (e.g. Kochanek et al. 2000); a fit to the +- and �-band lens
galaxy photometry using �������� (Blanton & Roweis 2007) yields

a baryonic mass of 8.0⇥109 M� . The total projected mass of the lens
within the critical curve is set by the Einstein radius at 2.7⇥1010 M� .
Allowing for an uncertainty of ±0.2 dex in the baryonic mass, we
adopt a uniform prior on 5DM between 0.5 and 0.8 (see Table 1).
This prior range is consistent with dark matter fractions in massive
early-type lens galaxies studied by Oldham & Auger (2018).

We assume that all small-scale inhomogeneities in the lensing
convergence are produced by FDM granules in the lens itself. We do
not explicitly consider the e�ects of a central soliton core in the FDM
halo; such a core would be much smaller than the Einstein radius of
the lens (Schive et al. 2014; Chan et al. 2020), and would therefore be
absorbed in the smooth lens model. Unlike the analysis by Laroche
et al. (2022), we do not include subhalo or line-of-sight (LOS) halo
populations in our lens model. This choice is justified because in
the mass range of <j ⇠ 10�22 to 10�20.5 eV, in which our analysis
is most sensitive, an FDM cosmology cannot produce subhaloes or
LOS haloes that are highly concentrated or numerous enough to
mimic the signal of FDM granules (Schive et al. 2016; see also Fig.
5 of Laroche et al. 2022); indeed, any large-scale contribution to the
lens model by di�use low-mass haloes would already be accounted
for in the smooth model. The practical e�ects of excluding low-mass
haloes from our model are the loss of some sensitivity to <j and the
inability to place an upper bound on <j .

3 RESULTS

We show example convergence maps for three FDM lens realizations
with their corresponding maximum a-posteriori (MAP) source sur-
face brightness reconstructions in Fig. 1. For <j . 10�21 eV, the
critical curves (plotted in white) cross back and forth many times
across the lensed arcs. Such a configuration of critical curves would
imply the presence of many images of alternating parity along the arc

MNRAS 000, 1–5 (2019)

Powell et. al (2023)
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FIG. 1. A visual summary of some of the main results of our paper.

novel class of extremally polarized solitons with spin
Stot/~ = �M/m which can be macroscopically large for
M � m. Here, m is the mass of the field, M is the
mass of the soliton and � is the spin multiplicity. These
coherent solitons (along with fractionally polarized
ones mentioned earlier) might open up new avenues for
observationally probing higher-spin fields.

We find that even within Newtonian gravity it might
be possible to distinguish interacting solitons with dif-
ferent polarizations. Going beyond Newtonian gravity,
which we do not pursue here, might remove degeneracies
between di↵erent polarizations of the higher-spin fields
even further. We also discuss possibilities of probing
this higher-spin dark matter via non-gravitational
interactions, taking advantage of the polarization state
of the solitons.

The paper is organized as follows. In section II we
discuss our model for the case of dark scalar, vector,
and tensor massive fields, leaving additional details in
Appendix A. In section III we provide the e↵ective non-
relativistic action (which is the Schrödinger-Poisson sys-
tem) for these dark integer spin fields, and discuss the
various symmetries of the action. In section IV we dis-
cuss the gravitationally bound solitons. In section V we
discuss their distinguishability, primarily within Newto-
nian gravity, and also mention other non-gravitational
couplings that can probe the spin nature of the fields. In
section VI we summarize and also highlight some future
directions worth investigating.

II. MODELS

Our matter Lagrangian consists of the usual Standard
Model (SM) sector, along with some dark sector that
includes additional massive spin-0, spin-1, or even spin-2
fields. We take these fields to be real valued.

Explicitly, our general action has the form

S = SEH + Sdark + Svis , (1)

where SEH is the gravity sector, Sdark is some dark
sector (incluing dark integer spin fields), and Svis is
the visible sector (comprising of the SM). Our focus
is only on the gravity + dark sector in this paper.
We consider perturbations of di↵erent fields around
some background metric ḡµ⌫ which leads to the usual
massless spin-2 fluctuations: hµ⌫ (the graviton), along
with other perturbations in di↵erent fields. We will
focus on a given spin-s field + gravity, instead of
considering massive spin-0, 1 and 2 together, although
our formalism can accomodate the latter scenario as well.

For most part, we are interested in sub-horizon
physics where length scales associated with config-
urations of these dark fields are much smaller than
the Hubble horizon. As a result, we ignore Hub-
ble expansion, and take the background metric to be2

ḡµ⌫ = ⌘µ⌫ = diag(1, �1, �1, �1). We also take ~ = c = 1.

In the next three subsections, we provide the general
action up-to quadratic order in the fields of interest, along
with leading order gravitational interactions. For the
non-relativistic limit that we are interested in, the lead-
ing order actions provided here are su�cient. The full
nonlinear actions are discussed in the Appendix.

A. Spin-0

The quadratic (free) action for the spin-0 field �, and
metric fluctuations hµ⌫ , along with their leading interac-

2
We use ḡµ⌫ = diag(1,�a2(t),�a2(t),�a2(t)) for an expanding

universe when needed. Here, a(t) is the scale factor normalized

to unity today.
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Stot/~ = �M/m which can be macroscopically large for
M � m. Here, m is the mass of the field, M is the
mass of the soliton and � is the spin multiplicity. These
coherent solitons (along with fractionally polarized
ones mentioned earlier) might open up new avenues for
observationally probing higher-spin fields.

We find that even within Newtonian gravity it might
be possible to distinguish interacting solitons with dif-
ferent polarizations. Going beyond Newtonian gravity,
which we do not pursue here, might remove degeneracies
between di↵erent polarizations of the higher-spin fields
even further. We also discuss possibilities of probing
this higher-spin dark matter via non-gravitational
interactions, taking advantage of the polarization state
of the solitons.

The paper is organized as follows. In section II we
discuss our model for the case of dark scalar, vector,
and tensor massive fields, leaving additional details in
Appendix A. In section III we provide the e↵ective non-
relativistic action (which is the Schrödinger-Poisson sys-
tem) for these dark integer spin fields, and discuss the
various symmetries of the action. In section IV we dis-
cuss the gravitationally bound solitons. In section V we
discuss their distinguishability, primarily within Newto-
nian gravity, and also mention other non-gravitational
couplings that can probe the spin nature of the fields. In
section VI we summarize and also highlight some future
directions worth investigating.

II. MODELS

Our matter Lagrangian consists of the usual Standard
Model (SM) sector, along with some dark sector that
includes additional massive spin-0, spin-1, or even spin-2
fields. We take these fields to be real valued.

Explicitly, our general action has the form

S = SEH + Sdark + Svis , (1)

where SEH is the gravity sector, Sdark is some dark
sector (incluing dark integer spin fields), and Svis is
the visible sector (comprising of the SM). Our focus
is only on the gravity + dark sector in this paper.
We consider perturbations of di↵erent fields around
some background metric ḡµ⌫ which leads to the usual
massless spin-2 fluctuations: hµ⌫ (the graviton), along
with other perturbations in di↵erent fields. We will
focus on a given spin-s field + gravity, instead of
considering massive spin-0, 1 and 2 together, although
our formalism can accomodate the latter scenario as well.

For most part, we are interested in sub-horizon
physics where length scales associated with config-
urations of these dark fields are much smaller than
the Hubble horizon. As a result, we ignore Hub-
ble expansion, and take the background metric to be2

ḡµ⌫ = ⌘µ⌫ = diag(1, �1, �1, �1). We also take ~ = c = 1.

In the next three subsections, we provide the general
action up-to quadratic order in the fields of interest, along
with leading order gravitational interactions. For the
non-relativistic limit that we are interested in, the lead-
ing order actions provided here are su�cient. The full
nonlinear actions are discussed in the Appendix.

A. Spin-0

The quadratic (free) action for the spin-0 field �, and
metric fluctuations hµ⌫ , along with their leading interac-
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novel class of extremally polarized solitons with spin
Stot/~ = �M/m which can be macroscopically large for
M � m. Here, m is the mass of the field, M is the
mass of the soliton and � is the spin multiplicity. These
coherent solitons (along with fractionally polarized
ones mentioned earlier) might open up new avenues for
observationally probing higher-spin fields.

We find that even within Newtonian gravity it might
be possible to distinguish interacting solitons with dif-
ferent polarizations. Going beyond Newtonian gravity,
which we do not pursue here, might remove degeneracies
between di↵erent polarizations of the higher-spin fields
even further. We also discuss possibilities of probing
this higher-spin dark matter via non-gravitational
interactions, taking advantage of the polarization state
of the solitons.

The paper is organized as follows. In section II we
discuss our model for the case of dark scalar, vector,
and tensor massive fields, leaving additional details in
Appendix A. In section III we provide the e↵ective non-
relativistic action (which is the Schrödinger-Poisson sys-
tem) for these dark integer spin fields, and discuss the
various symmetries of the action. In section IV we dis-
cuss the gravitationally bound solitons. In section V we
discuss their distinguishability, primarily within Newto-
nian gravity, and also mention other non-gravitational
couplings that can probe the spin nature of the fields. In
section VI we summarize and also highlight some future
directions worth investigating.

II. MODELS

Our matter Lagrangian consists of the usual Standard
Model (SM) sector, along with some dark sector that
includes additional massive spin-0, spin-1, or even spin-2
fields. We take these fields to be real valued.

Explicitly, our general action has the form

S = SEH + Sdark + Svis , (1)

where SEH is the gravity sector, Sdark is some dark
sector (incluing dark integer spin fields), and Svis is
the visible sector (comprising of the SM). Our focus
is only on the gravity + dark sector in this paper.
We consider perturbations of di↵erent fields around
some background metric ḡµ� which leads to the usual
massless spin-2 fluctuations: hµ� (the graviton), along
with other perturbations in di↵erent fields. We will
focus on a given spin-s field + gravity, instead of
considering massive spin-0, 1 and 2 together, although
our formalism can accomodate the latter scenario as well.

For most part, we are interested in sub-horizon
physics where length scales associated with config-
urations of these dark fields are much smaller than
the Hubble horizon. As a result, we ignore Hub-
ble expansion, and take the background metric to be2

ḡµ� = �µ� = diag(1, �1, �1, �1). We also take ~ = c = 1.

In the next three subsections, we provide the general
action up-to quadratic order in the fields of interest, along
with leading order gravitational interactions. For the
non-relativistic limit that we are interested in, the lead-
ing order actions provided here are su�cient. The full
nonlinear actions are discussed in the Appendix.

A. Spin-0

The quadratic (free) action for the spin-0 field �, and
metric fluctuations hµ� , along with their leading interac-

2 We use ḡµ� = diag(1, �a2(t), �a2(t), �a2(t)) for an expanding
universe when needed. Here, a(t) is the scale factor normalized
to unity today.
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FIG. 1. A visual summary of some of the main results of our paper.

novel class of extremally polarized solitons with spin
Stot/~ = �M/m which can be macroscopically large for
M � m. Here, m is the mass of the field, M is the
mass of the soliton and � is the spin multiplicity. These
coherent solitons (along with fractionally polarized
ones mentioned earlier) might open up new avenues for
observationally probing higher-spin fields.

We find that even within Newtonian gravity it might
be possible to distinguish interacting solitons with dif-
ferent polarizations. Going beyond Newtonian gravity,
which we do not pursue here, might remove degeneracies
between di↵erent polarizations of the higher-spin fields
even further. We also discuss possibilities of probing
this higher-spin dark matter via non-gravitational
interactions, taking advantage of the polarization state
of the solitons.

The paper is organized as follows. In section II we
discuss our model for the case of dark scalar, vector,
and tensor massive fields, leaving additional details in
Appendix A. In section III we provide the e↵ective non-
relativistic action (which is the Schrödinger-Poisson sys-
tem) for these dark integer spin fields, and discuss the
various symmetries of the action. In section IV we dis-
cuss the gravitationally bound solitons. In section V we
discuss their distinguishability, primarily within Newto-
nian gravity, and also mention other non-gravitational
couplings that can probe the spin nature of the fields. In
section VI we summarize and also highlight some future
directions worth investigating.

II. MODELS

Our matter Lagrangian consists of the usual Standard
Model (SM) sector, along with some dark sector that
includes additional massive spin-0, spin-1, or even spin-2
fields. We take these fields to be real valued.

Explicitly, our general action has the form

S = SEH + Sdark + Svis , (1)

where SEH is the gravity sector, Sdark is some dark
sector (incluing dark integer spin fields), and Svis is
the visible sector (comprising of the SM). Our focus
is only on the gravity + dark sector in this paper.
We consider perturbations of di↵erent fields around
some background metric ḡµ� which leads to the usual
massless spin-2 fluctuations: hµ� (the graviton), along
with other perturbations in di↵erent fields. We will
focus on a given spin-s field + gravity, instead of
considering massive spin-0, 1 and 2 together, although
our formalism can accomodate the latter scenario as well.

For most part, we are interested in sub-horizon
physics where length scales associated with config-
urations of these dark fields are much smaller than
the Hubble horizon. As a result, we ignore Hub-
ble expansion, and take the background metric to be2

ḡµ� = �µ� = diag(1, �1, �1, �1). We also take ~ = c = 1.

In the next three subsections, we provide the general
action up-to quadratic order in the fields of interest, along
with leading order gravitational interactions. For the
non-relativistic limit that we are interested in, the lead-
ing order actions provided here are su�cient. The full
nonlinear actions are discussed in the Appendix.

A. Spin-0

The quadratic (free) action for the spin-0 field �, and
metric fluctuations hµ� , along with their leading interac-

2 We use ḡµ� = diag(1, �a2(t), �a2(t), �a2(t)) for an expanding
universe when needed. Here, a(t) is the scale factor normalized
to unity today.

Nonrelativistic ICscoll
aps

e to
 BH

increasing compactness

(for example phase of gravitational waves in the weak field limit. Let us assume that we have two
solitons of mass M1 and M2 whose separated by a distance r which is much larger than their radii
R1 and R2. The spin of the solitons are S1 and S2 respectively. The e↵ective potential governing
their dynamics can be written as [37, 38]

V = �
GM1M2

r

�
1 + O(v2

/c
2) �

2

rc
[r̂ ⇥ (v1 � v2)] ·

2�

a=1

Sa

Ma

+
1

r2c2

�
S1

M1
·

S2

M2
� 3

�
S1

M1
· r̂

� �
S2

M2
· r̂

�
+

2�

a=1

C
(a)
ES2

2M1M2

�
S

2
a � 3(Sa · r̂)2

�
�

+ . . .

� (0.1)

The third term on the first line is the spin-orbit interaction, and the 2nd line is the spin-spin

interaction, both of which are absent in configurations without spin. The coe�cient C
(a)
ES2 is a

property of the object, which the PI will calculate for the configurations of interest.4 Note that the
intuition is that the spin generates a quadrupole moment: Q ⇠ CES2S

2
/Mc

2, is not accurate since
the intrinsic spin still results in spherically symmetric objects (at leading order in the Newtonian
Limit).

The changes in the dynamics of a binary configuration, and emitted gravitational waves can
be estimated using the above e↵ective potential. Using these estimates as a guide, the PI and
collaborators will generate accurate templates of the gravitational waves from binary mergers using
GRChombo. These template would depend on the internal structure of the objects as well as the
spin of each configurations, and could be a valuable asset in the search for exotic compact objects.
They provide a direct probe of the underlying spin of the fields.

4Note that for a Kerr black-hole, C(a)
ES2 = 1, while it is larger (� 4 � 8) for spinning neutron stars, and is related

to the quadrupole distortion of the objects (and hence to the Love numbers).
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state
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paper is organized
as follows.

In
section

II we

discuss
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model for
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case
of dark
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tensor massive
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Figure 3. Left: Impact of macroscopic spin on the e↵ective gravitational potential for two orbiting bodies,
and hence gravitational wave emission before & during merger. Right: Full numerical relativity evolution
of circularly polarized (maximal spin) and linearly polarized (zero spin) solitons as they evolve from non-
relativistic initial conditions for 3 initial compactness per pair: C ⇡ 0.04, 0.06, 0.1 show in black [where we
expect relativistic corrections & 10%]. The maximal spin solitons S ⇡ ~Msol/m (orange) do not collapse
to a BH at the largest initial compactness considered, whereas the linearly polarized ones (blue) do. Spin
provides a barrier against collapse in this regime (preliminary). Middle: Hamiltonian constraint for the initial
configurations, showing convergence with increasing resolution and order of numerical algorithms.

Proposed Tasks & Expected Outputs.

(a) Spin & Maximal Compactness: Without relativistic corrections, all configurations with the
same total particle number have the same energy, independent of the spin: 0  |S|  ~Msol/m

[9]. However, with relativistic corrections, it is expected that this degeneracy is broken. The
spherical symmetry is also expected to be weakly broken [31]. Using GRChombo[81], the PI and
collaborators will determine which solutions are preferred in full general relativity, starting with
di↵erent Newtonian configurations (with arbitrary polarization). This task is challenging, however,
preliminary work guided by the limiting Newtonian solutions shows strong promise in terms of
results as well as technical aspects such as constraint preservation during the evolution (see middle
panel of Fig. 3). Each run takes ⇠ 104 CPU hrs.

Another output of this calculation will be determining the maximum compactness possible for
solitons with macroscopic spin, beyond which they collapse to BHs. For similar analysis of scalar
solitons, see [87, 88]. Preliminary investigations reveal that the compactness allowed is higher
for solitons with intrinsic spin, compared to those without. Hedgehog configurations which also
have zero spin, and are not extremally polarized (not shown here), collapse at an even smaller
compactness. Moreover, as compactness increases the M vs. R relationship di↵ers between solitons
with macroscopic spin and those without. See right panel of Fig. 3 for preliminary results, where
points represent time averages. The maximum compactness before collapse to BH determines
the amplitude of gravitational waves that can be generated from such objects in the final merger
phase. If an e�cient production mechanism exists, the above results also could potentially tell us a
relationship between spin and mass of the formed black holes from this process [89].

(b) Spin & Gravitational Waves: Consider two solitons of mass M1 and M2 separated by
a distance r, individual radii R1 and R2, and maximal, macroscopic intrinsic spin S1 and S2

respectively (see Fig. 3). The e↵ective potential governing their orbital dynamics [90, 91] is also
shown in the top left of Fig. 3. The third term on the first line is the spin-orbit interaction, and
the 2nd line is the spin-spin interaction, both of which are absent in configurations without spin.
Both a↵ect the orbital dynamics and emission of gravitational waves. The evolution of the phase
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FIG. 1. A visual summary of some of the main results of our paper.

novel class of extremally polarized solitons with spin
Stot/~ = �M/m which can be macroscopically large for
M � m. Here, m is the mass of the field, M is the
mass of the soliton and � is the spin multiplicity. These
coherent solitons (along with fractionally polarized
ones mentioned earlier) might open up new avenues for
observationally probing higher-spin fields.

We find that even within Newtonian gravity it might
be possible to distinguish interacting solitons with dif-
ferent polarizations. Going beyond Newtonian gravity,
which we do not pursue here, might remove degeneracies
between di↵erent polarizations of the higher-spin fields
even further. We also discuss possibilities of probing
this higher-spin dark matter via non-gravitational
interactions, taking advantage of the polarization state
of the solitons.

The paper is organized as follows. In section II we
discuss our model for the case of dark scalar, vector,
and tensor massive fields, leaving additional details in
Appendix A. In section III we provide the e↵ective non-
relativistic action (which is the Schrödinger-Poisson sys-
tem) for these dark integer spin fields, and discuss the
various symmetries of the action. In section IV we dis-
cuss the gravitationally bound solitons. In section V we
discuss their distinguishability, primarily within Newto-
nian gravity, and also mention other non-gravitational
couplings that can probe the spin nature of the fields. In
section VI we summarize and also highlight some future
directions worth investigating.

II. MODELS

Our matter Lagrangian consists of the usual Standard
Model (SM) sector, along with some dark sector that
includes additional massive spin-0, spin-1, or even spin-2
fields. We take these fields to be real valued.

Explicitly, our general action has the form

S = SEH + Sdark + Svis , (1)

where SEH is the gravity sector, Sdark is some dark
sector (incluing dark integer spin fields), and Svis is
the visible sector (comprising of the SM). Our focus
is only on the gravity + dark sector in this paper.
We consider perturbations of di↵erent fields around
some background metric ḡµ� which leads to the usual
massless spin-2 fluctuations: hµ� (the graviton), along
with other perturbations in di↵erent fields. We will
focus on a given spin-s field + gravity, instead of
considering massive spin-0, 1 and 2 together, although
our formalism can accomodate the latter scenario as well.

For most part, we are interested in sub-horizon
physics where length scales associated with config-
urations of these dark fields are much smaller than
the Hubble horizon. As a result, we ignore Hub-
ble expansion, and take the background metric to be2

ḡµ� = �µ� = diag(1, �1, �1, �1). We also take ~ = c = 1.

In the next three subsections, we provide the general
action up-to quadratic order in the fields of interest, along
with leading order gravitational interactions. For the
non-relativistic limit that we are interested in, the lead-
ing order actions provided here are su�cient. The full
nonlinear actions are discussed in the Appendix.

A. Spin-0

The quadratic (free) action for the spin-0 field �, and
metric fluctuations hµ� , along with their leading interac-

2 We use ḡµ� = diag(1, �a2(t), �a2(t), �a2(t)) for an expanding
universe when needed. Here, a(t) is the scale factor normalized
to unity today.
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FIG. 1. A visual summary of some of the main results of our paper.

novel class of extremally polarized solitons with spin
Stot/~ = �M/m which can be macroscopically large for
M � m. Here, m is the mass of the field, M is the
mass of the soliton and � is the spin multiplicity. These
coherent solitons (along with fractionally polarized
ones mentioned earlier) might open up new avenues for
observationally probing higher-spin fields.

We find that even within Newtonian gravity it might
be possible to distinguish interacting solitons with dif-
ferent polarizations. Going beyond Newtonian gravity,
which we do not pursue here, might remove degeneracies
between di↵erent polarizations of the higher-spin fields
even further. We also discuss possibilities of probing
this higher-spin dark matter via non-gravitational
interactions, taking advantage of the polarization state
of the solitons.

The paper is organized as follows. In section II we
discuss our model for the case of dark scalar, vector,
and tensor massive fields, leaving additional details in
Appendix A. In section III we provide the e↵ective non-
relativistic action (which is the Schrödinger-Poisson sys-
tem) for these dark integer spin fields, and discuss the
various symmetries of the action. In section IV we dis-
cuss the gravitationally bound solitons. In section V we
discuss their distinguishability, primarily within Newto-
nian gravity, and also mention other non-gravitational
couplings that can probe the spin nature of the fields. In
section VI we summarize and also highlight some future
directions worth investigating.

II. MODELS

Our matter Lagrangian consists of the usual Standard
Model (SM) sector, along with some dark sector that
includes additional massive spin-0, spin-1, or even spin-2
fields. We take these fields to be real valued.

Explicitly, our general action has the form

S = SEH + Sdark + Svis , (1)

where SEH is the gravity sector, Sdark is some dark
sector (incluing dark integer spin fields), and Svis is
the visible sector (comprising of the SM). Our focus
is only on the gravity + dark sector in this paper.
We consider perturbations of di↵erent fields around
some background metric ḡµ� which leads to the usual
massless spin-2 fluctuations: hµ� (the graviton), along
with other perturbations in di↵erent fields. We will
focus on a given spin-s field + gravity, instead of
considering massive spin-0, 1 and 2 together, although
our formalism can accomodate the latter scenario as well.

For most part, we are interested in sub-horizon
physics where length scales associated with config-
urations of these dark fields are much smaller than
the Hubble horizon. As a result, we ignore Hub-
ble expansion, and take the background metric to be2

ḡµ� = �µ� = diag(1, �1, �1, �1). We also take ~ = c = 1.

In the next three subsections, we provide the general
action up-to quadratic order in the fields of interest, along
with leading order gravitational interactions. For the
non-relativistic limit that we are interested in, the lead-
ing order actions provided here are su�cient. The full
nonlinear actions are discussed in the Appendix.

A. Spin-0

The quadratic (free) action for the spin-0 field �, and
metric fluctuations hµ� , along with their leading interac-

2 We use ḡµ� = diag(1, �a2(t), �a2(t), �a2(t)) for an expanding
universe when needed. Here, a(t) is the scale factor normalized
to unity today.

Nonrelativistic ICscoll
aps

e to
 BH

increasing compactness

(for example phase of gravitational waves in the weak field limit. Let us assume that we have two
solitons of mass M1 and M2 whose separated by a distance r which is much larger than their radii
R1 and R2. The spin of the solitons are S1 and S2 respectively. The e↵ective potential governing
their dynamics can be written as [37, 38]

V = �
GM1M2

r

�
1 + O(v2

/c
2) �

2

rc
[r̂ ⇥ (v1 � v2)] ·

2�

a=1

Sa

Ma

+
1

r2c2

�
S1

M1
·

S2

M2
� 3

�
S1

M1
· r̂

� �
S2

M2
· r̂

�
+

2�

a=1

C
(a)
ES2

2M1M2

�
S

2
a � 3(Sa · r̂)2

�
�

+ . . .

� (0.1)

The third term on the first line is the spin-orbit interaction, and the 2nd line is the spin-spin

interaction, both of which are absent in configurations without spin. The coe�cient C
(a)
ES2 is a

property of the object, which the PI will calculate for the configurations of interest.4 Note that the
intuition is that the spin generates a quadrupole moment: Q ⇠ CES2S

2
/Mc

2, is not accurate since
the intrinsic spin still results in spherically symmetric objects (at leading order in the Newtonian
Limit).

The changes in the dynamics of a binary configuration, and emitted gravitational waves can
be estimated using the above e↵ective potential. Using these estimates as a guide, the PI and
collaborators will generate accurate templates of the gravitational waves from binary mergers using
GRChombo. These template would depend on the internal structure of the objects as well as the
spin of each configurations, and could be a valuable asset in the search for exotic compact objects.
They provide a direct probe of the underlying spin of the fields.

4Note that for a Kerr black-hole, C(a)
ES2 = 1, while it is larger (� 4 � 8) for spinning neutron stars, and is related

to the quadrupole distortion of the objects (and hence to the Love numbers).
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order gravitational interactions.
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Figure 3. Left: Impact of macroscopic spin on the e↵ective gravitational potential for two orbiting bodies,
and hence gravitational wave emission before & during merger. Right: Full numerical relativity evolution
of circularly polarized (maximal spin) and linearly polarized (zero spin) solitons as they evolve from non-
relativistic initial conditions for 3 initial compactness per pair: C ⇡ 0.04, 0.06, 0.1 show in black [where we
expect relativistic corrections & 10%]. The maximal spin solitons S ⇡ ~Msol/m (orange) do not collapse
to a BH at the largest initial compactness considered, whereas the linearly polarized ones (blue) do. Spin
provides a barrier against collapse in this regime (preliminary). Middle: Hamiltonian constraint for the initial
configurations, showing convergence with increasing resolution and order of numerical algorithms.

Proposed Tasks & Expected Outputs.

(a) Spin & Maximal Compactness: Without relativistic corrections, all configurations with the
same total particle number have the same energy, independent of the spin: 0  |S|  ~Msol/m

[9]. However, with relativistic corrections, it is expected that this degeneracy is broken. The
spherical symmetry is also expected to be weakly broken [31]. Using GRChombo[81], the PI and
collaborators will determine which solutions are preferred in full general relativity, starting with
di↵erent Newtonian configurations (with arbitrary polarization). This task is challenging, however,
preliminary work guided by the limiting Newtonian solutions shows strong promise in terms of
results as well as technical aspects such as constraint preservation during the evolution (see middle
panel of Fig. 3). Each run takes ⇠ 104 CPU hrs.

Another output of this calculation will be determining the maximum compactness possible for
solitons with macroscopic spin, beyond which they collapse to BHs. For similar analysis of scalar
solitons, see [87, 88]. Preliminary investigations reveal that the compactness allowed is higher
for solitons with intrinsic spin, compared to those without. Hedgehog configurations which also
have zero spin, and are not extremally polarized (not shown here), collapse at an even smaller
compactness. Moreover, as compactness increases the M vs. R relationship di↵ers between solitons
with macroscopic spin and those without. See right panel of Fig. 3 for preliminary results, where
points represent time averages. The maximum compactness before collapse to BH determines
the amplitude of gravitational waves that can be generated from such objects in the final merger
phase. If an e�cient production mechanism exists, the above results also could potentially tell us a
relationship between spin and mass of the formed black holes from this process [89].

(b) Spin & Gravitational Waves: Consider two solitons of mass M1 and M2 separated by
a distance r, individual radii R1 and R2, and maximal, macroscopic intrinsic spin S1 and S2

respectively (see Fig. 3). The e↵ective potential governing their orbital dynamics [90, 91] is also
shown in the top left of Fig. 3. The third term on the first line is the spin-orbit interaction, and
the 2nd line is the spin-spin interaction, both of which are absent in configurations without spin.
Both a↵ect the orbital dynamics and emission of gravitational waves. The evolution of the phase
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FIG. 1.

FIG. 2. Hamiltonian constraint violation for the densest
(C = 0.10) circularly polarized Proca star with two di↵erent
resolutions �1 = 0.40 and �2 = 0.20. The dotted lines show
the predicted Hamiltonian constraint of the high-resolution
run for second-order and fourth-order convergence.

So in the end, our original vector field has the form

A(t,x) =
1

p
m
f(r)e�i(m�µ)t✏ . (B10)

For linear polarization ✏ = ẑ and for circular ✏ =
x̂ + iŷ/

p
2. The total energy of the soliton

R
d3xT00

(approximately the same as the total mass in the non-
relativistic limit) is

Msol ⇡ 62.3

r
µ

m

1

8⇡Gm
, mR95 ⇡ 3.16

r
m

µ
(B11)

and R95 above defined as the radius containing 95% of
the total energy (or equivalently rest mass in the non-rel.
limit). Note that we have set ~ = c = 1.

The non-rest mass energy is

Esol ⇡ �20.8
⇣ µ

m

⌘3/2 1

8⇡Gm
. (B12)

So |Esol|/Msol ⇡ 0.3(µ/m) ⌧ 1 for µ/m ⌧ 1. The com-
pactness defined as

C =
GMsol

R95
⇡ 0.8

µ

m
. (B13)

Note that all these are independent of ✏. In GR this will
not be true. I suspect, for a fixed mass, linear polariza-
tion will have slightly lower non-rest mass energy (but
should be checked). Furthermore, relativistic corrections
will break the spherical symmetry of the energy density
and make ✏ vary a bit with space.
We can repeat similar exercise for Hedgehogs:

A = m�1/2f(r)r̂e�i(m�µ)t (B14)

where

f(r) ⇡
1

p
8⇡G

0.75(mr)

[1 + 0.0095(µ/m)(mr)2]16

⇣ µ

m

⌘ 3
2
.

(B15)
For Hedgehogs

Msol ⇡ 108
p

µ/m(1/8⇡Gm), (B16)

mR95 ⇡ 4.7
p
m/µ, (B17)

Esol ⇡ �36(µ/m)3/2(1/8⇡Gm), (B18)

C ⇡ 0.9µ/m . (B19)

It is worth noting that the compactness for the same
µ/m is only di↵erent by ⇠ 10% between hedgehogs and
polarized solitons even though the mass and radii are
di↵erent by larger percentages.

2

Klein-Gordon (s =0) 

Proca           (s = 1) 

Fierz-Pauli    (s = 2)

2s+1 component 
Schrödinger non-relativistic limit

Ei
ns

te
in

 
   

 + s+1 solitons

s =
0

s = 1

s = 2

spin multiplicity = 0 1 2

Po
iss

on
 

   
 +

FIG. 1. A visual summary of some of the main results of our paper.

novel class of extremally polarized solitons with spin
Stot/~ = �M/m which can be macroscopically large for
M � m. Here, m is the mass of the field, M is the
mass of the soliton and � is the spin multiplicity. These
coherent solitons (along with fractionally polarized
ones mentioned earlier) might open up new avenues for
observationally probing higher-spin fields.

We find that even within Newtonian gravity it might
be possible to distinguish interacting solitons with dif-
ferent polarizations. Going beyond Newtonian gravity,
which we do not pursue here, might remove degeneracies
between di↵erent polarizations of the higher-spin fields
even further. We also discuss possibilities of probing
this higher-spin dark matter via non-gravitational
interactions, taking advantage of the polarization state
of the solitons.

The paper is organized as follows. In section II we
discuss our model for the case of dark scalar, vector,
and tensor massive fields, leaving additional details in
Appendix A. In section III we provide the e↵ective non-
relativistic action (which is the Schrödinger-Poisson sys-
tem) for these dark integer spin fields, and discuss the
various symmetries of the action. In section IV we dis-
cuss the gravitationally bound solitons. In section V we
discuss their distinguishability, primarily within Newto-
nian gravity, and also mention other non-gravitational
couplings that can probe the spin nature of the fields. In
section VI we summarize and also highlight some future
directions worth investigating.

II. MODELS

Our matter Lagrangian consists of the usual Standard
Model (SM) sector, along with some dark sector that
includes additional massive spin-0, spin-1, or even spin-2
fields. We take these fields to be real valued.

Explicitly, our general action has the form

S = SEH + Sdark + Svis , (1)

where SEH is the gravity sector, Sdark is some dark
sector (incluing dark integer spin fields), and Svis is
the visible sector (comprising of the SM). Our focus
is only on the gravity + dark sector in this paper.
We consider perturbations of di↵erent fields around
some background metric ḡµ⌫ which leads to the usual
massless spin-2 fluctuations: hµ⌫ (the graviton), along
with other perturbations in di↵erent fields. We will
focus on a given spin-s field + gravity, instead of
considering massive spin-0, 1 and 2 together, although
our formalism can accomodate the latter scenario as well.

For most part, we are interested in sub-horizon
physics where length scales associated with config-
urations of these dark fields are much smaller than
the Hubble horizon. As a result, we ignore Hub-
ble expansion, and take the background metric to be2

ḡµ⌫ = ⌘µ⌫ = diag(1, �1, �1, �1). We also take ~ = c = 1.

In the next three subsections, we provide the general
action up-to quadratic order in the fields of interest, along
with leading order gravitational interactions. For the
non-relativistic limit that we are interested in, the lead-
ing order actions provided here are su�cient. The full
nonlinear actions are discussed in the Appendix.

A. Spin-0

The quadratic (free) action for the spin-0 field �, and
metric fluctuations hµ⌫ , along with their leading interac-

2
We use ḡµ⌫ = diag(1,�a2(t),�a2(t),�a2(t)) for an expanding

universe when needed. Here, a(t) is the scale factor normalized

to unity today.
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novel class of extremally polarized solitons with spin
Stot/~ = �M/m which can be macroscopically large for
M � m. Here, m is the mass of the field, M is the
mass of the soliton and � is the spin multiplicity. These
coherent solitons (along with fractionally polarized
ones mentioned earlier) might open up new avenues for
observationally probing higher-spin fields.

We find that even within Newtonian gravity it might
be possible to distinguish interacting solitons with dif-
ferent polarizations. Going beyond Newtonian gravity,
which we do not pursue here, might remove degeneracies
between di↵erent polarizations of the higher-spin fields
even further. We also discuss possibilities of probing
this higher-spin dark matter via non-gravitational
interactions, taking advantage of the polarization state
of the solitons.

The paper is organized as follows. In section II we
discuss our model for the case of dark scalar, vector,
and tensor massive fields, leaving additional details in
Appendix A. In section III we provide the e↵ective non-
relativistic action (which is the Schrödinger-Poisson sys-
tem) for these dark integer spin fields, and discuss the
various symmetries of the action. In section IV we dis-
cuss the gravitationally bound solitons. In section V we
discuss their distinguishability, primarily within Newto-
nian gravity, and also mention other non-gravitational
couplings that can probe the spin nature of the fields. In
section VI we summarize and also highlight some future
directions worth investigating.

II. MODELS

Our matter Lagrangian consists of the usual Standard
Model (SM) sector, along with some dark sector that
includes additional massive spin-0, spin-1, or even spin-2
fields. We take these fields to be real valued.

Explicitly, our general action has the form

S = SEH + Sdark + Svis , (1)

where SEH is the gravity sector, Sdark is some dark
sector (incluing dark integer spin fields), and Svis is
the visible sector (comprising of the SM). Our focus
is only on the gravity + dark sector in this paper.
We consider perturbations of di↵erent fields around
some background metric ḡµ⌫ which leads to the usual
massless spin-2 fluctuations: hµ⌫ (the graviton), along
with other perturbations in di↵erent fields. We will
focus on a given spin-s field + gravity, instead of
considering massive spin-0, 1 and 2 together, although
our formalism can accomodate the latter scenario as well.

For most part, we are interested in sub-horizon
physics where length scales associated with config-
urations of these dark fields are much smaller than
the Hubble horizon. As a result, we ignore Hub-
ble expansion, and take the background metric to be2

ḡµ⌫ = ⌘µ⌫ = diag(1, �1, �1, �1). We also take ~ = c = 1.

In the next three subsections, we provide the general
action up-to quadratic order in the fields of interest, along
with leading order gravitational interactions. For the
non-relativistic limit that we are interested in, the lead-
ing order actions provided here are su�cient. The full
nonlinear actions are discussed in the Appendix.

A. Spin-0

The quadratic (free) action for the spin-0 field �, and
metric fluctuations hµ⌫ , along with their leading interac-

2
We use ḡµ⌫ = diag(1,�a2(t),�a2(t),�a2(t)) for an expanding

universe when needed. Here, a(t) is the scale factor normalized

to unity today.
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spin of soliton & polarization of photons
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� = 0 � = ±1
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Stot = ~0 Stot =

to setting rXµ = 0.1 The temporal component of the dark photon field, X0(x), is non-dynamical in
the theories that we study. Its equation of motion is an algebraic constraint equation, which has the
solution X0 =

�
r

2
�m2

��1�r·Ẋ), neglecting gravitational and electromagnetic interactions. Working
to leading order in the gradient expansion, we set X0(x) = 0.

2.2 Interactions with electromagnetism

Since we seek to study electromagnetic radiation from vector solitons, it is necessary to introduce a
coupling between the dark photon field Xµ(x) and the electromagnetic field Aµ(x). Working in the
context of e↵ective field theory (EFT), we consider all operators that are consistent with electromagnetic
gauge invariance, and we organize the operators based on their mass dimension. The only such operator
with mass dimension-4 is the so-called gauge-kinetic mixing [45, 46]

L (4)
int � Fµ⌫X↵� , (2.2)

where Fµ⌫ = @µA⌫ � @⌫Aµ is the usual electromagnetic field strength tensor and X↵� = @↵X� � @�X↵.
The Lorentz indices can be contracted using any combination of the diagonal inverse Minkowski metric
⌘µ⌫ and the totally-antisymmetric Levi-Civita symbol ✏µ⌫⇢�; we normalize �⌘00 = ⌘11 = ⌘22 = ⌘33 =
✏0123 = 1. The gauge kinetic mixing can be exchanged for a coupling to charged matter by performing a
field redefinition. In this work we consider systems in the absence of free charges, and the gauge-kinetic
mixing operators do not lead to electromagnetic radiation from a dark photon field. At mass dimension-
5 there are no operators coupling the vector soliton to electromagnetism, since such operators would
carry an odd number of Lorentz indices, which cannot be fully contracted using only the two-index
metric and the four-index Levi-Civita symbol. At dimension-6 the following operators are available:

L (6)
int � Fµ⌫F⇢�X↵X� , Fµ⌫F⇢�@↵X� , Fµ⌫X⇢X�@↵X� , Fµ⌫@⇢X�@↵X� , Fµ⌫@⇢@�@↵X� . (2.3)

The third, fourth, and fifth operators involve only one factor of the electromagnetic field Aµ(x). In the
presence of a background dark photon field Xµ(x), these operators provide a source for Aµ(x). The
radiation arising from such source terms is highly suppressed for long-wavelength background fields if
plasma e↵ects can be neglected [52], and we do not discuss these operators further here.

The dimension-6 operators that we study are summarized as follows:2

O1 = �
1
2Fµ⌫F̃

µ⌫(X · X) ⇡ 2(E · B)(X · X) (2.4a)

O2 = �
1
2Fµ⌫F

µ⌫(X · X) ⇡ (E · E)(X · X) � (B · B)(X · X) (2.4b)

O3 = Fµ⇢F
⌫⇢XµX⌫ ⇡ (B · B)(X · X) � (E · X)2 � (B · X)2 (2.4c)

O4 = F̃µ⇢F̃
⌫⇢XµX⌫ ⇡ (E · E)(X · X) � (E · X)2 � (B · X)2 (2.4d)

O5 = Fµ⇢F
⌫⇢@µX⌫ ⇡ (E ⇥ B) · Ẋ . (2.4e)

To move from the Lorentz-covariant expressions to the 3-vector expressions, we have dropped terms
containing X0 and spatial gradients rXµ, which is an excellent approximation for non-relativistic
modes of the dark photon field.

1
We work in the zero spatial gradient approximation locally, but indirectly take spatial gradients into account by

including the finite size e↵ects of dark photon configurations in the phenomenology.
2
Some of these operators are related to one another using integration by parts (dropping total derivatives) and equa-

tions of motion. For the non-relativistic dark photon field, a few other operators reduce to one of these; for instance

Fµ⇢F̃
⌫⇢XµX⌫ ⇡ �O1.
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1.0

<latexit sha1_base64="Wn42y88+IVibZvvyQaolEYrXVlw=">AAAB/nicbVDLSsNAFJ34rPEVFVduBovgqiRS1GXRjcsK9gFtKJPppB06jzAzEUIo+CtuXCji1u9w5984abPQ1rOZwzn3cs+cKGFUG9//dlZW19Y3Nitb7vbO7t6+d3DY1jJVmLSwZFJ1I6QJo4K0DDWMdBNFEI8Y6UST28LvPBKlqRQPJktIyNFI0JhiZKw08I77sRQmRpyyLGdcTV2/5rsDr2qfGeAyCUpSBSWaA++rP5Q45UQYzJDWvcBPTJgjZShmZOr2U00ShCdoRHqWCsSJDvNZ/Ck8s8oQxlLBIgucqb83csS1znhkJzkyY73oFeJ/Xi818XWYU5Gkhgg8PxSnDBoJiy7gkCqCDcssQVhRmxXiMVIIG9tYUUKw+OVl0r6oBZe1+n292rgp66iAE3AKzkEArkAD3IEmaAEMcvAMXsGb8+S8OO/Ox3x0xSl3jsAfOJ8/OhOVAA==</latexit>

0.0

<latexit sha1_base64="zvEyzzpbgQHYoQDFsE2m5O4ddA4=">AAAB/nicbVDLSsNAFJ3UV42vqLhyM1gEVyGR+lgW3bisYB/QhjKZTtqh8wgzEyGEgr/ixoUibv0Od/6NSZuFtp7V4Zx7ueeeMGZUG8/7tiorq2vrG9VNe2t7Z3fP2T9oa5koTFpYMqm6IdKEUUFahhpGurEiiIeMdMLJbeF3HonSVIoHk8Yk4GgkaEQxMrk0cI76kRQmQpyyNGNcTW3PvbAHTs1zvRngMvFLUgMlmgPnqz+UOOFEGMyQ1j3fi02QIWUoZmRq9xNNYoQnaER6ORWIEx1ks/hTeJorQxhJBYsscKb+3sgQ1zrlYT7JkRnrRa8Q//N6iYmug4yKODFE4PmhKGHQSFh0AYdUEWxYmhOEFc2zQjxGCmGTN1aU4C++vEza565/6dbv67XGTVlHFRyDE3AGfHAFGuAONEELYJCBZ/AK3qwn68V6tz7moxWr3DkEf2B9/gBBrJUF</latexit>

0.5

<latexit sha1_base64="4WlytiUafRxdq8pb6UEFBhAKKg4=">AAAB/nicbVDLSsNAFL3xWeMrKq7cDBbBVUmkqMuiG5cV7APaUCbTSTt0JhNmJkIIBX/FjQtF3Pod7vwbkzYLbT2rwzn3cs89QcyZNq77ba2srq1vbFa27O2d3b195+CwrWWiCG0RyaXqBlhTziLaMsxw2o0VxSLgtBNMbgu/80iVZjJ6MGlMfYFHEQsZwSaXBs5xP5SRCbFgPM24UFPbq7n2wKm6NXcGtEy8klShRHPgfPWHkiSCRoZwrHXPc2PjZ1gZRjid2v1E0xiTCR7RXk4jLKj2s1n8KTrLlSEKpUJFFjRTf29kWGidiiCfFNiM9aJXiP95vcSE137GojgxNCLzQ2HCkZGo6AINmaLE8DQnmCiWZ0VkjBUmJm+sKMFbfHmZtC9q3mWtfl+vNm7KOipwAqdwDh5cQQPuoAktIJDBM7zCm/VkvVjv1sd8dMUqd47gD6zPHzualQE=</latexit>

1.0

<latexit sha1_base64="SQgAKdj1o1//cXVnPpEF+mM4D9k=">AAAB/3icbVC5TsNAFFxzBnMZkGhoVkRIVJaNwlFG0FAGiRxSYkXrzTpZZQ9rd41kmRT8Cg0FCNHyG3T8DXbiAhKmGs28pzdvwphRbTzv21paXlldW69s2Jtb2zu7zt5+S8tEYdLEkknVCZEmjArSNNQw0okVQTxkpB2Obwq//UCUplLcmzQmAUdDQSOKkcmlvnPYi6QwEeKUpRnjamL77jm0+07Vc70p4CLxS1IFJRp956s3kDjhRBjMkNZd34tNkCFlKGZkYvcSTWKEx2hIujkViBMdZNP8E3iSKwMYSQWLMHCq/t7IENc65WE+yZEZ6XmvEP/zuomJroKMijgxRODZoShh0EhYlAEHVBFsWJoThBXNs0I8Qgphk1dWlODPv7xIWmeuf+HW7mrV+nVZRwUcgWNwCnxwCergFjRAE2DwCJ7BK3iznqwX6936mI0uWeXOAfgD6/MHoHSVMA==</latexit>

1.5

<latexit sha1_base64="b8c6+9ArYQ1asu9F7HDbgbUaBIM=">AAAB/3icbVDLSsNAFJ34rPEVFdy4GSyCq5CUoi6LblxWsA9oQ5lMJ+3QeYSZiRBiF/6KGxeKuPU33Pk3Jm0W2npWh3Pu5Z57wphRbTzv21pZXVvf2Kxs2ds7u3v7zsFhW8tEYdLCkknVDZEmjArSMtQw0o0VQTxkpBNObgq/80CUplLcmzQmAUcjQSOKkcmlgXPcj6QwEeKUpRnjamrXXA/aA6fqud4McJn4JamCEs2B89UfSpxwIgxmSOue78UmyJAyFDMytfuJJjHCEzQivZwKxIkOsln+KTzLlSGMpIJFGDhTf29kiGud8jCf5MiM9aJXiP95vcREV0FGRZwYIvD8UJQwaCQsyoBDqgg2LM0JwormWSEeI4WwySsrSvAXX14m7ZrrX7j1u3q1cV3WUQEn4BScAx9cgga4BU3QAhg8gmfwCt6sJ+vFerc+5qMrVrlzBP7A+vwBml6VLA==</latexit>

2.0

<latexit sha1_base64="WAvuBCOXzIv6eORRkmH6cY8XN6U=">AAACAHicbVC5TsNAFFxzBnMZKChoVkRIVJYdhaOMoKEMEjmkxIrWm3Wyyh7W7hrJstLwKzQUIETLZ9DxN9iJC0iYajTznt68CWNGtfG8b2tldW19Y7OyZW/v7O7tOweHbS0ThUkLSyZVN0SaMCpIy1DDSDdWBPGQkU44uS38ziNRmkrxYNKYBByNBI0oRiaXBs5xP5LCRIhTlmaMq6ldcy9saA+cqud6M8Bl4pekCko0B85XfyhxwokwmCGte74XmyBDylDMyNTuJ5rECE/QiPRyKhAnOshmD0zhWa4MYSQVLNLAmfp7I0Nc65SH+SRHZqwXvUL8z+slJroOMirixBCB54eihEEjYdEGHFJFsGFpThBWNM8K8RgphE3eWVGCv/jyMmnXXP/Srd/Xq42bso4KOAGn4Bz44Ao0wB1oghbAYAqewSt4s56sF+vd+piPrljlzhH4A+vzB93clUU=</latexit>

2.5

<latexit sha1_base64="qrlDQVtzTLEdhmTCIYwUt39LCEg=">AAACAHicbVC5TsNAFFyHK5grQEFBsyJCorJsiIAygoYySOSQEitab9bJKntYu2sky3LDr9BQgBAtn0HH32AnLiBhqtHMe3rzJogY1cZ1v63Kyura+kZ1097a3tndq+0fdLSMFSZtLJlUvQBpwqggbUMNI71IEcQDRrrB9Lbwu49EaSrFg0ki4nM0FjSkGJlcGtaOBqEUJkScsiRlXGX2hePa0B7W6q7jzgCXiVeSOijRGta+BiOJY06EwQxp3ffcyPgpUoZiRjJ7EGsSITxFY9LPqUCcaD+dPZDB01wZwVAqWKSBM/X3Roq41gkP8kmOzEQveoX4n9ePTXjtp1REsSECzw+FMYNGwqINOKKKYMOSnCCsaJ4V4glSCJu8s6IEb/HlZdI5d7xLp3HfqDdvyjqq4BicgDPggSvQBHegBdoAgww8g1fwZj1ZL9a79TEfrVjlziH4A+vzB9fClUE=</latexit>

3.0

<latexit sha1_base64="MzW+ItqCXwrss5RoM5rN1dCmmGY=">AAACEHicbVC7TsNAEDzzDOEVoKQ5ESGoIhtFQBlBQxkkAkiJFa0va3Lizrbu1ojIyifQ8Cs0FCBES0nH32CHFJAw1WhmVzs7QaKkJdf9cmZm5+YXFktL5eWV1bX1ysbmpY1TI7AlYhWb6wAsKhlhiyQpvE4Mgg4UXgW3p4V/dYfGyji6oEGCvoabSIZSAOVSt7LXCeOIQtBSDTKlzbDcoT4S8HaH8J4yA72hX+blbqXq1twR+DTxxqTKxmh2K5+dXixSjREJBda2PTchPwNDUijMz6QWExC3cIPtnEag0frZ6KEh382VHg9jw4t0fKT+3shAWzvQQT6pgfp20ivE/7x2SuGxn8koSQkj8XMoTBWnmBft8J40KEgNcgLCyDwrF30wICjvsCjBm3x5mlwe1LzDWv28Xm2cjOsosW22w/aZx45Yg52xJmsxwR7YE3thr86j8+y8Oe8/ozPOeGeL/YHz8Q2bb5zq</latexit> ✓[
ra

d]

<latexit sha1_base64="91qv1qdX0/Xla/Hn1a2EXSGj0z0=">AAACOHicbVA9SwNBEN3z2/gVtbRZDIKFhDsNahm0sVPBqJALYW6zp4t7u8funBiO+1k2/gw7sbFQxNZf4F6M4NdUb96bYd68KJXCou8/eCOjY+MTk1PTlZnZufmF6uLSqdWZYbzFtNTmPALLpVC8hQIlP08NhySS/Cy62i/1s2turNDqBPsp7yRwoUQsGKCjutXDMNYKY0iE7OcSTVEJE8BLBjI/LLpb4QYNkd9gDqpXlM03sfGllbfB0FTLetGt1vy6Pyj6FwRDUCPDOupW78OeZlnCFTIJ1rYDP8VODgYFk9zZySxPgV3BBW87qCDhtpMPHi/ommN6NNaGll/QAft9I4fE2n4SucnSuP2tleR/WjvDeLeTC5VmyBX7PBRnkqKmZYq0JwxnKPsOADPCeaXsEgwwdFlXXAjB75f/gtPNerBdbxw3as29YRxTZIWsknUSkB3SJAfkiLQII7fkkTyTF+/Oe/JevbfP0RFvuLNMfpT3/gFYca3n</latexit>

O3 andO4, linear pol.
<latexit sha1_base64="yT0wN8/L64ewXLU1DeSOrbOyN7s="></latexit>

O3 andO4, circular pol.

<latexit sha1_base64="ZirONJMStFJBCBPYUpUyy0ozbDw=">AAACD3icbVC7TsMwFHXKq4RXgJHFogK1AyWpKmCsYGEsEn1ITVo5rtNatZPIdpCiKH/Awq+wMIAQKysbf0PSdoCWMx2dc6/uuccNGZXKNL+1wsrq2vpGcVPf2t7Z3TP2D9oyiAQmLRywQHRdJAmjPmkpqhjphoIg7jLScSc3ud95IELSwL9XcUgcjkY+9ShGKpMGxqntBb7yEKcsTpgSqV6enPHKeXnUr9kuEkk37dd4ZWCUzKo5BVwm1pyUwBzNgfFlDwMcceIrzJCUPcsMlZMgoShmJNXtSJIQ4QkakV5GfcSJdJLpPyk8yZQh9AIB83Bwqv7eSBCXMuZuNsmRGstFLxf/83qR8q6chPphpIiPZ4e8iEEVwLwcOKSCYMXijCAsaJYV4jESCKusQj0rwVp8eZm0a1Xrolq/q5ca1/M6iuAIHIMysMAlaIBb0AQtgMEjeAav4E170l60d+1jNlrQ5juH4A+0zx+mE5vE</latexit>

(k �m)/(g2X̄2m)
<latexit sha1_base64="ZirONJMStFJBCBPYUpUyy0ozbDw=">AAACD3icbVC7TsMwFHXKq4RXgJHFogK1AyWpKmCsYGEsEn1ITVo5rtNatZPIdpCiKH/Awq+wMIAQKysbf0PSdoCWMx2dc6/uuccNGZXKNL+1wsrq2vpGcVPf2t7Z3TP2D9oyiAQmLRywQHRdJAmjPmkpqhjphoIg7jLScSc3ud95IELSwL9XcUgcjkY+9ShGKpMGxqntBb7yEKcsTpgSqV6enPHKeXnUr9kuEkk37dd4ZWCUzKo5BVwm1pyUwBzNgfFlDwMcceIrzJCUPcsMlZMgoShmJNXtSJIQ4QkakV5GfcSJdJLpPyk8yZQh9AIB83Bwqv7eSBCXMuZuNsmRGstFLxf/83qR8q6chPphpIiPZ4e8iEEVwLwcOKSCYMXijCAsaJYV4jESCKusQj0rwVp8eZm0a1Xrolq/q5ca1/M6iuAIHIMysMAlaIBb0AQtgMEjeAav4E170l60d+1jNlrQ5juH4A+0zx+mE5vE</latexit>

(k �m)/(g2X̄2m)
<latexit sha1_base64="ZirONJMStFJBCBPYUpUyy0ozbDw=">AAACD3icbVC7TsMwFHXKq4RXgJHFogK1AyWpKmCsYGEsEn1ITVo5rtNatZPIdpCiKH/Awq+wMIAQKysbf0PSdoCWMx2dc6/uuccNGZXKNL+1wsrq2vpGcVPf2t7Z3TP2D9oyiAQmLRywQHRdJAmjPmkpqhjphoIg7jLScSc3ud95IELSwL9XcUgcjkY+9ShGKpMGxqntBb7yEKcsTpgSqV6enPHKeXnUr9kuEkk37dd4ZWCUzKo5BVwm1pyUwBzNgfFlDwMcceIrzJCUPcsMlZMgoShmJNXtSJIQ4QkakV5GfcSJdJLpPyk8yZQh9AIB83Bwqv7eSBCXMuZuNsmRGstFLxf/83qR8q6chPphpIiPZ4e8iEEVwLwcOKSCYMXijCAsaJYV4jESCKusQj0rwVp8eZm0a1Xrolq/q5ca1/M6iuAIHIMysMAlaIBb0AQtgMEjeAav4E170l60d+1jNlrQ5juH4A+0zx+mE5vE</latexit>

(k �m)/(g2X̄2m)

<latexit sha1_base64="yNhzRblv8eLR1lSLUJnebNJ8kZs=">AAAB/nicbVDLSsNAFJ3UV42vqLhyM1gEN4ZEirosunFZwT6gDWUynbRD5xFmJkIIBX/FjQtF3Pod7vwbkzYLbT2rwzn3cs89YcyoNp73bVVWVtfWN6qb9tb2zu6es3/Q1jJRmLSwZFJ1Q6QJo4K0DDWMdGNFEA8Z6YST28LvPBKlqRQPJo1JwNFI0IhiZHJp4Bz1IylMhDhlaca4mtrnvusNnJrnejPAZeKXpAZKNAfOV38occKJMJghrXu+F5sgQ8pQzMjU7ieaxAhP0Ij0cioQJzrIZvGn8DRXhjCSChZZ4Ez9vZEhrnXKw3ySIzPWi14h/uf1EhNdBxkVcWKIwPNDUcKgkbDoAg6pItiwNCcIK5pnhXiMFMImb8zOS/AXX14m7QvXv3Tr9/Va46asowqOwQk4Az64Ag1wB5qgBTDIwDN4BW/Wk/VivVsf89GKVe4cgj+wPn8AcJ6VJA==</latexit>�1.0
<latexit sha1_base64="g5nAO3F7HEiJ+67L0M6RZPZJ2HY=">AAAB/nicbVDLSsNAFJ34rPEVFVduBovgxpBIfSyLblxWsA9oQ5lMJ+3QmUmYmQghFPwVNy4Ucet3uPNvnLRZaOtZHc65l3vuCRNGlfa8b2tpeWV1bb2yYW9ube/sOnv7LRWnEpMmjlksOyFShFFBmppqRjqJJIiHjLTD8W3htx+JVDQWDzpLSMDRUNCIYqSN1HcOe1EsdIQ4ZVnOuJzYZ5570XeqnutNAReJX5IqKNHoO1+9QYxTToTGDCnV9b1EBzmSmmJGJnYvVSRBeIyGpGuoQJyoIJ/Gn8ATowxgFEtYZIFT9fdGjrhSGQ/NJEd6pOa9QvzP66Y6ug5yKpJUE4Fnh6KUQR3Dogs4oJJgzTJDEJbUZIV4hCTC2jRmmxL8+ZcXSevc9S/d2n2tWr8p66iAI3AMToEPrkAd3IEGaAIMcvAMXsGb9WS9WO/Wx2x0ySp3DsAfWJ8/dqyVKA==</latexit>�0.5

<latexit sha1_base64="Wn42y88+IVibZvvyQaolEYrXVlw=">AAAB/nicbVDLSsNAFJ34rPEVFVduBovgqiRS1GXRjcsK9gFtKJPppB06jzAzEUIo+CtuXCji1u9w5984abPQ1rOZwzn3cs+cKGFUG9//dlZW19Y3Nitb7vbO7t6+d3DY1jJVmLSwZFJ1I6QJo4K0DDWMdBNFEI8Y6UST28LvPBKlqRQPJktIyNFI0JhiZKw08I77sRQmRpyyLGdcTV2/5rsDr2qfGeAyCUpSBSWaA++rP5Q45UQYzJDWvcBPTJgjZShmZOr2U00ShCdoRHqWCsSJDvNZ/Ck8s8oQxlLBIgucqb83csS1znhkJzkyY73oFeJ/Xi818XWYU5Gkhgg8PxSnDBoJiy7gkCqCDcssQVhRmxXiMVIIG9tYUUKw+OVl0r6oBZe1+n292rgp66iAE3AKzkEArkAD3IEmaAEMcvAMXsGb8+S8OO/Ox3x0xSl3jsAfOJ8/OhOVAA==</latexit>

0.0
<latexit sha1_base64="zvEyzzpbgQHYoQDFsE2m5O4ddA4=">AAAB/nicbVDLSsNAFJ3UV42vqLhyM1gEVyGR+lgW3bisYB/QhjKZTtqh8wgzEyGEgr/ixoUibv0Od/6NSZuFtp7V4Zx7ueeeMGZUG8/7tiorq2vrG9VNe2t7Z3fP2T9oa5koTFpYMqm6IdKEUUFahhpGurEiiIeMdMLJbeF3HonSVIoHk8Yk4GgkaEQxMrk0cI76kRQmQpyyNGNcTW3PvbAHTs1zvRngMvFLUgMlmgPnqz+UOOFEGMyQ1j3fi02QIWUoZmRq9xNNYoQnaER6ORWIEx1ks/hTeJorQxhJBYsscKb+3sgQ1zrlYT7JkRnrRa8Q//N6iYmug4yKODFE4PmhKGHQSFh0AYdUEWxYmhOEFc2zQjxGCmGTN1aU4C++vEza565/6dbv67XGTVlHFRyDE3AGfHAFGuAONEELYJCBZ/AK3qwn68V6tz7moxWr3DkEf2B9/gBBrJUF</latexit>

0.5
<latexit sha1_base64="4WlytiUafRxdq8pb6UEFBhAKKg4=">AAAB/nicbVDLSsNAFL3xWeMrKq7cDBbBVUmkqMuiG5cV7APaUCbTSTt0JhNmJkIIBX/FjQtF3Pod7vwbkzYLbT2rwzn3cs89QcyZNq77ba2srq1vbFa27O2d3b195+CwrWWiCG0RyaXqBlhTziLaMsxw2o0VxSLgtBNMbgu/80iVZjJ6MGlMfYFHEQsZwSaXBs5xP5SRCbFgPM24UFPbq7n2wKm6NXcGtEy8klShRHPgfPWHkiSCRoZwrHXPc2PjZ1gZRjid2v1E0xiTCR7RXk4jLKj2s1n8KTrLlSEKpUJFFjRTf29kWGidiiCfFNiM9aJXiP95vcSE137GojgxNCLzQ2HCkZGo6AINmaLE8DQnmCiWZ0VkjBUmJm+sKMFbfHmZtC9q3mWtfl+vNm7KOipwAqdwDh5cQQPuoAktIJDBM7zCm/VkvVjv1sd8dMUqd47gD6zPHzualQE=</latexit>

1.0
<latexit sha1_base64="yNhzRblv8eLR1lSLUJnebNJ8kZs=">AAAB/nicbVDLSsNAFJ3UV42vqLhyM1gEN4ZEirosunFZwT6gDWUynbRD5xFmJkIIBX/FjQtF3Pod7vwbkzYLbT2rwzn3cs89YcyoNp73bVVWVtfWN6qb9tb2zu6es3/Q1jJRmLSwZFJ1Q6QJo4K0DDWMdGNFEA8Z6YST28LvPBKlqRQPJo1JwNFI0IhiZHJp4Bz1IylMhDhlaca4mtrnvusNnJrnejPAZeKXpAZKNAfOV38occKJMJghrXu+F5sgQ8pQzMjU7ieaxAhP0Ij0cioQJzrIZvGn8DRXhjCSChZZ4Ez9vZEhrnXKw3ySIzPWi14h/uf1EhNdBxkVcWKIwPNDUcKgkbDoAg6pItiwNCcIK5pnhXiMFMImb8zOS/AXX14m7QvXv3Tr9/Va46asowqOwQk4Az64Ag1wB5qgBTDIwDN4BW/Wk/VivVsf89GKVe4cgj+wPn8AcJ6VJA==</latexit>�1.0

<latexit sha1_base64="g5nAO3F7HEiJ+67L0M6RZPZJ2HY=">AAAB/nicbVDLSsNAFJ34rPEVFVduBovgxpBIfSyLblxWsA9oQ5lMJ+3QmUmYmQghFPwVNy4Ucet3uPNvnLRZaOtZHc65l3vuCRNGlfa8b2tpeWV1bb2yYW9ube/sOnv7LRWnEpMmjlksOyFShFFBmppqRjqJJIiHjLTD8W3htx+JVDQWDzpLSMDRUNCIYqSN1HcOe1EsdIQ4ZVnOuJzYZ5570XeqnutNAReJX5IqKNHoO1+9QYxTToTGDCnV9b1EBzmSmmJGJnYvVSRBeIyGpGuoQJyoIJ/Gn8ATowxgFEtYZIFT9fdGjrhSGQ/NJEd6pOa9QvzP66Y6ug5yKpJUE4Fnh6KUQR3Dogs4oJJgzTJDEJbUZIV4hCTC2jRmmxL8+ZcXSevc9S/d2n2tWr8p66iAI3AMToEPrkAd3IEGaAIMcvAMXsGb9WS9WO/Wx2x0ySp3DsAfWJ8/dqyVKA==</latexit>�0.5
<latexit sha1_base64="Wn42y88+IVibZvvyQaolEYrXVlw=">AAAB/nicbVDLSsNAFJ34rPEVFVduBovgqiRS1GXRjcsK9gFtKJPppB06jzAzEUIo+CtuXCji1u9w5984abPQ1rOZwzn3cs+cKGFUG9//dlZW19Y3Nitb7vbO7t6+d3DY1jJVmLSwZFJ1I6QJo4K0DDWMdBNFEI8Y6UST28LvPBKlqRQPJktIyNFI0JhiZKw08I77sRQmRpyyLGdcTV2/5rsDr2qfGeAyCUpSBSWaA++rP5Q45UQYzJDWvcBPTJgjZShmZOr2U00ShCdoRHqWCsSJDvNZ/Ck8s8oQxlLBIgucqb83csS1znhkJzkyY73oFeJ/Xi818XWYU5Gkhgg8PxSnDBoJiy7gkCqCDcssQVhRmxXiMVIIG9tYUUKw+OVl0r6oBZe1+n292rgp66iAE3AKzkEArkAD3IEmaAEMcvAMXsGb8+S8OO/Ox3x0xSl3jsAfOJ8/OhOVAA==</latexit>
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Figure 1: Electromagnetic radiation arising from a homogeneous dark photon field coupled to electro-
magnetism though several dimension-6 operators via the phenomenon of parametric resonance. Top:
The maximal Floquet exponent µk,max is shown as a function of the wavenumber k of the electro-
magnetic radiation and the polar angle ✓ such that cos ✓ = k · ẑ/k. The dominant Floquet band is
centered at k ⇡ m and has width O(g2X̄2m), where m is the dark photon mass, X̄ is the field am-
plitude, and g is the coupling to electromagnetism with Lint = g2Oi. The three panels correspond to
di↵erent operators Oi and di↵erent polarizations for the dark photon field. Bottom: These graphics
illustrate the orientation of the radiation’s polarization. The green arrows denote the polarization of
the dark photon field (e.g., vector soliton), while the red and blue arrows denote the polarization of
the emitted radiation (for di↵erent operators). For operators O1 and O2 (bottom-left) the radiation
is emitted isotropically, and has no preferred polarization direction. For operators O3 and O4 with
a linearly-polarized dark photon field (bottom-middle) the radiation is predominatly emitted in the
directions normal to ẑ, whereas for a circularly-polarized dark photon field (bottom-right) the emission
is predominantly aligned with ±ẑ.

Next we discuss operators O3 and O4. The analytic calculations are facilitated by moving to a
circular polarization basis for the outgoing radiation. The top-right panel of figure 1 shows the Floquet
chart for operator O3, and the chart for O4 is indistinguishable. The Floquet exponent is maximized for
✓ = 0 and ⇡, corresponding to radiation in the direction normal to the plane of the dark photon field,
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Figure 2: Left: The power spectrum of the longitudinal vector field component as is automatically
produced by inflationary fluctuations, during radiation domination and after the modes have become
subhorizon and nonrelativistic. The spectrum is peaked at k?, corresponding to the momentum equal
to the Hubble parameter H when H = m. Right: The power spectrum P� of the (non-Gaussian)
overdensity field. Importantly for later soliton formation, at matter radiation equality the quantum
Jeans momentum kJ(⇢) associated with the mean DM density (defined in Section 3.1) coincides with k?

up to an order one factor, regardless of the dark photon mass.

which is a useful analytic approximation that captures the asymptotic limits k/k? ! {0,1} exactly (see
Appendix A and [10] for full expressions). In Figure 2 (right) we plot P�, which as expected is peaked
at k/k? ' 1, and decreases as (k/k?)3 and (k?/k) at small and large k, respectively. Since �(x) does not
have a Gaussian distribution (indeed, it is asymmetric around � = 0) it is not fully described by P�.11

The power spectrum however still provides useful information about the variance of the field and the
magnitude of the overdensities. Note that at length scales much larger than �? = 2⇡/k?, �(x) is Gaussian
and can be fully reconstructed from P� alone.

The fluctuations in the vector’s energy density are isocurvature perturbations, since they are induced
only in the vector during inflation. As mentioned in the Introduction, these fluctuations are only allowed
to be O(1) because perturbations at much larger scales, which are strongly constrained by observations,
are automatically suppressed thanks to the k

3 behaviour. This is in contrast to a scalar field, for which
the power spectrum from inflationary fluctuations is flat at k < k?, and order one fluctuations are
completely excluded unless the scalar is a tiny fraction of the total DM. The smallest scales at which
the power spectrum has been observed are roughly kobs = 7Mpc�1 from Lyman-alpha [51], so kobs/k? '

10�11 ( eV/m)1/2, and the observed modes are far o↵ the left of the plot in Figure 2 (right) for all relevant
dark photon masses.

Inflation also sources perturbations of the inflaton, which are metric perturbations with a change of
gauge, i.e. ds

2 = �(1 � 2�)dt2 + (1 + 2�)a2d~x2. The gravitational potential � has small di↵erences in
di↵erent patches after inflation. These lead to the same relative perturbations in all form of energy, i.e.
adiabatic perturbations, including in the vector overdensity field �(x). Its power spectrum P� therefore
automatically acquires also the almost-scale-invariant contribution, as shown by the purple line in Figure 2
(right), as is necessary to be consistent with observations.

We have considered a vector with only the action of eq. (2), in which case the relic density discussed

11Note that ⇢(x) ⇠ (@A(x))2 + A(x)2 has local (quadratic) non-Gaussianities, since A and @A are Gaussian variables.
Thinking of h⇢(x)i as a constant, appropriate in the large volume limit, �(x) has the same property.
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Figure 2: Left: The power spectrum of the longitudinal vector field component as is automatically
produced by inflationary fluctuations, during radiation domination and after the modes have become
subhorizon and nonrelativistic. The spectrum is peaked at k?, corresponding to the momentum equal
to the Hubble parameter H when H = m. Right: The power spectrum P� of the (non-Gaussian)
overdensity field. Importantly for later soliton formation, at matter radiation equality the quantum
Jeans momentum kJ(⇢) associated with the mean DM density (defined in Section 3.1) coincides with k?

up to an order one factor, regardless of the dark photon mass.

which is a useful analytic approximation that captures the asymptotic limits k/k? ! {0,1} exactly (see
Appendix A and [10] for full expressions). In Figure 2 (right) we plot P�, which as expected is peaked
at k/k? ' 1, and decreases as (k/k?)3 and (k?/k) at small and large k, respectively. Since �(x) does not
have a Gaussian distribution (indeed, it is asymmetric around � = 0) it is not fully described by P�.11

The power spectrum however still provides useful information about the variance of the field and the
magnitude of the overdensities. Note that at length scales much larger than �? = 2⇡/k?, �(x) is Gaussian
and can be fully reconstructed from P� alone.

The fluctuations in the vector’s energy density are isocurvature perturbations, since they are induced
only in the vector during inflation. As mentioned in the Introduction, these fluctuations are only allowed
to be O(1) because perturbations at much larger scales, which are strongly constrained by observations,
are automatically suppressed thanks to the k

3 behaviour. This is in contrast to a scalar field, for which
the power spectrum from inflationary fluctuations is flat at k < k?, and order one fluctuations are
completely excluded unless the scalar is a tiny fraction of the total DM. The smallest scales at which
the power spectrum has been observed are roughly kobs = 7Mpc�1 from Lyman-alpha [51], so kobs/k? '

10�11 ( eV/m)1/2, and the observed modes are far o↵ the left of the plot in Figure 2 (right) for all relevant
dark photon masses.

Inflation also sources perturbations of the inflaton, which are metric perturbations with a change of
gauge, i.e. ds

2 = �(1 � 2�)dt2 + (1 + 2�)a2d~x2. The gravitational potential � has small di↵erences in
di↵erent patches after inflation. These lead to the same relative perturbations in all form of energy, i.e.
adiabatic perturbations, including in the vector overdensity field �(x). Its power spectrum P� therefore
automatically acquires also the almost-scale-invariant contribution, as shown by the purple line in Figure 2
(right), as is necessary to be consistent with observations.

We have considered a vector with only the action of eq. (2), in which case the relic density discussed

11Note that ⇢(x) ⇠ (@A(x))2 + A(x)2 has local (quadratic) non-Gaussianities, since A and @A are Gaussian variables.
Thinking of h⇢(x)i as a constant, appropriate in the large volume limit, �(x) has the same property.
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Figure 4: Left: The evolution of the maximum value ⇢max of the energy density field of the vector through
MRE, in a simulation with volume (3.75�?)3. Time is parameterised by the scale factor a relative to
that at MRE, aeq. The mean vector energy density ⇢ is also plotted. At early times ⇢max follows ⇢, with
small fluctuations due to the oscillation of modes with k & kJ , driven by quantum pressure. The collapse
of overdensities with � & 1, which in the absence of quantum pressure would occur at a/aeq ' 1/�,
is hindered until after MRE. Once kJ/k? / a

1/4 has grown su�ciently, overdensities collapse. After
the collapse, the maximum density is at a point inside a soliton. The soliton is produced with excited
quasinormal modes, so the maximum density subsequently oscillates. Right: A slice of the energy density
at a/aeq = 7, in the same simulation as is plotted in the left panel. The slice passes through the point
that has the largest density at this time, which is at the centre of a soliton. The soliton (red region
in inset) is surrounded by a spherical ‘fuzzy’ halo (yellow/green region) and there are cosmic filaments
connecting it to other solitons. Spherical waves can be seen around the soliton, which are due to the
emission of energy from quasinormal modes. A video showing the evolution can be found at [58].

study the growth of density perturbations and the evolution of the density power spectrum in more detail
in Appendix D.

In Figure 4 (right) we plot the density field ⇢ through the slice of the same simulation that contains
the point with the largest density, at a/aeq = 7. There is a central soliton (red region). The soliton is
surrounded by a spherical fuzzy halo (yellow/green region) extending far from its core, the maximum
density of which is about two orders of magnitude smaller than the soliton core density. Finally, the early
stages of a cosmic web connecting di↵erent solitons have formed (see also Figure 1 left, where we show a
3D version of the same energy density). Spherical waves can be seen beyond the halo. These are due to
energy released by the decay of the soliton’s quasi-normal modes.

To understand the nature of the collapsed objects, in Figure 5 (left) we plot the spherically averaged
density profile around the centre of the objects at a/aeq = 5, averaged over all the objects in our full set
of simulations. To enable the profiles of objects with di↵erent mass to be combined, for each object the
density profile is normalised to its central density ⇢s and the distance from its centre to the quantum
Jeans length �J(⇢s) corresponding to its central density ⇢s. As it is clear from Section 3.1, in terms of
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II. MECHANISM FOR DARK PHOTON
PRODUCTION

We consider the following action of a system with the
axion � and dark photon Aµ,

S =

Z
d
4
x
p
�g

✓
1

2
@µ�@

µ
�� V (�)� 1

4
Fµ⌫F

µ⌫

+
1

2
m

2

�0AµA
µ � �

4fa
�Fµ⌫

eFµ⌫

◆
, (2)

with Fµ⌫ = @µA⌫ � @⌫Aµ and eFµ⌫ = ✏
µ⌫⇢�

F⇢�/2
p
�g

the field strength tensor and its dual, m�0 the dark pho-
ton mass, and fa the axion decay constant. The ax-
ion potential is given by V (�) = m

2

a
f
2

a
(1� cos (�/fa)) .

We assume for our simulations that the mass of the ax-
ion is constant, but our mechanism can be plausibly ex-
tended to a temperature-dependent axion mass, as in the
case of the QCD axion. We denote the gauge coupling
and the fine-structure constant as gD and ↵D ⌘ g

2

D
/4⇡,

respectively. Here we adopt the convention ✏
0123 = 1,

gµ⌫ = (+,�,�,�), and g ⌘ det[gµ⌫ ]. The dynamical de-
grees of freedom are � andA = {Ai}, and their equations
of motion in a flat, isotropic, and homogenous universe
are given by

�̈+ 3H�̇� r2
�

a2
+

@V

@�
+

�

4fa
Fµ⌫

eFµ⌫ = 0, (3)

Ä+HȦ� r2A

a2
+m

2

�0A� �

faa

⇣
�̇r⇥A

�r�⇥
⇣
Ȧ�rA0

⌘⌘
= 0, (4)

where the overdot is the derivative with respect to time
t, a(t) the scale factor, H the Hubble parameter, and
r2 = @

2

i
. The evolution of A0 is determined by the

Lorenz gauge condition, @µ(
p
�gA

µ) = 0, which directly
follows from the equation of motion.

Suppose that the spatially homogeneous axion starts
to oscillate with an initial amplitude �i when 3H ⇠ ma

in the radiation-dominated era. Then the equation of
motion of A is reduced to

Äk,± +HȦk,± +

 
m

2

�0 +
k
2

a2
⌥ k

a

��̇

fa

!
Ak,± = 0 (5)

in Fourier space, where k = |k| denotes the comoving
wave number, and the subscript ± indicates the helicity
of the transverse mode. One can see that one of the helic-
ity components with k/a ⇠ �|�̇|/2fa becomes tachyonic
if m�0 < �|�̇|/2fa, and such dark photons are e�ciently
produced by the tachyonic instability soon after the axion
starts to oscillate. Note that only the transverse mode
of the dark photon is coupled to the spatially homoge-
neous axion. After the energy density of dark photons
becomes comparable to the axion, the system enters a
non-linear regime. The energy stored in the axion zero

mode transfers to both transverse and longitudinal com-
ponents of dark photons as well as the axion non-zero
mode. As we shall see shortly, however, the dark photon
production e↵ectively stops soon after the system enters
the non-linear regime. The dark photon (physical) mo-
mentum has a characteristic peak at ⇠ 10�2

�ma at that
moment, where the numerical prefactor also depends on
� but we confirmed its validity for � between 35 and 50.
The dark photon abundance is related to the initial axion
abundances as

⇢�0

s
' m�0

10�2�ma

⇢a

s

���
3H=ma

, (6)

where s is the entropy density, and ⇢�0 and ⇢a the energy
densities of dark photon and axion, respectively. Here we
have approximated that most of the initial axion energy
transfers to dark photons that are relativistic at the pro-
duction. In terms of the density parameter, it is given
by

⌦�0h
2 ' 0.2 ✓2

✓
40

�

◆⇣
m�0

10�9eV

⌘✓10�8eV

ma

◆ 1
2
✓

fa

1014GeV

◆2

,

(7)

where we set the relativistic degrees of freedom g⇤(T ) =
60. As we shall see in the next section, the production
e�ciency depends on the dark photon mass, and some
amount of the axions always contribute to DM.
Note that the axion acquires its quantum fluctua-

tions during inflation, which induce isocurvature per-
turbation of dark photons after the tachyonic produc-
tion. The amplitude of the isocurvature perturbation is

given by P1/2

S
= HI/(⇡fa✓). Using fa✓ in Eq. (7) with

⌦�0 = ⌦DM, the current constraint on the isocurvature
perturbation [30] limits the inflation scale as

HI < 2⇥ 109 GeV

✓
�

40

◆ 1
2 ⇣ m�0

10�9 eV

⌘� 1
2
⇣

ma

10�8 eV

⌘ 1
4
.

(8)

Thus, relatively low-scale inflation models are required.
In this sense, our scenario is complementary to the pro-
duction mechanism using inflationary fluctuations [4]
which typically requires higher HI .
Let us here briefly comment on an additional condi-

tion for the above production mechanism to work. Af-
ter the tachyonic production ends, the dark photon field
amplitude is as large as fa. More generally, light dark
photon DM, when extrapolated to the early universe,
would have had large field values. Consequently, even
tiny shift-symmetry violating couplings can have a dra-
matic e↵ect on the dynamics. If the mass of the dark
photon arises from a Higgs mechanism, the dark pho-
ton field also backreacts on the Higgs potential. Even
without the Higgs mechanism, a quartic self-coupling is
allowed for a Stückelberg dark photon. A generic expec-
tation for the dark photon quartic in either case is ⇠ g

4

D
.

So far we have ignored any such couplings of the dark
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FIG. 1: Left: The evolution of the number densities of axion (blue) and dark photon (red) normalized by that of the axion
without tachyonic production. We show two benchmarks, m�0 = 0.1ma (solid line) and 0.4ma (dashed line). Right: The power
spectra of the number density of axion (blue) and dark photon (red) with m�0 = 0.1ma. We show two snapshots at ma⌧ = 10
(solid) and 50 (dashed). Other parameters were taken to be � = 40, fa = 1014 GeV, ma = 10�8 eV for both plots.
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FIG. 2: The relic density parameter of axion (blue square)
and dark photon (red circle) as a function of m�0/ma. The
horizontal solid and dotted lines represent the observed DM
density parameter and the axion density parameter with-
out tachyonic production. The values of {�, fa ma} are as
in fig. 1.

photon. Any UV completion of our scenario must ex-
plain why these couplings are small. We further discuss
this issue in the supplementary material.

III. NUMERICAL RESULTS

We have solved directly the equations of motion (3)
and (4) by performing lattice numerical simulations
on a cubic lattice with periodic boundary conditions
with 1283 points and initial comoving lattice spacing =
(⇡/512)m�1

a
. As reference values we have taken � = 40,

ma = 10�8eV, and fa = 1014 GeV, and adopt the initial
condition �i = fa at the conformal time ⌧i = 0.1m�1

a
.

The scale factor is normalized as a(⌧) = ⌧/⌧i, and the

Hubble parameter is given by H = ⌧i/⌧
2 in the radiation

dominated era. We adopt initial fluctuations of the dark
photon given by quantum vacuum fluctuations following
the Rayleigh distribution in Fourier space with the root-
mean-square amplitude

p
h|Ak|2i =

1p
2!k

with !k =
q

(k/a)2 +m
2

�0 . (9)

The initial value at each spatial point is obtained by the
inverse-Fourier transformation.
We show in fig. 1 (left) the time evolution of the axion

(blue) and dark photon (red) number densities normal-
ized by that of the axion in the case of no dark photon
production. One can see that the axion number density
abruptly drops when the dark photon becomes compara-
ble to the axion in number at ma⌧ ' 6� 8, and that the
final dark photon number density is more than 102 times
larger than that of the axion. Most of the initial axion
energy is e�ciently transferred to dark photons.
In fig. 1 (right) we show the power spectra of the co-

moving number densities of the axion (blue) and the dark
photon (red) at the conformal time ma⌧ = 10 (solid) and
50 (dashed). The dark photon spectrum has a promi-
nent peak corresponding to the fastest growing mode of
the tachyonic instability, and the peak continues to per-
sist after the tachyonic growth is saturated at ma⌧ = 6.
The physical momentum of the peak at this time is
kphys ⇠ 0.5ma. The backreaction is not e�cient for dark
photons near the peak, and their production e↵ectively
stops soon after ma⌧ = 6. On the other hand, dark
photons with higher momentum modes with kphys > ma

(k/ma > 100 at ma⌧ = 10) continue to interact and
axions with lower momentum are converted to dark pho-
tons and axions with higher momenta. This, however,
does not a↵ect the final dark photon abundance.
In fig. 2 we show the relic density parameters of axion

(blue square) and dark photon (red circle) as a function

Agrawal et. al (2018)

Placeholder, this is for scalarsCo,  Pierce, Zhang, and Zhao (2018) 
Dror, Harigaya, and Narayan (2018) 
Bastero-Gil, Santiago, Ubaldi, Vega-Morales (2018) Also see: Long & Wang for production from strings and Co et. al for production from axion rotations
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lower bound on ultra-light dark matter mass? 
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better than that from Jean’s scale by 
>2 orders of magnitude!
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generalization to arbitrary spin
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FIG. 1. A visual summary of some of the main results of our paper.

novel class of extremally polarized solitons with spin
Stot/~ = �M/m which can be macroscopically large for
M � m. Here, m is the mass of the field, M is the
mass of the soliton and � is the spin multiplicity. These
coherent solitons (along with fractionally polarized
ones mentioned earlier) might open up new avenues for
observationally probing higher-spin fields.

We find that even within Newtonian gravity it might
be possible to distinguish interacting solitons with dif-
ferent polarizations. Going beyond Newtonian gravity,
which we do not pursue here, might remove degeneracies
between di↵erent polarizations of the higher-spin fields
even further. We also discuss possibilities of probing
this higher-spin dark matter via non-gravitational
interactions, taking advantage of the polarization state
of the solitons.

The paper is organized as follows. In section II we
discuss our model for the case of dark scalar, vector,
and tensor massive fields, leaving additional details in
Appendix A. In section III we provide the e↵ective non-
relativistic action (which is the Schrödinger-Poisson sys-
tem) for these dark integer spin fields, and discuss the
various symmetries of the action. In section IV we dis-
cuss the gravitationally bound solitons. In section V we
discuss their distinguishability, primarily within Newto-
nian gravity, and also mention other non-gravitational
couplings that can probe the spin nature of the fields. In
section VI we summarize and also highlight some future
directions worth investigating.

II. MODELS

Our matter Lagrangian consists of the usual Standard
Model (SM) sector, along with some dark sector that
includes additional massive spin-0, spin-1, or even spin-2
fields. We take these fields to be real valued.

Explicitly, our general action has the form

S = SEH + Sdark + Svis , (1)

where SEH is the gravity sector, Sdark is some dark
sector (incluing dark integer spin fields), and Svis is
the visible sector (comprising of the SM). Our focus
is only on the gravity + dark sector in this paper.
We consider perturbations of di↵erent fields around
some background metric ḡµ⌫ which leads to the usual
massless spin-2 fluctuations: hµ⌫ (the graviton), along
with other perturbations in di↵erent fields. We will
focus on a given spin-s field + gravity, instead of
considering massive spin-0, 1 and 2 together, although
our formalism can accomodate the latter scenario as well.

For most part, we are interested in sub-horizon
physics where length scales associated with config-
urations of these dark fields are much smaller than
the Hubble horizon. As a result, we ignore Hub-
ble expansion, and take the background metric to be2

ḡµ⌫ = ⌘µ⌫ = diag(1, �1, �1, �1). We also take ~ = c = 1.

In the next three subsections, we provide the general
action up-to quadratic order in the fields of interest, along
with leading order gravitational interactions. For the
non-relativistic limit that we are interested in, the lead-
ing order actions provided here are su�cient. The full
nonlinear actions are discussed in the Appendix.

A. Spin-0

The quadratic (free) action for the spin-0 field �, and
metric fluctuations hµ⌫ , along with their leading interac-

2
We use ḡµ⌫ = diag(1,�a2(t),�a2(t),�a2(t)) for an expanding

universe when needed. Here, a(t) is the scale factor normalized

to unity today.

spin multiplicity � =

macroscopic spin  

N =  # of particles in soliton

Stot/~ = �Nẑscale separation  

- phenomenology/numerical simulations 
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novel class of extremally polarized solitons with spin
Stot/~ = �M/m which can be macroscopically large for
M � m. Here, m is the mass of the field, M is the
mass of the soliton and � is the spin multiplicity. These
coherent solitons (along with fractionally polarized
ones mentioned earlier) might open up new avenues for
observationally probing higher-spin fields.

We find that even within Newtonian gravity it might
be possible to distinguish interacting solitons with dif-
ferent polarizations. Going beyond Newtonian gravity,
which we do not pursue here, might remove degeneracies
between di↵erent polarizations of the higher-spin fields
even further. We also discuss possibilities of probing
this higher-spin dark matter via non-gravitational
interactions, taking advantage of the polarization state
of the solitons.

The paper is organized as follows. In section II we
discuss our model for the case of dark scalar, vector,
and tensor massive fields, leaving additional details in
Appendix A. In section III we provide the e↵ective non-
relativistic action (which is the Schrödinger-Poisson sys-
tem) for these dark integer spin fields, and discuss the
various symmetries of the action. In section IV we dis-
cuss the gravitationally bound solitons. In section V we
discuss their distinguishability, primarily within Newto-
nian gravity, and also mention other non-gravitational
couplings that can probe the spin nature of the fields. In
section VI we summarize and also highlight some future
directions worth investigating.

II. MODELS

Our matter Lagrangian consists of the usual Standard
Model (SM) sector, along with some dark sector that
includes additional massive spin-0, spin-1, or even spin-2
fields. We take these fields to be real valued.

Explicitly, our general action has the form

S = SEH + Sdark + Svis , (1)

where SEH is the gravity sector, Sdark is some dark
sector (incluing dark integer spin fields), and Svis is
the visible sector (comprising of the SM). Our focus
is only on the gravity + dark sector in this paper.
We consider perturbations of di↵erent fields around
some background metric ḡµ⌫ which leads to the usual
massless spin-2 fluctuations: hµ⌫ (the graviton), along
with other perturbations in di↵erent fields. We will
focus on a given spin-s field + gravity, instead of
considering massive spin-0, 1 and 2 together, although
our formalism can accomodate the latter scenario as well.

For most part, we are interested in sub-horizon
physics where length scales associated with config-
urations of these dark fields are much smaller than
the Hubble horizon. As a result, we ignore Hub-
ble expansion, and take the background metric to be2

ḡµ⌫ = ⌘µ⌫ = diag(1, �1, �1, �1). We also take ~ = c = 1.

In the next three subsections, we provide the general
action up-to quadratic order in the fields of interest, along
with leading order gravitational interactions. For the
non-relativistic limit that we are interested in, the lead-
ing order actions provided here are su�cient. The full
nonlinear actions are discussed in the Appendix.

A. Spin-0

The quadratic (free) action for the spin-0 field �, and
metric fluctuations hµ⌫ , along with their leading interac-

2
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novel class of extremally polarized solitons with spin
Stot/~ = �M/m which can be macroscopically large for
M � m. Here, m is the mass of the field, M is the
mass of the soliton and � is the spin multiplicity. These
coherent solitons (along with fractionally polarized
ones mentioned earlier) might open up new avenues for
observationally probing higher-spin fields.

We find that even within Newtonian gravity it might
be possible to distinguish interacting solitons with dif-
ferent polarizations. Going beyond Newtonian gravity,
which we do not pursue here, might remove degeneracies
between di↵erent polarizations of the higher-spin fields
even further. We also discuss possibilities of probing
this higher-spin dark matter via non-gravitational
interactions, taking advantage of the polarization state
of the solitons.

The paper is organized as follows. In section II we
discuss our model for the case of dark scalar, vector,
and tensor massive fields, leaving additional details in
Appendix A. In section III we provide the e↵ective non-
relativistic action (which is the Schrödinger-Poisson sys-
tem) for these dark integer spin fields, and discuss the
various symmetries of the action. In section IV we dis-
cuss the gravitationally bound solitons. In section V we
discuss their distinguishability, primarily within Newto-
nian gravity, and also mention other non-gravitational
couplings that can probe the spin nature of the fields. In
section VI we summarize and also highlight some future
directions worth investigating.

II. MODELS

Our matter Lagrangian consists of the usual Standard
Model (SM) sector, along with some dark sector that
includes additional massive spin-0, spin-1, or even spin-2
fields. We take these fields to be real valued.

Explicitly, our general action has the form

S = SEH + Sdark + Svis , (1)

where SEH is the gravity sector, Sdark is some dark
sector (incluing dark integer spin fields), and Svis is
the visible sector (comprising of the SM). Our focus
is only on the gravity + dark sector in this paper.
We consider perturbations of di↵erent fields around
some background metric ḡµ⌫ which leads to the usual
massless spin-2 fluctuations: hµ⌫ (the graviton), along
with other perturbations in di↵erent fields. We will
focus on a given spin-s field + gravity, instead of
considering massive spin-0, 1 and 2 together, although
our formalism can accomodate the latter scenario as well.

For most part, we are interested in sub-horizon
physics where length scales associated with config-
urations of these dark fields are much smaller than
the Hubble horizon. As a result, we ignore Hub-
ble expansion, and take the background metric to be2

ḡµ⌫ = ⌘µ⌫ = diag(1, �1, �1, �1). We also take ~ = c = 1.

In the next three subsections, we provide the general
action up-to quadratic order in the fields of interest, along
with leading order gravitational interactions. For the
non-relativistic limit that we are interested in, the lead-
ing order actions provided here are su�cient. The full
nonlinear actions are discussed in the Appendix.

A. Spin-0

The quadratic (free) action for the spin-0 field �, and
metric fluctuations hµ⌫ , along with their leading interac-

2
We use ḡµ⌫ = diag(1,�a2(t),�a2(t),�a2(t)) for an expanding

universe when needed. Here, a(t) is the scale factor normalized

to unity today.

spin multiplicity � =

macroscopic spin  

N =  # of particles in soliton

Stot/~ = �Nẑ

spin-s fields as dark matter 

Jain & MA (2021)



immediate future directions

- cosmological scale simulations remain to be done (with S. May)  

- MW sattellite populations related constraints (with R. Wechsler & E. Nadler) 

- cold-atom systems (ongoing with H. Pu & M. Jain)



i-SPin:  An integrator for multicomponent 

Schrodinger-Poisson systems with self-interactions 

Mudit Jain & Mustafa Amin

i-SPin: An algorithm (and publicly available code) to numerically evolve multicomponent 
Schrodinger-Poisson (SP) systems, including attractive/repulsive self-interactions + gravity  

problem: If SP system represents the non-relativistic limit of a massive vector field, non-
gravitational self-interactions (in particular, spin-spin type interactions) introduce new challenges 
related to mass and spin conservation which are not present in purely gravitational systems.  

solution: Above challenges addressed with a novel analytical solution for the non-trivial ‘kick’ step 
in the algorithm (sec 4.3.2) 

features: (i) second order accurate evolution (ii) spin and mass conserved to machine precision (iii) 
reversible 

generalizations: n-component fields with SO(n) symmetry, an expanding universe relevant for 
cosmology, and the inclusion of external potentials relevant for laboratory settings  

arXiv: 2211.08433
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Figure 1: Mass and spin conservation: Top panel shows snapshots of projected mass density
at three instants t = 0, 13, and 40 (upper panel). Lower panel are snapshots of magnitude of
spin density at the same times. One of the solitons is initialized with maximal spin, whereas
the other two have zero spin initially. The bottom plot shows quantitative measures of total
spin (blue curve) and total mass (red curve) conservation; both are conserved to better than
one part in 1011.
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Figure 2: Tracking reversibility: Top panel shows snapshots of projected mass density at
three instants t = 0, 13, and 40 (upper panel). The self-interaction was chosen to be repulsive
(� = �0.01). Lower panel include snapshots from the backward evolution at the same instants.
The unwinding of the final state to the initial state gives a qualitative proof of reversibility of
our algorithm. In the bottom graph we show the asymmetry parameter �(t) . 10�19, which
provides a quantitative measure of reversibility.
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our work. A collection of appendices provide a derivation of the nonrelativistic action, fluid
and spin conservation equations, and polarized soliton solutions in vector fields including both
gravitational and non-gravitational interactions.

2 Spin-1 Schrödinger-Poisson system

We begin with a 3-component Schrödinger-Poisson system with SO(3) symmetry with non-
relativistic and massive spin-1 vector fields in mind. That is, the Schrödinger field  =
( 1, 2, 3) transforms as  i ! Rij j with R 2 SO(3), but leaves the action unchanged.1

On account of this, we have the following general action that includes both Newtonian gravity
and point self-interactions

Snr=

Z
dt d3

x

"
i~
2
 † ·  ̇+ c.c. � ~2

2m
r † · r +

1

8⇡G
�r2� � m� † · � Vnrel( , †)

#
.

(2.1)

Here, the first two terms dictate the usual free field evolution (of each of the field component
 i), while the third and fourth terms account for the Gauss’ law for Newtonian gravity where
only the mass density m † · = m 

⇤

i  i contributes to the Newtonian potential �. Finally, the
last term accounts for point interactions of the vector field  , and takes the following specific
form for quartic self-interaction

Vnrel( 
†
, ) = � �(~c)3

8(mc2)2

h
( · ) ( † · †) + 2 ( † · )2

i
. (2.2)

In terms of the number density ⇢ =  † and spin density S = i~ ⇥  †, the spin-spin
interaction becomes apparent:

Vnrel(⇢,S) = � �(~c)3
8(mc2)2


3⇢2 � (S · S)

~2

�
. (2.3)

This admits the following Schrödinger-Poisson system of equations

i~ @t = � ~2

2m
r2 +m� � �(~c)3

4(mc2)2

h
( · ) † + 2 ( † · ) 

i
,

r2� = 4⇡Gm † · . (2.4)

The above form of the potential in eq. (2.2) arises from the relativistic quartic potential

Vrel = ��(WµW
µ)2 , (2.5)

upon taking the non-relativistic limit of an e↵ective theory of a self-interacting massive spin-1
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