

A Spin on Wave Dark Matter Mustafa A. Amin With RICE

Small Scale Structure in Vector Dark Matter

Mustafa A. Amin Win RICE

distinct phenomenology in (ultra)light vector dark matter

distinct phenomenology in (ultra

• interference patterns, and halo density profiles

 new class of polarized vector solitons with macroscopic spin

distinct phenomenology in (ultra)light vector dark matter

• interference patterns, and halo density profiles

new class of polarized vector solitons with macroscopic spin

VDM formation and soliton nucleation

I may not have time for ...

post-inflationary formation of any dark matter

MA & Mirbabayi (2022)

$m \gtrsim 10^{-18} \,\mathrm{eV}$ lower bound on the mass

motivation & introduction

dark matter mass ?

image credit: E. Ferreira

dark matter spin ?

light, bosonic wave dark matter

$$\lambda_{\rm dm}^3 \lambda_{\rm dB}^3 \sim 10^{23} \left(\frac{10^{-5} \,\mathrm{eV}}{m}\right)^4 \sim 10^{83} \left(\frac{10^{-20} \,\mathrm{eV}}{m}\right)^4$$

$$d_{\rm dB} \sim 10^3 {\rm cm} \times \left(\frac{10^{-5} {\rm eV}}{m}\right) \left(\frac{10^{-3} c}{v}\right) \sim 1 {\rm pc} \left(\frac{10^{-20} {\rm eV}}{m}\right) \left(\frac{10^{-3} c}{v}\right)$$

scalar dark matter

- QCD axions

- fuzzy DM, ultralight DM, BECDM, spin-0 DM

GeV		$M_{\rm pl}$	M_{\odot} N	
ght" DM	WIMP	Composite DM	Primordial BHs	
, nal relic		boson stars/s	olitons/oscillons	

vector dark matter

$$S = \int \mathrm{d}^4 x \,\sqrt{-g} \Big[-\frac{1}{4} g^{\mu\alpha} g^{\nu\beta} \,\mathcal{G}_{\mu\nu} \mathcal{G}_{\alpha\beta} + \frac{1}{2} \frac{m^2 c^2}{\hbar^2} \,g^{\mu\nu} W_\mu W_\nu + \frac{c^3}{16\pi G} R + \dots \Big] \quad + \text{ non-grav, interactions}$$

$$\mathcal{G}_{\mu\nu} = \partial_{\mu}W_{\nu} - \partial_{\nu}W_{\mu}$$

non-relativistic limit

$$\boldsymbol{W}(t,\boldsymbol{x}) \equiv \frac{\hbar}{\sqrt{2mc}} \Re \left[\boldsymbol{\Psi}(t,\boldsymbol{x}) e^{-imc^2 t/\hbar} \right]$$

$$\mathcal{S}_{nr} = \int \mathrm{d}t \mathrm{d}^3x \left[\frac{i\hbar}{2} \mathbf{\Psi}^{\dagger} \dot{\mathbf{\Psi}} + \mathrm{c.c.} - \frac{\hbar^2}{2m} \nabla \mathbf{\Psi}^{\dagger} \cdot \nabla \mathbf{\Psi} + \frac{1}{8\pi G} \Phi \nabla^2 \Phi - m \Phi \mathbf{\Psi}^{\dagger} \mathbf{\Psi} \right]$$

split in "fast" and "slow" parts

Adshead & Lozanov (2021)

non-relativistic limit = multicomponent Schrödinger-Poisson

$$[\mathbf{\Psi}]_i = \psi_i \text{ with } i = 1, 2, 3 \text{ vector}$$

 $i\hbar \frac{\partial}{\partial t} \mathbf{\Psi} = -\frac{\hbar^2}{2m} \nabla^2 \mathbf{\Psi} + m \Phi \mathbf{\Psi}$

$$[\Psi]_i = \psi_i$$
 with $i = 1$ scalar

case

)

$\nabla^2 \Phi = 4\pi G m \, \Psi^\dagger \Psi$

lead by Mudit Jain arXiv: 2109.04892

generalization to spin -s field, Jain & MA (2022) at this level this is just 2s+1 scalar fields

case

$$N = \int d^{3}x \Psi^{\dagger} \Psi, \quad \text{and} \quad M = mN, \qquad \text{(particle number and rest mass)}$$
$$E = \int d^{3}x \Big[\frac{\hbar^{2}}{2m} \nabla \Psi^{\dagger} \cdot \nabla \Psi - \frac{Gm^{2}}{2} \Psi^{\dagger} \Psi \int \frac{d^{3}y}{4\pi |\boldsymbol{x} - \boldsymbol{y}|} \Psi^{\dagger}(\boldsymbol{y}) \Psi(\boldsymbol{y}) \Big], \qquad \text{(energy)}$$
$$\boldsymbol{S} = \hbar \int d^{3}x \, i \Psi \times \Psi^{\dagger}, \qquad \text{(spin angular momentum)}$$
$$\boldsymbol{L} = \hbar \int d^{3}x \, \Re \left(i \Psi^{\dagger} \nabla \Psi \times \boldsymbol{x} \right). \qquad \text{(orbital angular momentum)}$$

$$[\mathbf{\Psi}]_i = \psi_i \text{ with } i =$$

vector vs. scalar DM: two key differences

interference polarized solitons

wave interference

 $|\Psi_a(\boldsymbol{x}) + \Psi_b(\boldsymbol{x})|^2 \neq |\Psi_a(\boldsymbol{x})|^2 + |\Psi_b(\boldsymbol{x})|^2$

 $|\Psi_a(\boldsymbol{x}) + \Psi_b(\boldsymbol{x})|^2 = |\Psi_a(\boldsymbol{x})|^2 + |\Psi_b(\boldsymbol{x})|^2$

reduced wave interference in VDM

$$\boldsymbol{\Psi}_{a}(\boldsymbol{x}) = \boldsymbol{\epsilon}_{a}^{(s)} e^{i \boldsymbol{k}_{a} \cdot \boldsymbol{x}}$$

$$|\Psi_{a}(\boldsymbol{x}) + \Psi_{b}(\boldsymbol{x})|^{2} = 2\left(1 + \Re\left[\epsilon_{a}^{(s)\dagger} \cdot \epsilon_{a}^{(s)}e^{-i(\boldsymbol{k}_{a}-\boldsymbol{k}_{b})\cdot\boldsymbol{x}}\right]\right) = 2\left(1 + \operatorname{int}_{(s)}\right)\right)$$

$$\sqrt{\langle \operatorname{int}_{(s)}^{2} \rangle} = \frac{1}{\sqrt{2(2s+1)}}$$

$$\frac{\sqrt{\langle \operatorname{int}_{(0)}^{2} \rangle}}{\sqrt{\langle \operatorname{int}_{(0)}^{2} \rangle}} = \frac{1}{\sqrt{3}}$$

$$\sqrt{\langle \operatorname{int}_{(s)}^2 \rangle} = \frac{1}{\sqrt{2(2s+1)}}$$

s = 0 for SDM and s = 1 for VDM

MA, Jain, Karur & Mocz (2022)

very-long lived, dynamical excitation in a field, with nonlinearities balancing dispersion

- discovered in nonlinear waves in water in canals (John Scott Russell, 1834)
- optics, hydrodynamics, BECs, high energy physics, and cosmology

Image Credit: Heriot-Watt University

water

(John Scott Russell, 1834) and cosmology

solitons in massive spin-0 (scalar fields)

 $\Psi_{\rm sol}(t, \boldsymbol{x}) = \psi_{\rm sol}(\mu, \boldsymbol{x}) e^{i\mu c^2 t/\hbar}$

$$M_{\rm sol} \approx 60.7 \frac{m_{\rm pl}^2}{m} \sqrt{\frac{\mu}{m}}$$
$$R_{\rm sol} \sim \sqrt{\frac{m}{\mu}} \frac{\hbar}{mc}$$

 $\mu/m \ll 1$

lowest energy solution for fixed total Mass (in non-relativistic limit)

A				
	12.			
1				
	124			
0				
1.4				
1.111			· · · ·	
	1.2	- AL.		
			100	
	- i -		*	
	· · · ·			
	10.			
B				
		-		
	-			
	· · · · ·			
		10.00		
			1.000	-
		-	_	
		-		ъ£.
-	_	1000		-
-				
80				
- 20				

$\boldsymbol{\Psi}_{\mathrm{sol}}(t, \boldsymbol{x}) = \psi_{\mathrm{sol}}(\mu, r) e^{i\mu c^2 t/\hbar} \boldsymbol{\epsilon}$

 $\epsilon^{\dagger}\epsilon = 1$

tensor

 $s = 2^s$

 $\lambda = 0$

"polarized" vect

$$\Psi_{\rm sol}(t, \boldsymbol{x}) = \psi_{\rm sol}(\mu, r) e^{i\mu c^2 t/\hbar} \boldsymbol{\epsilon} \qquad \boldsymbol{\epsilon}^{\dagger} \boldsymbol{\epsilon} = 1$$

$$\boldsymbol{S}_{\mathrm{sol}} = i(\boldsymbol{\epsilon} \times \boldsymbol{\epsilon}^{\dagger}) \frac{M_{\mathrm{sol}}}{m} \hbar$$

macroscopic spin

$$\boldsymbol{S}_{\mathrm{tot}}/\hbar = \lambda N \hat{z}$$

N = # of particles in soliton

 $\lambda = \pm 2$

$$\boldsymbol{S}_{\mathrm{sol}} = i(\boldsymbol{\epsilon} \times \boldsymbol{\epsilon}^{\dagger}) \frac{M_{\mathrm{sol}}}{m} \hbar$$

macroscopic spin $S_{\rm tot}/\hbar = \lambda N \hat{z}$ Poisson 2s+1 component N = # of particles in soliton Schrödinger - all lowest energy for fixed M $s \neq 1$ extremally - bases for partially-polarized solitons polarized solitons \bigcirc \bigcirc $+c_{1}$ c_0 000 $\boldsymbol{S}_{ ext{tot}} = \vec{0}$ $m{S}_{
m tot} =$ $m{S}_{
m tot} =$

 $0 \le |\mathbf{S}_{ ext{tot}}| \le rac{M_{ ext{sol}}}{m}\hbar$

A CA CO

0 \bigcirc

 \bigcirc

Einste (s = 1)+ Proca

Fierz-Pauli (s = 2)

> $S_{
> m tot}/\hbar=\lambda\Lambda$ at least when non-relativistic Lozanov & Adshead (2021) $S_{\text{tot}} = 0$

Klein-Gordon (s = 0)

(s = 1)

Einstein

+ Proca

Fierz-Pauli (s = 2)

 $S_{\rm tot}/\hbar = \lambda N \hat{z}$

 $\boldsymbol{S}_{ ext{tot}} = \vec{0}$

$$cz-Pauli \quad (s=2)$$

 $S_{\rm tot}/\hbar = \lambda N \hat{z}$

+ Proca

non-relativistic limit (s = 1)

(s = 2)Fierz-Pauli

 $m{S}_{
m tot}=ec{0}$

Zhang, Jain & MA (2022)

Fierz-Pauli (s = 2)

 $m{S}_{
m tot}=ec{0}$

 $S_{\text{totzhang}}, \overline{\overline{\text{Jain}}} \gtrsim N_{A(2022)}$

 $m{S}_{
m tot}$ tensor \mathbb{X}

vector vs. scalar DM: two key differences

interference polarized solitons

3+1 dimensional simulations

 $\begin{array}{c} 0.34 \\ t/t_{\rm dyn} \longrightarrow \end{array}$

Difference between

Vector & Scalar Dark Matter

1.36

radial density profiles

scalar vs. vector dark matter

- less dense & broader core
- smoother transition to r^{-3} tail

interference and density pdf

same length scale of interference patterns

$\lambda_{\rm dB}({ m VDM}) \approx \lambda_{\rm dB}({ m SDM})$

but different amplitude of density fluctuations

 $(\delta \rho / \rho)_{\rm VDM} \approx (\delta \rho / \rho)_{\rm SDM} / \sqrt{3}$

also see similar result for multiple scalar fields case: Gosenca et. al (2023)

gravitational implications (examples)

- dynamical heating of stars $m \gtrsim \frac{1}{(2s+1)^{1/3}} \left[3 \times 10^{-19} \text{eV} \right]$ Dalal & Kratsov (2022)

MA, Jain, Karur & Mocz (2022)

gravitational implications (examples)

- lensing $m \gtrsim \frac{1}{(2s+1)} \left[4.4 \times 10^{-21} \,\mathrm{eV} \right]$

Powell et. al (2023)

kinetic nucleation time scales

- nucleation time scale $au_{ m s} \sim (2s+1) au_{ m s=0}$

 $au_{
m s=0} \sim n\sigma_{
m gr} v {\cal N}$ Levkov et. al (2018) $\sigma_{\rm gr} \sim (Gm/v^2)^2, \qquad \mathcal{N} \sim n\lambda_{\rm dB}^3$

with M. Jain, J. Thomas, Wanichwecharungruang

kinetic nucleation time scales

- nucleation time scale $au_{ m s} \sim (2s+1) au_{ m s=0}$

 $au_{
m s=0} \sim n\sigma_{
m gr} v \mathcal{N}$ Levkov et. al (2018) $\sigma_{\rm gr} \sim (Gm/v^2)^2, \qquad \mathcal{N} \sim n\lambda_{\rm dB}^3$

with M. Jain, J. Thomas, Wanichwecharungruang

kinetic nucleation time scales

- nucleation time scale $au_{ m s} \sim (2s+1) au_{ m s=0}$

 $\tau_{\rm s=0} \sim n\sigma_{\rm gr} v \mathcal{N}$ $\sigma_{\rm gr} \sim (Gm/v^2)^2, \qquad \mathcal{N} \sim n\lambda_{\rm dB}^3$

intrinsic spin

spin multiplicity = 01

implications of non-zero spin solitons?

Photons from Dark Photon Solitons via Parametric Resonance

 $\mathcal{L}_{\rm int} \sim g^2 W W F F$

with Schiappacasse & Long (2022)

Photons from Dark Photon Solitons via Parametric Resonance

$\mathcal{L}_{\rm int} \sim g^2 W W F F$

with Schiappacasse & Long (2022)

3.0

spit of soliton & polarization of photons 2.0

0.3

formation mechanism: initial power spectrum — nonlinear structure

gravitational particle production

4

 $\mathcal{P}_{\delta}(k)$

$$\Omega_{\rm vdm} \sim 0.3 \left(\frac{m}{10^{-5} \,\mathrm{eV}}\right)^{1/2} \left(\frac{H_{\rm inf}}{10^{14} \,\mathrm{GeV}}\right)$$

Graham, Mardon, Rajendran (2016) Ahmed, Grzadkowski, Socha (2020) Kolb & Long (2020)

early derivation of action for longitudinal mode: Himmetoglu, Contaldi & Peloso (2008)

cannot do ultralight dark photons

 $m \gtrsim 10^{-5} \,\mathrm{eV}$

$$k_J \sim \sqrt{mH_{\rm eq}}$$

gravitational particle production to nonlinear structures

cannot easily do ultralight dark photons

$$\Omega_{\rm vdm} \sim 0.3 \left(\frac{m}{10^{-5} \, {\rm eV}}\right)^{1/2} \left(\frac{H_{\rm inf}}{10^{14} \, {\rm GeV}}\right)$$

Graham, Mardon, Rajendran (2016)
Ahmed, Grzadkowski, Socha (2020)

Kolb & Long (2020)

early derivation of action for longitudinal mode: Himmetoglu, Contaldi & Peloso (2008)

$$M_{\rm sol}(a) \sim 10^{-23} M_{\odot} \left(\frac{a_{\rm eq}}{a}\right)^{3/4} \left(\frac{{\rm eV}}{m}\right)^{3/2}$$

 $R_{\rm sol}(a) \sim 10^4 \,{\rm km} \left(\frac{a}{a_{\rm eq}}\right)^{3/4} \left(\frac{{\rm eV}}{m}\right)^{1/2}$

 10^{-2} 10^{-4} 10^{-6} 10^{-8} 10^{-10} 10^{-6}

4

 $\mathcal{P}_{\delta}(k)$

non-gravitational post-inflationary dark production?

$$\ddot{\mathbf{A}}_{\mathbf{k},\pm} + H\dot{\mathbf{A}}_{\mathbf{k},\pm} + \left(m_{\gamma'}^2 + \frac{k^2}{a^2} \mp \frac{k}{a}\frac{\beta\dot{\phi}}{f_a}\right)\mathbf{A}_{\mathbf{k},\pm} = 0$$

Co, Pierce, Zhang, and Zhao (2018) Dror, Harigaya, and Narayan (2018) Bastero-Gil, Santiago, Ubaldi, Vega-Morales (2018)

Also see: Long & Wang for production from strings and Co et. al for production from axion rotations

can do ultralight dark photons lower bound on mass ?

lower bound on ultra-light dark matter mass?

 $k_{\rm nl} \sim$ momentum that dominates the momentum integral for the density of dark matter

 $\Delta_{\delta}^{2}(k, t_{\rm eq}) \sim \Delta_{\delta}^{2(ad.)}(k, t_{\rm eq}) \times \Gamma_{\rm fs}(k/k_{\rm fs}) + \left(\frac{k}{k_{\rm nl}}\right)^{3}$

adiabatic * free-streaming

lower bound on ultra-light dark matter mass?

 $\Delta_{\delta}^{2}(k, t_{\rm eq}) \sim \Delta_{\delta}^{2(ad.)}(k, t_{\rm eq}) \times \Gamma_{\rm fs}(k/k_{\rm fs}) + \left(\frac{k}{k_{\rm nl}}\right)^{3}$

adiabatic * free-streaming

white noise

no enhancement or suppression $k \lesssim 10 \, {
m Mpc}^{-1}$

 $\implies k_{\rm nl} \gtrsim 10^4 \,\mathrm{Mpc}^{-1}$, $k_{\rm fs} \gtrsim 10 \,\mathrm{Mpc}^{-1}$

 $\implies m \gtrsim 10^{-18} \,\mathrm{eV}$

lower bound on ultra-light dark matter mass?

MA, Mirbabayi (2022)

applies to all causally produced fields (not just VDM)

generalization to arbitrary spin

spin-s field as dark matter

non-relativistic limit = multicomponent Schrödinger-Poisson

spin-s fields as light dark matter

-phenomenology/numerical simulations

- interference $\sim 1/(2s+1)$

2s+1 component

Schrödinger

extremally polarized solitons

spin-s fields as dark matter

immediate future directions

- cosmological scale simulations remain to be done (with S. May)
- MW sattellite populations related constraints (with R. Wechsler & E. Nadler) - cold-atom systems (ongoing with H. Pu & M. Jain)

i-SPin: An integrator for multicomponent Mudit. Schrodinger-Poisson systems with self-interactions

i-SPin: An algorithm (and publicly available code) to numerically evolve multicomponent Schrodinger-Poisson (SP) systems, including attractive/repulsive self-interactions + gravity

problem: If SP system represents the non-relativistic limit of a massive vector field, nongravitational self-interactions (in particular, *spin-spin* type interactions) introduce new challenges related to mass and spin conservation which are not present in purely gravitational systems.

solution: Above challenges addressed with a novel analytical solution for the non-trivial 'kick' step in the algorithm (sec 4.3.2)

features: (i) second order accurate evolution (ii) spin and mass conserved to machine precision (iii) reversible

generalizations: *n*-component fields with SO(n) symmetry, an expanding universe relevant for cosmology, and the inclusion of external potentials relevant for laboratory settings

arXiv: 2211.08433 Mudit Jain & Mustafa Amin

$$i\hbar \partial_t \Psi = -\frac{\hbar^2}{2m} \nabla^2 \Psi + m \Phi \Psi - \frac{\lambda (\hbar c)^3}{4(mc^2)^2} \Big[(\Psi \cdot \Psi) \Psi^{\dagger} + 2 (\Psi^{\dagger} \cdot \Psi) \Psi \Big]$$

$$V_{\rm nrel}(\rho, \boldsymbol{\mathcal{S}}) = -\frac{\lambda(\hbar c)^3}{8(mc^2)^2} \left[3\rho^2 - \frac{(\boldsymbol{\mathcal{S}} \cdot \boldsymbol{\mathcal{S}})}{\hbar^2} \right]$$

number density $\rho = \Psi^{\dagger} \Psi$ spin density $S = i\hbar \Psi \times \Psi^{\dagger}$

