

Small Scale Structure in Vector Dark Matter Mustafa A. Amin RICE

distinct phenomenology in (ultra)light vector dark matter

 new class of polarized vector solitons with macroscopic spin

Zhang, Jain MA (2021) Adshead & Lozanov (2021) Jain and MA (2021)

interference patterns, and halo density profiles

MA, Jain, Karur & Mocz (2022)

distinct phenomenology in (ultra)light vector dark matter

 new class of polarized vector solitons with macroscopic spin

Adshead & Lozanov (2021) Jain and MA (2021) Zhang, Jain MA (2021)

• interference patterns, and halo density profiles

MA, Jain, Karur & Mocz (2022)

files (2022)

MA, Jain, Karur & Mocz (2022)

formation mechanisms?

Gorghetto, Hardy, March-Russell, Song & West (2022)

misaligned scalar + self-interactions?

gravitational in late universe

motivation & introduction

dark matter mass ?

image credit: E. Ferreira

dark matter spin?

light, bosonic wave dark matter

$$\lambda_{\rm dm}^3 \lambda_{\rm dB}^3 \sim 10^{23} \left(\frac{10^{-5} \,\mathrm{eV}}{m}\right)^4 \sim 10^{83} \left(\frac{10^{-20} \,\mathrm{eV}}{m}\right)^4$$

$$_{\rm dB} \sim 10^3 {\rm cm} \times \left(\frac{10^{-5} {\rm eV}}{m}\right) \left(\frac{10^{-3} c}{v}\right) \sim 1 {\rm pc} \left(\frac{10^{-20} {\rm eV}}{m}\right) \left(\frac{10^{-3} c}{v}\right)$$

vector dark matter

 $S = \int d^4x \sqrt{-g} \left[-\frac{1}{4} g^{\mu\alpha} g^{\nu\beta} \mathcal{G}_{\mu\nu} \mathcal{G}_{\alpha\beta} + \frac{1}{2} \frac{m^2 c^2}{\hbar^2} g^{\mu\nu} W_{\mu} W_{\nu} + \frac{c^3}{16\pi G} R + \dots \right]$

 $\mathcal{G}_{\mu\nu} = \partial_{\mu}W_{\nu} - \partial_{\nu}W_{\mu}$

$$S = \int d^4x \sqrt{-g} \left[-\frac{1}{2} \partial_\mu \phi \partial^\mu \phi + \frac{1}{2} \frac{m^2 c^2}{\hbar^2} \right]$$

vector case

scalar case

non-relativistic limit = multicomponent Schrödinger-Poisson

$$S = \int \mathrm{d}^4 x \, \sqrt{-g} \Big[-\frac{1}{4} g^{\mu\alpha} g^{\nu\beta} \, \mathcal{G}_{\mu\nu} \mathcal{G}_{\alpha\beta} + \frac{1}{2} \frac{n}{2} \Big]$$

$$\mathcal{G}_{\mu\nu} = \partial_{\mu}W_{\nu} - \partial_{\nu}W_{\mu}$$

non-relativistic limit

$$\boldsymbol{W}(t,\boldsymbol{x}) \equiv \frac{\hbar}{\sqrt{2mc}} \Re \left[\boldsymbol{\Psi}(t,\boldsymbol{x}) e^{-imc^2 t/\hbar} \right]$$

$$\mathcal{S}_{nr} = \int \mathrm{d}t \mathrm{d}^3 x \left[\frac{i\hbar}{2} \mathbf{\Psi}^{\dagger} \dot{\mathbf{\Psi}} + \mathrm{c.c.} - \frac{\hbar^2}{2m} \nabla \mathbf{\Psi}^{\dagger} \cdot \nabla \mathbf{\Psi} + \frac{1}{8\pi G} \Phi \nabla^2 \Phi - m \Phi \mathbf{\Psi}^{\dagger} \mathbf{\Psi} \right]$$

split in "fast" and "slow" parts

Adshead & Lozanov (2021) Jain & MA (2021)

non-relativistic limit = multicomponent Schrödinger-Poisson

$$[\mathbf{\Psi}]_i = \psi_i \text{ with } i = 1, 2, 3 \text{ vector}$$

 $i\hbar \frac{\partial}{\partial t} \mathbf{\Psi} = -\frac{\hbar^2}{2m} \nabla^2 \mathbf{\Psi} + m \Phi \mathbf{\Psi}$

$$[\Psi]_i = \psi_i$$
 with $i = 1$ scalar

case

)

$\nabla^2 \Phi = 4\pi G m \, \Psi^\dagger \Psi$

case

generalization to s spin-s field field in Jain & MA (2021)

$$N = \int d^{3}x \Psi^{\dagger} \Psi, \quad \text{and} \quad M = mN, \qquad \text{(particle number and rest mass)}$$
$$E = \int d^{3}x \Big[\frac{\hbar^{2}}{2m} \nabla \Psi^{\dagger} \cdot \nabla \Psi - \frac{Gm^{2}}{2} \Psi^{\dagger} \Psi \int \frac{d^{3}y}{4\pi |\boldsymbol{x} - \boldsymbol{y}|} \Psi^{\dagger}(\boldsymbol{y}) \Psi(\boldsymbol{y}) \Big], \qquad \text{(energy)}$$
$$\boldsymbol{S} = \hbar \int d^{3}x \, i \Psi \times \Psi^{\dagger}, \qquad \text{(spin angular momentum)}$$
$$\boldsymbol{L} = \hbar \int d^{3}x \, \Re \left(i \Psi^{\dagger} \nabla \Psi \times \boldsymbol{x} \right). \qquad \text{(orbital angular momentum)}$$

$$[\mathbf{\Psi}]_i = \psi_i \text{ with } i =$$

vector vs. scalar DM: two key differences

interference polarized solitons

wave interference

 $|\Psi_a(\boldsymbol{x}) + \Psi_b(\boldsymbol{x})|^2 \neq |\Psi_a(\boldsymbol{x})|^2 + |\Psi_b(\boldsymbol{x})|^2$

 $|\Psi_a(\boldsymbol{x}) + \Psi_b(\boldsymbol{x})|^2 = |\Psi_a(\boldsymbol{x})|^2 + |\Psi_b(\boldsymbol{x})|^2$

reduced wave interference in VDM

$$\boldsymbol{\Psi}_{a}(\boldsymbol{x}) = \boldsymbol{\epsilon}_{a}^{(s)} e^{i\boldsymbol{k}_{a}\cdot\boldsymbol{x}}$$

$$|\Psi_{a}(\boldsymbol{x}) + \Psi_{b}(\boldsymbol{x})|^{2} = 2\left(1 + \Re\left[\epsilon_{a}^{(s)\dagger} \cdot \epsilon_{a}^{(s)}e^{-i(\boldsymbol{k}_{a}-\boldsymbol{k}_{b})\cdot\boldsymbol{x}}\right]\right) = 2\left(1 + \operatorname{int}_{(s)}\right)\right)$$

$$\sqrt{\langle \operatorname{int}_{(s)}^{2} \rangle} = \frac{1}{\sqrt{2(2s+1)}}$$

$$\frac{\sqrt{\langle \operatorname{int}_{(0)}^{2} \rangle}}{\sqrt{\langle \operatorname{int}_{(0)}^{2} \rangle}} = \frac{1}{\sqrt{3}}$$

$$\sqrt{\langle \operatorname{int}_{(s)}^2 \rangle} = \frac{1}{\sqrt{2(2s+1)}}$$

s = 0 for SDM and s = 1 for VDM

MA, Jain, Karur & Mocz (2022)

solitons in massive spin-0 (scalar fields)

 $\Psi_{\rm sol}(t,\boldsymbol{x}) = \psi_{\rm sol}(\mu,\boldsymbol{x})e^{i\mu c^2 t/\hbar}$

$$M_{\rm sol} \approx 60.7 \frac{m_{\rm pl}^2}{m} \sqrt{\frac{\mu}{m}}$$
$$R_{\rm sol} \sim \sqrt{\frac{m}{\mu}} \frac{\hbar}{mc}$$

 $\mu/m \ll 1$

lowest energy state for fixed NN = # of particles in soliton

	S		
	1.00		
	·		
	1.1.1.1		
			· · · ·
		1.	
			1 A A
		-	
-	1.2		
	1.0		
		2.00	
P			
			-
			· · · ·
	- 10		- 14
-	-	100	100
-		1.00	
100			

"polarized" vector solitons

$$\Psi_{\rm sol}(t, \boldsymbol{x}) = \psi_{\rm sol}(\mu, r) e^{i\mu c^2 t/\hbar} \boldsymbol{\epsilon}$$

 $\epsilon^{\dagger}\epsilon = 1$

 $\boldsymbol{W}(t,\boldsymbol{x}) \equiv \frac{\hbar}{\sqrt{2mc}} \Re \left[\boldsymbol{\Psi}(t,\boldsymbol{x}) e^{-imc^2 t/\hbar} \right]$

$$\boldsymbol{\epsilon}_{1,\hat{z}}^{(0)} = \begin{pmatrix} 0\\0\\1 \end{pmatrix}$$

$$\boldsymbol{\epsilon}_{1,\hat{z}}^{(\pm 1)} = \frac{1}{\sqrt{2}} \begin{pmatrix} 1\\ \pm i\\ 0 \end{pmatrix}$$

"polarized" vector solitons

$$\Psi_{\rm sol}(t, \boldsymbol{x}) = \psi_{\rm sol}(\mu, r) e^{i\mu c^2 t/\hbar} \boldsymbol{\epsilon} \qquad \boldsymbol{\epsilon}^{\dagger} \boldsymbol{\epsilon} = 1$$

$$\mathbf{S}_{sol} \approx i(\boldsymbol{\epsilon} \times \boldsymbol{\epsilon}^{\dagger}) 60.7 \frac{m_{pl}^2}{m^2} \sqrt{\frac{\mu}{m}} \hbar = i(\boldsymbol{\epsilon} \times \boldsymbol{\epsilon}^{\dagger}) \frac{M_s}{m^2}$$

macroscopic spin

$$S_{\rm tot}/\hbar = \lambda N \hat{z}$$

N = # of particles in soliton

 $\boldsymbol{W}(t,\boldsymbol{x}) \equiv \frac{\hbar}{\sqrt{2mc}} \Re \left[\boldsymbol{\Psi}(t,\boldsymbol{x}) e^{-imc^2 t/\hbar} \right]$

 $S_{\rm tot} = 0\hat{z}$

 $\boldsymbol{S}_{\mathrm{tot}} = \hbar \frac{M_{\mathrm{sol}}}{2} \hat{z}$

Jain & MA (2021)

"polarized" vector solitons

$$\Psi_{\rm sol}(t, \boldsymbol{x}) = \psi_{\rm sol}(\mu, r) e^{i\mu c^2 t/\hbar} \boldsymbol{\epsilon} \qquad \boldsymbol{\epsilon}^{\dagger} \boldsymbol{\epsilon} = 1$$

$$\mathbf{S}_{sol} \approx i(\boldsymbol{\epsilon} \times \boldsymbol{\epsilon}^{\dagger}) 60.7 \frac{m_{pl}^2}{m^2} \sqrt{\frac{\mu}{m}} \hbar = i(\boldsymbol{\epsilon} \times \boldsymbol{\epsilon}^{\dagger}) \frac{M_s}{m^2}$$

macroscopic spin $S_{\rm tot}/\hbar = \lambda N \hat{z}$ N = # of particles in soliton

- all lowest energy for fixed N
- bases for partially-polarized solitons

 $\boldsymbol{W}(t,\boldsymbol{x}) \equiv \frac{\hbar}{\sqrt{2mc}} \Re \left[\boldsymbol{\Psi}(t,\boldsymbol{x}) e^{-imc^2 t/\hbar} \right]$

 $S_{\text{tot}} = 0\hat{z}$

 $\boldsymbol{S}_{\mathrm{tot}} = \hbar \frac{M_{\mathrm{sol}}}{2} \hat{z}$

 $0 \le |\mathbf{S}_{ ext{tot}}| \le rac{M_{ ext{sol}}}{m}\hbar$

a different higher energy soliton: the "hedgehogs"

earlier literature

$$W_j(\mathbf{x},t) = f(r)\frac{x^j}{r}\cos\omega t$$
,

 $E_{\rm hh}^s > E$

 $E_{\rm hh}^{s=1} \approx 0.33E < 0$

hedgehogs not ground states

vector vs. scalar DM: two key differences

interference polarized solitons

3+1 dimensional simulations

SDM

0.34 $t/t_{\rm dyn} \longrightarrow$

Vector & Scalar Dark Matter

1.36

MA, Jain, Karur & Mocz (2022)

radial density profiles

scalar vs. vector dark matter

- less dense & broader core
- smoother transition to r^{-3} tail

MA, Jain, Karur & Mocz (2022)

radial density profiles

vector vs. scalar dark matter

- shape difference
- smoother transition to r^{-3} tail

2-point density correlation

gravitational implications (examples)

- dynamical heating of stars Church et. al (2021), Dalal & Kravtsov (2022) - cusp-core, diversity

- lensing

core-halo mass relation

 $\Xi = |E_{\rm tot}| / (M_{\rm tot}^3 (Gm/\hbar)^2)$

 $f_{
m v} = 0.56 \pm 0.03$ $f_{
m s} = 0.61 \pm 0.01$ $M_{\rm f} = f(M_1 + M_2)$ $\frac{M_{\rm core}}{M_{\rm tot}} \propto \Xi^{\log_2 f}$

Du et. al (2017)

intrinsic spin

MA, Jain, Karur & Mocz (2022)

spin density $s = i\hbar\Psi imes\Psi^\dagger$

spin
$$\mathbf{S} = \hbar \int \mathrm{d}^3 x \, i \mathbf{\Psi} \times \mathbf{\Psi}^\dagger$$

 $\boldsymbol{s} = (2mc/\hbar)\boldsymbol{W} \times (\dot{\boldsymbol{W}} - \nabla W_0)$

generation of spin density

spin with self-interactions: vector oscillons

 $\mathcal{L} = -\frac{1}{4}\mathcal{G}_{\mu\nu}\mathcal{G}^{\mu\nu} - \frac{m^2}{2}W_{\mu}W^{\mu} + \frac{\lambda}{4}(V_{\mu\nu})^2 + \frac{1}{4}(W_{\mu\nu})^2 + \frac{1}{4$

 $S_{\rm tot} \neq 0$

	•	•	•						•	•		
•	•	•	•		-	•	•	1	•	•	•	•
•	•		•	•	•	-	•	•	•	•	•	•
			•	•	-	+	*	-	•		•	
	•		•	•	+	-	+	-	-		•	
			•	-				-	•			
			-	-	-	-	-	-				
					•	+						
					-	-	-	-				
•	•	•	•		•	•	•	•	•	•	•	•
	•		•	•	•	•	•	•	•		•	•

 $m{S}_{
m tc}$

· .	•	· · · ·	•	· ·	· · · ·	·	· · · ·	· · ·	•	
•	•	 • 	•	•	•	•	•	•	•	•
			·	·						-
•	•	*	•	•	•	•	•	•	•	•
•	•	· .	•	•	- 10 A	•	•	•	•	•
•					•			•	•	
•							•	•	•	·
•	•			•	•	•	•	•	•	÷
	•	1.00	1	•		1.00	· · · · ·			•

 \sim

$$W_{\mu}W^{\mu})^2 - \frac{h}{6}(W_{\mu}W^{\mu})^3$$

Zhang, Jain & MA (2022)

$$_{\rm ot} = 0$$

self-interaction supported NOT degenerate in energy spin-spin interaction matters!

$$\mathcal{L} = \Re[i \mathbf{\Psi}^{\dagger} \dot{\mathbf{\Psi}}] - rac{1}{2m}
abla \mathbf{\Psi}^{\dagger} \cdot
abla \mathbf{\Psi} - V_{
m nl}(\mathbf{\Psi})$$

$$V_{\rm nl}(\mathbf{\Psi}^{\dagger}, \mathbf{\Psi}) = -\frac{3\lambda}{8m^2} (\mathbf{\Psi}^{\dagger}\mathbf{\Psi})^2 + \frac{5\gamma}{12m^3} (\mathbf{\Psi}^{\dagger}\mathbf{\Psi})^3 + \left[\frac{\lambda}{8m^2} - \frac{\gamma}{4m^3} (\mathbf{\Psi}^{\dagger}\mathbf{\Psi})\right] (\mathbf{S} \cdot \mathbf{S})$$

implications of non-zero spin solitons?

different for higher spin solitons?

Helfer, Lim, Garcia, MA (2016)

above for compact scalar solitons using full numerical GR

electromagnetic coupling and radiation (axion + photons)

MA, Long, Mou & Saffin (2021)

 $\mathcal{L}_{int} \sim g_{\phi\gamma} \phi F_{\mu\nu} \tilde{F}^{\mu\nu}$

MA & Mou (2020)

Motivated by earlier work by Hertzberg & Schippacaise (2018)

spin-s + photons: spin of soliton & polarization of photons

 $\mathcal{L}_{int} \sim \begin{cases} g_{W\gamma}^2 W_{\mu} W^{\mu} F_{\alpha\beta} \tilde{F}^{\alpha\beta} \\ g_{H\gamma}^2 (H_{\mu\nu} H^{\mu\nu} - H^2) F_{\alpha\beta} \tilde{F}^{\alpha\beta} \end{cases}$ spin-1 spin-2

 $\sim g_{\mathcal{F}\gamma}^2 \operatorname{Tr}[\mathcal{F}\mathcal{F}] F_{\alpha\beta} \tilde{F}^{\alpha\beta}$ NR limit

 $\epsilon^2 F_{\mu\nu} \mathcal{G}^{\mu\nu}$

formation mechanisms?

Gorghetto, Hardy, March-Russell, Song & West (2022)

misaligned scalar + self-interactions?

gravitational in late universe

Core 105 103 101 200 kpc 50 kpc Schive et. al (2014)

gravitational particle production to nonlinear structures

cannot easily do ultralight dark photons 1

$$\Omega_{\rm vdm} \sim 0.3 \left(\frac{m}{10^{-5} \,{\rm eV}}\right)^{1/2} \left(\frac{H_{\rm inf}}{10^{14} \,{\rm GeV}}\right)^4$$
 10⁻²
Graham, Mardon, Rajendran (2016) 10⁻⁴
Ahmed, Grzadkowski, Socha (2020) $\mathcal{P}_{\delta}(k)$ 10⁻⁶
Kolb & Long (2020) 10⁻⁸

 10^{-10} 10^{-6}

$$M_{\rm sol}(a) \sim 10^{-23} M_{\odot} \left(\frac{a_{\rm eq}}{a}\right)^{3/4} \left(\frac{{\rm eV}}{m}\right)^{3/2}$$

 $R_{\rm sol}(a) \sim 10^4 \,{\rm km} \left(\frac{a}{a_{\rm eq}}\right)^{3/4} \left(\frac{{\rm eV}}{m}\right)^{1/2}$

abundance and detection

$$n = f_s \overline{\rho}(t_0)/M \simeq 10^{20} \mathrm{pc}^{-3} \left(\frac{f_s}{0.05}\right) \left(\frac{\rho_{\mathrm{local}}}{0.5 \,\mathrm{GeV/cm^3}}\right) \left(\frac{0.1 M_J^{\mathrm{eq}}}{M}\right) \left(\frac{m}{\mathrm{eV}}\right)^{3/2}$$

$$\Gamma \simeq n\pi R^2 v_{\rm rel}$$
$$\simeq \frac{0.1}{\rm yr} \left(\frac{m}{\rm eV}\right)^{1/2} \left(\frac{0.1M_J^{\rm eq}}{M}\right)^3 \left(\frac{v_{\rm rel}}{10^{-3}}\right) \left(\frac{f_s}{0.05}\right) \left(\frac{\rho_{\rm local}}{0.5\,{\rm GeV/cm^3}}\right)$$

Gorghetto et. al (2022)

Dror, Harigaya, and Narayan (2018) Bastero-Gil, Santiago, Ubaldi, Vega-Morales (2018)

generalization to arbitrary spin

spin-s field as dark matter

Jain & MA (2021)

non-relativistic limit = multicomponent Schrödinger-Poisson

spin-s fields as light dark matter

-phenomenology/numerical simulations

- interference $\sim 1/(2s+1)$

2s+1 component

Schrödinger

Jain & MA (2021)

extremally polarized solitons

spin-s fields as dark matter

Jain & MA (2021)

macroscopic spin $S_{tot}/\hbar = \lambda N \hat{z}$ N = # of particles in soliton

non-topological solitons spatially localized, coherently oscillating, long-lived

spatially localized

coherently oscillating (components)

exceptionally long-lived

	St		
	19.00		
	-	100.00	
· · ·			- C
	·		
·			
	100		
		1.000	C
	20.0		
-		10.00	
	1		
		and a second	
			- C
-	1.0		
	1.00		
		11.14	
	1.0		
	1.00		
		·	
	1000		
	1.0		
		11.	
			-
		-	-
	100	-	1.6
-	-	1790	100
		1.00	
80			
80			
80			
80			
80			

scalar

vector

tensor

the near future to do list ...

future possibilities ...

- formation and survival mechanisms
- BH superradiance with higher spin fields* (already done)
- dynamical friction
- vortices
- condensation time scales
- lifetimes of higher spin solitons
- initial power spectrum of fluctuations in the fields

- direct/indirect detection (interaction with baryons? photons? kinetic mixing)