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FIG. 1. A visual summary of some of the main results of our paper.

novel class of extremally polarized solitons with spin
Stot/~ = �M/m which can be macroscopically large for
M � m. Here, m is the mass of the field, M is the
mass of the soliton and � is the spin multiplicity. These
coherent solitons (along with fractionally polarized
ones mentioned earlier) might open up new avenues for
observationally probing higher-spin fields.

We find that even within Newtonian gravity it might
be possible to distinguish interacting solitons with dif-
ferent polarizations. Going beyond Newtonian gravity,
which we do not pursue here, might remove degeneracies
between di↵erent polarizations of the higher-spin fields
even further. We also discuss possibilities of probing
this higher-spin dark matter via non-gravitational
interactions, taking advantage of the polarization state
of the solitons.

The paper is organized as follows. In section II we
discuss our model for the case of dark scalar, vector,
and tensor massive fields, leaving additional details in
Appendix A. In section III we provide the e↵ective non-
relativistic action (which is the Schrödinger-Poisson sys-
tem) for these dark integer spin fields, and discuss the
various symmetries of the action. In section IV we dis-
cuss the gravitationally bound solitons. In section V we
discuss their distinguishability, primarily within Newto-
nian gravity, and also mention other non-gravitational
couplings that can probe the spin nature of the fields. In
section VI we summarize and also highlight some future
directions worth investigating.

II. MODELS

Our matter Lagrangian consists of the usual Standard
Model (SM) sector, along with some dark sector that
includes additional massive spin-0, spin-1, or even spin-2
fields. We take these fields to be real valued.

Explicitly, our general action has the form

S = SEH + Sdark + Svis , (1)

where SEH is the gravity sector, Sdark is some dark
sector (incluing dark integer spin fields), and Svis is
the visible sector (comprising of the SM). Our focus
is only on the gravity + dark sector in this paper.
We consider perturbations of di↵erent fields around
some background metric ḡµ⌫ which leads to the usual
massless spin-2 fluctuations: hµ⌫ (the graviton), along
with other perturbations in di↵erent fields. We will
focus on a given spin-s field + gravity, instead of
considering massive spin-0, 1 and 2 together, although
our formalism can accomodate the latter scenario as well.

For most part, we are interested in sub-horizon
physics where length scales associated with config-
urations of these dark fields are much smaller than
the Hubble horizon. As a result, we ignore Hub-
ble expansion, and take the background metric to be2

ḡµ⌫ = ⌘µ⌫ = diag(1, �1, �1, �1). We also take ~ = c = 1.

In the next three subsections, we provide the general
action up-to quadratic order in the fields of interest, along
with leading order gravitational interactions. For the
non-relativistic limit that we are interested in, the lead-
ing order actions provided here are su�cient. The full
nonlinear actions are discussed in the Appendix.

A. Spin-0

The quadratic (free) action for the spin-0 field �, and
metric fluctuations hµ⌫ , along with their leading interac-

2
We use ḡµ⌫ = diag(1,�a2(t),�a2(t),�a2(t)) for an expanding

universe when needed. Here, a(t) is the scale factor normalized

to unity today.
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FIG. 1. A visual summary of some of the main results of our paper.

novel class of extremally polarized solitons with spin
Stot/~ = �M/m which can be macroscopically large for
M � m. Here, m is the mass of the field, M is the
mass of the soliton and � is the spin multiplicity. These
coherent solitons (along with fractionally polarized
ones mentioned earlier) might open up new avenues for
observationally probing higher-spin fields.

We find that even within Newtonian gravity it might
be possible to distinguish interacting solitons with dif-
ferent polarizations. Going beyond Newtonian gravity,
which we do not pursue here, might remove degeneracies
between di↵erent polarizations of the higher-spin fields
even further. We also discuss possibilities of probing
this higher-spin dark matter via non-gravitational
interactions, taking advantage of the polarization state
of the solitons.

The paper is organized as follows. In section II we
discuss our model for the case of dark scalar, vector,
and tensor massive fields, leaving additional details in
Appendix A. In section III we provide the e↵ective non-
relativistic action (which is the Schrödinger-Poisson sys-
tem) for these dark integer spin fields, and discuss the
various symmetries of the action. In section IV we dis-
cuss the gravitationally bound solitons. In section V we
discuss their distinguishability, primarily within Newto-
nian gravity, and also mention other non-gravitational
couplings that can probe the spin nature of the fields. In
section VI we summarize and also highlight some future
directions worth investigating.

II. MODELS

Our matter Lagrangian consists of the usual Standard
Model (SM) sector, along with some dark sector that
includes additional massive spin-0, spin-1, or even spin-2
fields. We take these fields to be real valued.

Explicitly, our general action has the form

S = SEH + Sdark + Svis , (1)

where SEH is the gravity sector, Sdark is some dark
sector (incluing dark integer spin fields), and Svis is
the visible sector (comprising of the SM). Our focus
is only on the gravity + dark sector in this paper.
We consider perturbations of di↵erent fields around
some background metric ḡµ⌫ which leads to the usual
massless spin-2 fluctuations: hµ⌫ (the graviton), along
with other perturbations in di↵erent fields. We will
focus on a given spin-s field + gravity, instead of
considering massive spin-0, 1 and 2 together, although
our formalism can accomodate the latter scenario as well.

For most part, we are interested in sub-horizon
physics where length scales associated with config-
urations of these dark fields are much smaller than
the Hubble horizon. As a result, we ignore Hub-
ble expansion, and take the background metric to be2

ḡµ⌫ = ⌘µ⌫ = diag(1, �1, �1, �1). We also take ~ = c = 1.

In the next three subsections, we provide the general
action up-to quadratic order in the fields of interest, along
with leading order gravitational interactions. For the
non-relativistic limit that we are interested in, the lead-
ing order actions provided here are su�cient. The full
nonlinear actions are discussed in the Appendix.

A. Spin-0

The quadratic (free) action for the spin-0 field �, and
metric fluctuations hµ⌫ , along with their leading interac-

2
We use ḡµ⌫ = diag(1,�a2(t),�a2(t),�a2(t)) for an expanding

universe when needed. Here, a(t) is the scale factor normalized

to unity today.
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FIG. 1. A visual summary of some of the main results of our paper.

novel class of extremally polarized solitons with spin
Stot/~ = �M/m which can be macroscopically large for
M � m. Here, m is the mass of the field, M is the
mass of the soliton and � is the spin multiplicity. These
coherent solitons (along with fractionally polarized
ones mentioned earlier) might open up new avenues for
observationally probing higher-spin fields.

We find that even within Newtonian gravity it might
be possible to distinguish interacting solitons with dif-
ferent polarizations. Going beyond Newtonian gravity,
which we do not pursue here, might remove degeneracies
between di↵erent polarizations of the higher-spin fields
even further. We also discuss possibilities of probing
this higher-spin dark matter via non-gravitational
interactions, taking advantage of the polarization state
of the solitons.

The paper is organized as follows. In section II we
discuss our model for the case of dark scalar, vector,
and tensor massive fields, leaving additional details in
Appendix A. In section III we provide the e↵ective non-
relativistic action (which is the Schrödinger-Poisson sys-
tem) for these dark integer spin fields, and discuss the
various symmetries of the action. In section IV we dis-
cuss the gravitationally bound solitons. In section V we
discuss their distinguishability, primarily within Newto-
nian gravity, and also mention other non-gravitational
couplings that can probe the spin nature of the fields. In
section VI we summarize and also highlight some future
directions worth investigating.

II. MODELS

Our matter Lagrangian consists of the usual Standard
Model (SM) sector, along with some dark sector that
includes additional massive spin-0, spin-1, or even spin-2
fields. We take these fields to be real valued.

Explicitly, our general action has the form

S = SEH + Sdark + Svis , (1)

where SEH is the gravity sector, Sdark is some dark
sector (incluing dark integer spin fields), and Svis is
the visible sector (comprising of the SM). Our focus
is only on the gravity + dark sector in this paper.
We consider perturbations of di↵erent fields around
some background metric ḡµ⌫ which leads to the usual
massless spin-2 fluctuations: hµ⌫ (the graviton), along
with other perturbations in di↵erent fields. We will
focus on a given spin-s field + gravity, instead of
considering massive spin-0, 1 and 2 together, although
our formalism can accomodate the latter scenario as well.

For most part, we are interested in sub-horizon
physics where length scales associated with config-
urations of these dark fields are much smaller than
the Hubble horizon. As a result, we ignore Hub-
ble expansion, and take the background metric to be2

ḡµ⌫ = ⌘µ⌫ = diag(1, �1, �1, �1). We also take ~ = c = 1.

In the next three subsections, we provide the general
action up-to quadratic order in the fields of interest, along
with leading order gravitational interactions. For the
non-relativistic limit that we are interested in, the lead-
ing order actions provided here are su�cient. The full
nonlinear actions are discussed in the Appendix.

A. Spin-0

The quadratic (free) action for the spin-0 field �, and
metric fluctuations hµ⌫ , along with their leading interac-

2
We use ḡµ⌫ = diag(1,�a2(t),�a2(t),�a2(t)) for an expanding

universe when needed. Here, a(t) is the scale factor normalized

to unity today.
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FIG. 1. A visual summary of some of the main results of our paper.

novel class of extremally polarized solitons with spin
Stot/~ = �M/m which can be macroscopically large for
M � m. Here, m is the mass of the field, M is the
mass of the soliton and � is the spin multiplicity. These
coherent solitons (along with fractionally polarized
ones mentioned earlier) might open up new avenues for
observationally probing higher-spin fields.

We find that even within Newtonian gravity it might
be possible to distinguish interacting solitons with dif-
ferent polarizations. Going beyond Newtonian gravity,
which we do not pursue here, might remove degeneracies
between di↵erent polarizations of the higher-spin fields
even further. We also discuss possibilities of probing
this higher-spin dark matter via non-gravitational
interactions, taking advantage of the polarization state
of the solitons.

The paper is organized as follows. In section II we
discuss our model for the case of dark scalar, vector,
and tensor massive fields, leaving additional details in
Appendix A. In section III we provide the e↵ective non-
relativistic action (which is the Schrödinger-Poisson sys-
tem) for these dark integer spin fields, and discuss the
various symmetries of the action. In section IV we dis-
cuss the gravitationally bound solitons. In section V we
discuss their distinguishability, primarily within Newto-
nian gravity, and also mention other non-gravitational
couplings that can probe the spin nature of the fields. In
section VI we summarize and also highlight some future
directions worth investigating.

II. MODELS

Our matter Lagrangian consists of the usual Standard
Model (SM) sector, along with some dark sector that
includes additional massive spin-0, spin-1, or even spin-2
fields. We take these fields to be real valued.

Explicitly, our general action has the form

S = SEH + Sdark + Svis , (1)

where SEH is the gravity sector, Sdark is some dark
sector (incluing dark integer spin fields), and Svis is
the visible sector (comprising of the SM). Our focus
is only on the gravity + dark sector in this paper.
We consider perturbations of di↵erent fields around
some background metric ḡµ⌫ which leads to the usual
massless spin-2 fluctuations: hµ⌫ (the graviton), along
with other perturbations in di↵erent fields. We will
focus on a given spin-s field + gravity, instead of
considering massive spin-0, 1 and 2 together, although
our formalism can accomodate the latter scenario as well.

For most part, we are interested in sub-horizon
physics where length scales associated with config-
urations of these dark fields are much smaller than
the Hubble horizon. As a result, we ignore Hub-
ble expansion, and take the background metric to be2

ḡµ⌫ = ⌘µ⌫ = diag(1, �1, �1, �1). We also take ~ = c = 1.

In the next three subsections, we provide the general
action up-to quadratic order in the fields of interest, along
with leading order gravitational interactions. For the
non-relativistic limit that we are interested in, the lead-
ing order actions provided here are su�cient. The full
nonlinear actions are discussed in the Appendix.

A. Spin-0

The quadratic (free) action for the spin-0 field �, and
metric fluctuations hµ⌫ , along with their leading interac-
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We use ḡµ⌫ = diag(1,�a2(t),�a2(t),�a2(t)) for an expanding

universe when needed. Here, a(t) is the scale factor normalized

to unity today.
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FIG. 3. A visualization of the two distinct extremally polarized vector solitons. The left soliton has vanishing spin density
(� = 0), and W is oscillating along the z-axis. The right soliton has a spin density S = �| |2ẑ with � = 1. The big arrows
inside the soliton represent the direction of the field W , while the little arrows on the circles represent their motion in time.
The total spin |Stot| = �M/m ⇡ 60.7� (mpl/m)2(µ/m)1/2, where M is the total mass of the soliton.

energy and spin-angular momentum are

N =
M

m
⇡ 60.7

m
2

pl

m2

⇣
µ

m

⌘1/2

, (40)

E ⇡ �19.2
m

2

pl

m

⇣
µ

m

⌘3/2

, (41)

Stot ⇡ �⇥ 60.7
m

2

pl

m2

⇣
µ

m

⌘1/2

n̂ , (42)

where M is the total mass of the soliton. The numerical
co-e�cients are obtained from the universal profile
shown in Fig. 2. Heuristically (µ/m)1/2 ⇠ (1/mL)
where L is the characteristic size of the soliton, and
M ⇠ (mpl/m)2/L. Since in the non-relativistic regime
µ/m ⌧ 1, we expect the maximal values of the above
quantities (40) to be bounded from above by the case
µ ⇠ m. Significant deviations from the above expression
can be expected as one approaches this limit [12].

It is also worth noting that these solitons are perfectly
virialized, Ekin/Epot = �1/2, where Ekin is the term
containing gradients, and Epot is the other term (gravi-
tational potential energy) in (25).

1. Spin-0

For the case of spin-0, we have the following real field
solution for �(= F) in (15)

�(x, t) =

p
2 (x)
p

m
cos!t , (43)

where ! ⌘ m�µ, and there is of-course no intrinsic spin
angular momentum.

2. Spin-1

For the massive spin-1 case, we have three distinct
states corresponding to ±1 and 0 polarizations, which,
for n̂ = ẑ, are conveniently represented by the following
orthonormal set of vectors:

✏(±1)

1,ẑ
=

1
p

2

0

@
1
±i

0

1

A ; ✏(0)

1,ẑ
=

0

@
0
0
1

1

A . (44)

satisfying (27). For  (�) =  e
iµt✏(�)

1,ẑ
, we have S =

�| |
2
ẑ where � = 0, ±1. Extremally polarized solitons

in terms of the real-valued vector field W (= F) in (15)
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FIG. 1. Projected co-moving “densities” a
3
| |

2 (average along the line of sight) at several scale factors (a = 1 to a = 20) in
our 3+1 dimensional lattice simulations, with � ⌘ M/mpl = 0.03, and local gravitational interactions switched on (top panels)
and o↵ (bottom panels). The early instability due to self-interactions gives rise to the formation of solitons from an almost
homogeneous initial state. A statistical analysis of the locations of solitons at late times shows reveals evidence for clustering
only in the case where gravitational interactions are included. Note that inside solitons, | |2 = const. that is, their core density
does not redshift, whereas the background | ̄|

2
/ a

�3. Moreover, solitons maintain a fixed physical size, hence the illusion of
them shrinking in size in a co-moving volume. The initial size of the box is the size of the horizon at the beginning of the
simulation L ' H

�1
in . The solitons contain a dominant fraction (⇠ 80%) of the mass in the simulation volume. On a technical

aside, note that the projected co-moving density even in the densest (lightest in color) appearing regions in the above plot will
be smaller that the density inside the cores because of the small volume occupied by the solitons.

between relativistic/non-relativistic models and results
is discussed in the Appendix.

The rest of the paper is organized as follows in short
sections. In Section II we discuss the model for a non-
relativistic, self-interacting field in an expanding universe
with weak field gravity. In Section III, we briefly dis-
cuss the lattice simulation and our numerical algorithm.
The initial conditions for the simulations is provided
in Section IV. We analyze linear instabilities from self-
interactions and gravitational interactions in Section V.
The numerically calculated power spectrum for the field
perturbations is provided in Section VI. In Section VII we
discuss the formation of solitons, followed by a discussion
of their individual profiles and stability in Section VIII.
The gravitational clustering of solitons is discussed in
Section IX, and resulting strong soliton interactions are
explored in Section X. Finally, we present our conclusions
and future directions in Section XI. In the Appendix we
discuss connections to a related relativistic system.

II. THE MODEL

We use the following equations of motion (and con-
straint equations) to explore the dynamics of a non-
relativistic, self-interacting, self-gravitating scalar field in

an approximately homogeneous and isotropic universe:

i

✓
@t +

3

2
H

◆
+

1

2a2
r

2
� U

0
nl(| |

2) � �

�
 = 0 ,

r
2

a2
� =

�
2

2


| |

2 +
1

2a2
|r |

2 + Unl(| |
2)

�
�

3

2
H

2
,

H
2 =

�
2

3


| |2 +

1

2a2
|r |2 + Unl(| |2)

�
,

(1)

where [. . .] indicates a spatial average, a(t) is the scale-
factor, H(t) = ȧ(t)/a(t) is the Hubble rate,  (t,x) is
complex field amplitude, �(t,x) is the Newtonian po-
tential and Unl(| |

2) encodes the self-interactions of the
field.2

All variables and parameters appearing in the above
equation are dimensionless. We have expressed time t in
units of ⌧m = ~/mc

2, lengths in units of �m = ~/mc,
the Newtonian gravitational potential � in units of c

2

and | |
2 in units of m

2
M

2
c
3
/~3. Note that m

2
M

2
c
3
/~3

has dimensions of mass density. We assume that the
parameter

� ⌘
M

mpl
⌧ 1 . (2)

2
We have checked that qualitatively similar results are obtained

even if we set Unl ! 0 in the Poisson and Friedmann equations,

but keep U 0
n(| |2) ⌘ @| |2Un(| |2) in the nonlinear Schrödinger

equation.
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Fig. 1 Sketch (not to scale) of the huge range of possible DM models that have been conceived. They span many orders of magnitude
in mass, with DM represented by very distinct phenomena, ranging from new elementary particles to black holes.

structures we see in our universe today, as is evident in observations of the large scale structure of our universe
(Anderson et al. 2014; Tegmark et al. 2004).

With all this evidence coming from precise astrophysical and cosmological observations, cosmologists have con-
verged to a phenomenological model to describe our universe, the ⇤CDM model. This model is currently the
concordance model of cosmology and it accumulates a number of observational successes. It exhibits outstanding
agreement with current cosmological observations (Anderson et al. 2014), which is manifested in the parameters
of this model being constrained at the percent and sub-percent level. This incredibly simple model is described by
only six parameters and parametrizes a large amount of the universe’s history. It describes a universe that is flat
and seeded by nearly scale invariant perturbations, composed of baryons, which amount to approximately 5% of
the energy density of the universe, a small radiation component, but in its majority is composed of two unknown
ingredients. The energy budget of the universe is dominated (⇠ 70%) by a component responsible for the current
accelerated expansion of the universe called dark energy, and a clustering component, the dark matter, making up
to ⇠ 25% of our universe. These large-scale observations give a coarse-grained description of these non-baryonic
components in the hydrodynamical limit where dark matter is described as a perfect fluid with very small pressure
(w ⇡ 0) and sound speed, cs ⇡ 0, that does not interact, at least strongly, with baryonic matter. Dark energy is
parametrized by a cosmological constant, the simplest model for the present accelerated expansion of our universe.

Therefore, within ⇤CDM, the Cold Dark Matter (CDM) paradigm emerged from the large scale observations
and describes the component responsible for the formation of the structures of our universe through gravitational
clustering. In the CDM model, DM is described by a perfect fluid that must be massive, su�ciently cold, which
means non-relativistic at the time of structure formation, and collisionless in order to explain the observational data
on large linear scales. This coarse-grained description of a CDM is very successful in fitting the linear, large scales
observations from the CMB, LSS, to clusters, and general properties of galaxies.

However, even though we know the hydrodynamical properties of DM on large scales to a very high precision, the
microphysics of the DM component remains unknown. This allows for the creation of a plethora of possible models
of DM. Those models recover the large scale properties of CDM, but invoke very di↵erent objects and phenomena
to play the role of DM.

This incredible variety of viable models of DM can be seen in the huge range of masses those models cover, as
shown in Fig. 1. This figure shows many di↵erent broad classes of DM models, and each of which might contain
many di↵erent specific models. It spans more than 80 orders of magnitude and shows very di↵erent hypothesis for
DM, from new elementary particles, to composite objects (Jacobs et al. 2015; Khlopov 2019), up to astrophysical
size primordial black holes (for a review on recent bounds see (Carr et al. 2020; Carr and Kuhnel 2020)). This shows
us that although we have gathered a lot of knowledge about the gravitational properties of DM, the nature of DM
is still elusive, with the current data still allowing a huge amount of highly di↵erent models.

The possibility that dark matter could be a long lived particle is very appealing. Specially if these candidates
are expected candidates from extensions of the standard model of particle physics. One class of models that became
the preferred candidates for the DM particles are WIMP, weakly interacting massive particles, which represent new
elementary particles that interact with baryons not only gravitationally but also through the weak force or a new
force of comparable strength (Roszkowski et al. 2018; Lin 2019). The strong motivation for this candidate is because
if it is thermally produced in the early universe, the relic abundance of particles that have mass of the order of the
electroweak scale, and a coupling of order one, corresponds precisely to the abundance of DM in our universe. The
possibility that WIMP could also be discovered by direct detection experiments is also an important motivation to
search for this candidate. There is a great experimental e↵ort to constrain the properties of WIMP DM with the
parameter space being very restricted over the past few years. Given the complex phenomenology from the possible
models of WIMP DM and their interaction with the standard model particles, the translation of those bounds to the

image credit: E. Ferreiraultra-light — see Dan Grin’s talk
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Fig. 1 Sketch (not to scale) of the huge range of possible DM models that have been conceived. They span many orders of magnitude
in mass, with DM represented by very distinct phenomena, ranging from new elementary particles to black holes.

structures we see in our universe today, as is evident in observations of the large scale structure of our universe
(Anderson et al. 2014; Tegmark et al. 2004).

With all this evidence coming from precise astrophysical and cosmological observations, cosmologists have con-
verged to a phenomenological model to describe our universe, the ⇤CDM model. This model is currently the
concordance model of cosmology and it accumulates a number of observational successes. It exhibits outstanding
agreement with current cosmological observations (Anderson et al. 2014), which is manifested in the parameters
of this model being constrained at the percent and sub-percent level. This incredibly simple model is described by
only six parameters and parametrizes a large amount of the universe’s history. It describes a universe that is flat
and seeded by nearly scale invariant perturbations, composed of baryons, which amount to approximately 5% of
the energy density of the universe, a small radiation component, but in its majority is composed of two unknown
ingredients. The energy budget of the universe is dominated (⇠ 70%) by a component responsible for the current
accelerated expansion of the universe called dark energy, and a clustering component, the dark matter, making up
to ⇠ 25% of our universe. These large-scale observations give a coarse-grained description of these non-baryonic
components in the hydrodynamical limit where dark matter is described as a perfect fluid with very small pressure
(w ⇡ 0) and sound speed, cs ⇡ 0, that does not interact, at least strongly, with baryonic matter. Dark energy is
parametrized by a cosmological constant, the simplest model for the present accelerated expansion of our universe.

Therefore, within ⇤CDM, the Cold Dark Matter (CDM) paradigm emerged from the large scale observations
and describes the component responsible for the formation of the structures of our universe through gravitational
clustering. In the CDM model, DM is described by a perfect fluid that must be massive, su�ciently cold, which
means non-relativistic at the time of structure formation, and collisionless in order to explain the observational data
on large linear scales. This coarse-grained description of a CDM is very successful in fitting the linear, large scales
observations from the CMB, LSS, to clusters, and general properties of galaxies.

However, even though we know the hydrodynamical properties of DM on large scales to a very high precision, the
microphysics of the DM component remains unknown. This allows for the creation of a plethora of possible models
of DM. Those models recover the large scale properties of CDM, but invoke very di↵erent objects and phenomena
to play the role of DM.

This incredible variety of viable models of DM can be seen in the huge range of masses those models cover, as
shown in Fig. 1. This figure shows many di↵erent broad classes of DM models, and each of which might contain
many di↵erent specific models. It spans more than 80 orders of magnitude and shows very di↵erent hypothesis for
DM, from new elementary particles, to composite objects (Jacobs et al. 2015; Khlopov 2019), up to astrophysical
size primordial black holes (for a review on recent bounds see (Carr et al. 2020; Carr and Kuhnel 2020)). This shows
us that although we have gathered a lot of knowledge about the gravitational properties of DM, the nature of DM
is still elusive, with the current data still allowing a huge amount of highly di↵erent models.

The possibility that dark matter could be a long lived particle is very appealing. Specially if these candidates
are expected candidates from extensions of the standard model of particle physics. One class of models that became
the preferred candidates for the DM particles are WIMP, weakly interacting massive particles, which represent new
elementary particles that interact with baryons not only gravitationally but also through the weak force or a new
force of comparable strength (Roszkowski et al. 2018; Lin 2019). The strong motivation for this candidate is because
if it is thermally produced in the early universe, the relic abundance of particles that have mass of the order of the
electroweak scale, and a coupling of order one, corresponds precisely to the abundance of DM in our universe. The
possibility that WIMP could also be discovered by direct detection experiments is also an important motivation to
search for this candidate. There is a great experimental e↵ort to constrain the properties of WIMP DM with the
parameter space being very restricted over the past few years. Given the complex phenomenology from the possible
models of WIMP DM and their interaction with the standard model particles, the translation of those bounds to the
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Fig. 1 Sketch (not to scale) of the huge range of possible DM models that have been conceived. They span many orders of magnitude
in mass, with DM represented by very distinct phenomena, ranging from new elementary particles to black holes.

structures we see in our universe today, as is evident in observations of the large scale structure of our universe
(Anderson et al. 2014; Tegmark et al. 2004).

With all this evidence coming from precise astrophysical and cosmological observations, cosmologists have con-
verged to a phenomenological model to describe our universe, the ⇤CDM model. This model is currently the
concordance model of cosmology and it accumulates a number of observational successes. It exhibits outstanding
agreement with current cosmological observations (Anderson et al. 2014), which is manifested in the parameters
of this model being constrained at the percent and sub-percent level. This incredibly simple model is described by
only six parameters and parametrizes a large amount of the universe’s history. It describes a universe that is flat
and seeded by nearly scale invariant perturbations, composed of baryons, which amount to approximately 5% of
the energy density of the universe, a small radiation component, but in its majority is composed of two unknown
ingredients. The energy budget of the universe is dominated (⇠ 70%) by a component responsible for the current
accelerated expansion of the universe called dark energy, and a clustering component, the dark matter, making up
to ⇠ 25% of our universe. These large-scale observations give a coarse-grained description of these non-baryonic
components in the hydrodynamical limit where dark matter is described as a perfect fluid with very small pressure
(w ⇡ 0) and sound speed, cs ⇡ 0, that does not interact, at least strongly, with baryonic matter. Dark energy is
parametrized by a cosmological constant, the simplest model for the present accelerated expansion of our universe.

Therefore, within ⇤CDM, the Cold Dark Matter (CDM) paradigm emerged from the large scale observations
and describes the component responsible for the formation of the structures of our universe through gravitational
clustering. In the CDM model, DM is described by a perfect fluid that must be massive, su�ciently cold, which
means non-relativistic at the time of structure formation, and collisionless in order to explain the observational data
on large linear scales. This coarse-grained description of a CDM is very successful in fitting the linear, large scales
observations from the CMB, LSS, to clusters, and general properties of galaxies.

However, even though we know the hydrodynamical properties of DM on large scales to a very high precision, the
microphysics of the DM component remains unknown. This allows for the creation of a plethora of possible models
of DM. Those models recover the large scale properties of CDM, but invoke very di↵erent objects and phenomena
to play the role of DM.

This incredible variety of viable models of DM can be seen in the huge range of masses those models cover, as
shown in Fig. 1. This figure shows many di↵erent broad classes of DM models, and each of which might contain
many di↵erent specific models. It spans more than 80 orders of magnitude and shows very di↵erent hypothesis for
DM, from new elementary particles, to composite objects (Jacobs et al. 2015; Khlopov 2019), up to astrophysical
size primordial black holes (for a review on recent bounds see (Carr et al. 2020; Carr and Kuhnel 2020)). This shows
us that although we have gathered a lot of knowledge about the gravitational properties of DM, the nature of DM
is still elusive, with the current data still allowing a huge amount of highly di↵erent models.

The possibility that dark matter could be a long lived particle is very appealing. Specially if these candidates
are expected candidates from extensions of the standard model of particle physics. One class of models that became
the preferred candidates for the DM particles are WIMP, weakly interacting massive particles, which represent new
elementary particles that interact with baryons not only gravitationally but also through the weak force or a new
force of comparable strength (Roszkowski et al. 2018; Lin 2019). The strong motivation for this candidate is because
if it is thermally produced in the early universe, the relic abundance of particles that have mass of the order of the
electroweak scale, and a coupling of order one, corresponds precisely to the abundance of DM in our universe. The
possibility that WIMP could also be discovered by direct detection experiments is also an important motivation to
search for this candidate. There is a great experimental e↵ort to constrain the properties of WIMP DM with the
parameter space being very restricted over the past few years. Given the complex phenomenology from the possible
models of WIMP DM and their interaction with the standard model particles, the translation of those bounds to the
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The ‘...’ in (2) represents higher-order interaction
terms between � and h along with other dark sector
fields. Self-interactions can easily be included by adding
Vnl(�) = �3�
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4
. . . to the quadratic potential , but

we ignore them in this paper.

While the massive spin-0 field has no constraints, the
gravitational sector does. We discuss these constraints
and the action for the physical degrees of freedom in the
gravitational sector at the end of this section.

B. Spin-1

For a massive spin-1 field Wµ, we have the following
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Similar to the case of the scalar field, we can include self-
interactions via Vnl = ��4(WµW

µ)2 +�6(WµW
µ)3 + . . ..

As we shall show elsewhere [17], such a setup with
�4, �6 > 0 can arise as an e↵ective theory, and admits
vector oscillon solutions supported by self-interactions.
However, for our present purposes, we assume no
self-interactions.

Action for the physical d.o.f

To aid the transition to the non-relativistic limit, we
eliminate the constraints in the massive spin-1 sector and
provide the action for the three physical degrees of free-
dom (namely the three spin-multiplicity states). Varying
the action (5) with respect to W0 and substituting back,
yields3
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µ⌫ is the energy momentum tensor (with W0 sub-

stituted in (6)), and Pij(m) is the projection operator
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As mentioned earlier, the gravitational sector con-
straints are discussed at the end of this section.

C. Spin-2

In the case of a massive spin-2 field Hµ⌫ , we take the
quadratic actions for hµ⌫ and Hµ⌫ + leading interactions
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At this leading order, we obtained the energy momentum

tensor by promoting ⌘µ⌫ to gµ⌫ = ⌘µ⌫ + hµ⌫ in L
(2)

m,2
(H),

along with covariant derivatives with respect to g, and
then simply reading out the terms that couple to hµ⌫ .
That is, simply minimally coupling it to gravity just
like any other matter field. We also arrive at the above
action from the bi-gravity theory [18–24] (which is a
ghost-free, nonlinear completion of our quadratic action)
in the Appendix.

The massive spin-2 field scenario includes additional
subtleties compared to the lower spin cases. Unlike the
spin-0 and spin-1 case, self-interactions are unavoidable
in the massive spin-2 sector within bi-gravity. However,
they are conveniently suppressed in the non-relativistic
limit (see discussion around eq. (A6) in the Appendix).
Furthermore, for the massive spin-2 field to be dark, its
direct couplings to the visible sector that arise in the
bi-gravity theory need to be suppressed. This is also
possible using a particular choice of an e↵ective metric
[25, 26] that couples to the SM. We discuss this further
in Sec. [A 3 a] of the Appendix. Within the bi-gravity
context, the extension to FLRW background is also non-
trivial, and might have instabilities in the early universe
[27] when using the e↵ective metric mentioned above. For
our purposes, we remain agnostic regarding a full non-
linear interacting theory of a massive spin-2 dark field in
an FLRW background, and simply work with the above
quadratic action.

Actions for physical d.o.f

For massive tensor field Hµ⌫ , the constrained variables
are H00, H0i and Tr[Hij ], leaving 5 physical degrees of
freedom (the 5 spin-multiplicity states). After solving
for these constraints (obtained by varying the action (9)
with respect to these variables), and plugging them back
into the action, we get the following Lagrangian density
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Here, Pij is the projection matrix (8), and Tµ⌫(Hij) is
the energy momentum tensor (dependent on the physical
degrees of freedom only).
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where F now represents the physical degrees of freedom
in the spin-s field, and T

µ⌫ is the corresponding energy-
momentum tensor. Varying this action with respect to
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When these constraints are plugged back in the above ac-
tion, we get the quadratic action for the physical degrees
of freedom in the gravitational sector + interactions. The
quadratic action is the same as the first two terms on the
right hand side of (11), with m = 0 and Hij ! hij
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4
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While the massive spin-0 field has no constraints, the
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At this leading order, we obtained the energy momentum

tensor by promoting ⌘µ⌫ to gµ⌫ = ⌘µ⌫ + hµ⌫ in L
(2)

m,2
(H),

along with covariant derivatives with respect to g, and
then simply reading out the terms that couple to hµ⌫ .
That is, simply minimally coupling it to gravity just
like any other matter field. We also arrive at the above
action from the bi-gravity theory [18–24] (which is a
ghost-free, nonlinear completion of our quadratic action)
in the Appendix.

The massive spin-2 field scenario includes additional
subtleties compared to the lower spin cases. Unlike the
spin-0 and spin-1 case, self-interactions are unavoidable
in the massive spin-2 sector within bi-gravity. However,
they are conveniently suppressed in the non-relativistic
limit (see discussion around eq. (A6) in the Appendix).
Furthermore, for the massive spin-2 field to be dark, its
direct couplings to the visible sector that arise in the
bi-gravity theory need to be suppressed. This is also
possible using a particular choice of an e↵ective metric
[25, 26] that couples to the SM. We discuss this further
in Sec. [A 3 a] of the Appendix. Within the bi-gravity
context, the extension to FLRW background is also non-
trivial, and might have instabilities in the early universe
[27] when using the e↵ective metric mentioned above. For
our purposes, we remain agnostic regarding a full non-
linear interacting theory of a massive spin-2 dark field in
an FLRW background, and simply work with the above
quadratic action.

Actions for physical d.o.f

For massive tensor field Hµ⌫ , the constrained variables
are H00, H0i and Tr[Hij ], leaving 5 physical degrees of
freedom (the 5 spin-multiplicity states). After solving
for these constraints (obtained by varying the action (9)
with respect to these variables), and plugging them back
into the action, we get the following Lagrangian density
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Here, Pij is the projection matrix (8), and Tµ⌫(Hij) is
the energy momentum tensor (dependent on the physical
degrees of freedom only).
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where F now represents the physical degrees of freedom
in the spin-s field, and T

µ⌫ is the corresponding energy-
momentum tensor. Varying this action with respect to
h0i, Tr[hij ], and h00 ⌘ 2�, we obtain
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When these constraints are plugged back in the above ac-
tion, we get the quadratic action for the physical degrees
of freedom in the gravitational sector + interactions. The
quadratic action is the same as the first two terms on the
right hand side of (11), with m = 0 and Hij ! hij

4, and

4
The projection operator Pij(0), along with the constraints, only

allows for the 2 physical degrees of freedom in hij (which are the

transverse and traceless gravitational waves).
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At this leading order, we obtained the energy momentum

tensor by promoting ⌘µ⌫ to gµ⌫ = ⌘µ⌫ + hµ⌫ in L
(2)

m,2
(H),

along with covariant derivatives with respect to g, and
then simply reading out the terms that couple to hµ⌫ .
That is, simply minimally coupling it to gravity just
like any other matter field. We also arrive at the above
action from the bi-gravity theory [18–24] (which is a
ghost-free, nonlinear completion of our quadratic action)
in the Appendix.

The massive spin-2 field scenario includes additional
subtleties compared to the lower spin cases. Unlike the
spin-0 and spin-1 case, self-interactions are unavoidable
in the massive spin-2 sector within bi-gravity. However,
they are conveniently suppressed in the non-relativistic
limit (see discussion around eq. (A6) in the Appendix).
Furthermore, for the massive spin-2 field to be dark, its
direct couplings to the visible sector that arise in the
bi-gravity theory need to be suppressed. This is also
possible using a particular choice of an e↵ective metric
[25, 26] that couples to the SM. We discuss this further
in Sec. [A 3 a] of the Appendix. Within the bi-gravity
context, the extension to FLRW background is also non-
trivial, and might have instabilities in the early universe
[27] when using the e↵ective metric mentioned above. For
our purposes, we remain agnostic regarding a full non-
linear interacting theory of a massive spin-2 dark field in
an FLRW background, and simply work with the above
quadratic action.

Actions for physical d.o.f

For massive tensor field Hµ⌫ , the constrained variables
are H00, H0i and Tr[Hij ], leaving 5 physical degrees of
freedom (the 5 spin-multiplicity states). After solving
for these constraints (obtained by varying the action (9)
with respect to these variables), and plugging them back
into the action, we get the following Lagrangian density
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Here, Pij is the projection matrix (8), and Tµ⌫(Hij) is
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When these constraints are plugged back in the above ac-
tion, we get the quadratic action for the physical degrees
of freedom in the gravitational sector + interactions. The
quadratic action is the same as the first two terms on the
right hand side of (11), with m = 0 and Hij ! hij
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At this leading order, we obtained the energy momentum

tensor by promoting ⌘µ⌫ to gµ⌫ = ⌘µ⌫ + hµ⌫ in L
(2)

m,2
(H),

along with covariant derivatives with respect to g, and
then simply reading out the terms that couple to hµ⌫ .
That is, simply minimally coupling it to gravity just
like any other matter field. We also arrive at the above
action from the bi-gravity theory [18–24] (which is a
ghost-free, nonlinear completion of our quadratic action)
in the Appendix.

The massive spin-2 field scenario includes additional
subtleties compared to the lower spin cases. Unlike the
spin-0 and spin-1 case, self-interactions are unavoidable
in the massive spin-2 sector within bi-gravity. However,
they are conveniently suppressed in the non-relativistic
limit (see discussion around eq. (A6) in the Appendix).
Furthermore, for the massive spin-2 field to be dark, its
direct couplings to the visible sector that arise in the
bi-gravity theory need to be suppressed. This is also
possible using a particular choice of an e↵ective metric
[25, 26] that couples to the SM. We discuss this further
in Sec. [A 3 a] of the Appendix. Within the bi-gravity
context, the extension to FLRW background is also non-
trivial, and might have instabilities in the early universe
[27] when using the e↵ective metric mentioned above. For
our purposes, we remain agnostic regarding a full non-
linear interacting theory of a massive spin-2 dark field in
an FLRW background, and simply work with the above
quadratic action.

Actions for physical d.o.f

For massive tensor field Hµ⌫ , the constrained variables
are H00, H0i and Tr[Hij ], leaving 5 physical degrees of
freedom (the 5 spin-multiplicity states). After solving
for these constraints (obtained by varying the action (9)
with respect to these variables), and plugging them back
into the action, we get the following Lagrangian density
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along with covariant derivatives with respect to g, and
then simply reading out the terms that couple to hµ⌫ .
That is, simply minimally coupling it to gravity just
like any other matter field. We also arrive at the above
action from the bi-gravity theory [18–24] (which is a
ghost-free, nonlinear completion of our quadratic action)
in the Appendix.

The massive spin-2 field scenario includes additional
subtleties compared to the lower spin cases. Unlike the
spin-0 and spin-1 case, self-interactions are unavoidable
in the massive spin-2 sector within bi-gravity. However,
they are conveniently suppressed in the non-relativistic
limit (see discussion around eq. (A6) in the Appendix).
Furthermore, for the massive spin-2 field to be dark, its
direct couplings to the visible sector that arise in the
bi-gravity theory need to be suppressed. This is also
possible using a particular choice of an e↵ective metric
[25, 26] that couples to the SM. We discuss this further
in Sec. [A 3 a] of the Appendix. Within the bi-gravity
context, the extension to FLRW background is also non-
trivial, and might have instabilities in the early universe
[27] when using the e↵ective metric mentioned above. For
our purposes, we remain agnostic regarding a full non-
linear interacting theory of a massive spin-2 dark field in
an FLRW background, and simply work with the above
quadratic action.

Actions for physical d.o.f

For massive tensor field Hµ⌫ , the constrained variables
are H00, H0i and Tr[Hij ], leaving 5 physical degrees of
freedom (the 5 spin-multiplicity states). After solving
for these constraints (obtained by varying the action (9)
with respect to these variables), and plugging them back
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Here, Pij is the projection matrix (8), and Tµ⌫(Hij) is
the energy momentum tensor (dependent on the physical
degrees of freedom only).
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where F now represents the physical degrees of freedom
in the spin-s field, and T

µ⌫ is the corresponding energy-
momentum tensor. Varying this action with respect to
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When these constraints are plugged back in the above ac-
tion, we get the quadratic action for the physical degrees
of freedom in the gravitational sector + interactions. The
quadratic action is the same as the first two terms on the
right hand side of (11), with m = 0 and Hij ! hij
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III. EFFECTIVE NON-RELATIVISTIC THEORY

With the Lagrangian densities at hand from the previ-
ous section, we now decompose F (which represents the
physical d.o.f of di↵erent integer spin-fields and carries
one and two spatial indices for spin-1 and spin-2 cases
respectively) in the following fashion

F(x, t) =
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p
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h
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 ̃(x, t) + h.c.
i
. (15)

To obtain the non-relativistic limit, we work with the
slowly varying piece in  ̃ that we denote as  . Essen-
tially, we discard all the terms that carry the oscillating
factor e

±i2mt and two time derivative terms in the action
(which would be suppressed by factors of k/m, where k is
a characteristic wave-number). The projection operator
(8) simplifies to Pij |nr = �ij + O(k2

/m
2). Upon mak-

ing these approximations, we arrive at the following free
Schrödinger action for massive scalar, vector and tensor
fields:
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For the case of spin-0,  carries no spatial index, while
for the case of spin-1 and spin-2, it carries one and two
spatial indices respectively. We shall refer to their com-
ponents as

 = [ ] spin-0 ,

 i = [ ]i spin-1 , (17)

 ij = [ ]ij spin-2 .

Note that for the spin-1 and spin-2 cases, Tr[ †
 ] =

 
†
i
 i and Tr[ †

 ] =  
†
ij
 ij respectively, where summa-
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case, we have Tr[ ] = O(k2
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we obtain the following general structure for the non-
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With this, we can see from (14) that there are no
gravitons (gravitational waves) produced in the non-
relativistic limit since the source term for hij is
O(k2
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 /m) for all the three cases. From (13), it is

also clear that the vector constraint h0i is not sourced at
the leading order in either of the three cases. The only
constraint that survives is the Newtonian potential �,
which is determined by
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Note that the trace Tr[hij ] is equal to twice the Newto-
nian potential, Tr[hij ] = 2�. Putting it all together, us-
ing (16), (18), and (19), we get the following Schrödinger
Poisson action
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The corresponding equation of motion is the Schrödinger-
Poisson system
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Extension to an FLRW universe can be achieved via r !

r/a and @/@t ! @/@t + 3H/2 where H = ȧ/a.6

A. Conservation Laws

We now highlight various symmetries of the non-
relativistic e↵ective theory (20). These symmetries will
be helpful in understanding the space of soliton solutions.

First, the action in invariant under  (x) !

M(R) (x̃), where R is a rotation matrix and x̃ =
R

�1x. For scalars, M(R) (x̃) =  (x̃); for vectors
M(R) (x̃) = Rij j(x̃); and for tensors M(R) (x̃) =

6
For the spin-2 case, one needs to ensure that the choice of FLRW

background is consistent within the bi-gravity + matter theory.

While some aspects of this are discussed in the appendix, we

leave a detailed exploration to future work.
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At this leading order, we obtained the energy momentum

tensor by promoting ⌘µ⌫ to gµ⌫ = ⌘µ⌫ + hµ⌫ in L
(2)

m,2
(H),

along with covariant derivatives with respect to g, and
then simply reading out the terms that couple to hµ⌫ .
That is, simply minimally coupling it to gravity just
like any other matter field. We also arrive at the above
action from the bi-gravity theory [18–24] (which is a
ghost-free, nonlinear completion of our quadratic action)
in the Appendix.

The massive spin-2 field scenario includes additional
subtleties compared to the lower spin cases. Unlike the
spin-0 and spin-1 case, self-interactions are unavoidable
in the massive spin-2 sector within bi-gravity. However,
they are conveniently suppressed in the non-relativistic
limit (see discussion around eq. (A6) in the Appendix).
Furthermore, for the massive spin-2 field to be dark, its
direct couplings to the visible sector that arise in the
bi-gravity theory need to be suppressed. This is also
possible using a particular choice of an e↵ective metric
[25, 26] that couples to the SM. We discuss this further
in Sec. [A 3 a] of the Appendix. Within the bi-gravity
context, the extension to FLRW background is also non-
trivial, and might have instabilities in the early universe
[27] when using the e↵ective metric mentioned above. For
our purposes, we remain agnostic regarding a full non-
linear interacting theory of a massive spin-2 dark field in
an FLRW background, and simply work with the above
quadratic action.

Actions for physical d.o.f

For massive tensor field Hµ⌫ , the constrained variables
are H00, H0i and Tr[Hij ], leaving 5 physical degrees of
freedom (the 5 spin-multiplicity states). After solving
for these constraints (obtained by varying the action (9)
with respect to these variables), and plugging them back
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Ḣij Pik(m) Pjl(m) Ḣkl
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Here, Pij is the projection matrix (8), and Tµ⌫(Hij) is
the energy momentum tensor (dependent on the physical
degrees of freedom only).
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where F now represents the physical degrees of freedom
in the spin-s field, and T

µ⌫ is the corresponding energy-
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When these constraints are plugged back in the above ac-
tion, we get the quadratic action for the physical degrees
of freedom in the gravitational sector + interactions. The
quadratic action is the same as the first two terms on the
right hand side of (11), with m = 0 and Hij ! hij
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Here, Pij is the projection matrix (8), and Tµ⌫(Hij) is
the energy momentum tensor (dependent on the physical
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Ṫ0i

� @i
1

r2
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III. EFFECTIVE NON-RELATIVISTIC THEORY

With the Lagrangian densities at hand from the previ-
ous section, we now decompose F (which represents the
physical d.o.f of di↵erent integer spin-fields and carries
one and two spatial indices for spin-1 and spin-2 cases
respectively) in the following fashion
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To obtain the non-relativistic limit, we work with the
slowly varying piece in  ̃ that we denote as  . Essen-
tially, we discard all the terms that carry the oscillating
factor e

±i2mt and two time derivative terms in the action
(which would be suppressed by factors of k/m, where k is
a characteristic wave-number). The projection operator
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For the case of spin-0,  carries no spatial index, while
for the case of spin-1 and spin-2, it carries one and two
spatial indices respectively. We shall refer to their com-
ponents as
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With this, we can see from (14) that there are no
gravitons (gravitational waves) produced in the non-
relativistic limit since the source term for hij is
O(k2
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also clear that the vector constraint h0i is not sourced at
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Note that the trace Tr[hij ] is equal to twice the Newto-
nian potential, Tr[hij ] = 2�. Putting it all together, us-
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The corresponding equation of motion is the Schrödinger-
Poisson system
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Extension to an FLRW universe can be achieved via r !

r/a and @/@t ! @/@t + 3H/2 where H = ȧ/a.6

A. Conservation Laws

We now highlight various symmetries of the non-
relativistic e↵ective theory (20). These symmetries will
be helpful in understanding the space of soliton solutions.

First, the action in invariant under  (x) !

M(R) (x̃), where R is a rotation matrix and x̃ =
R

�1x. For scalars, M(R) (x̃) =  (x̃); for vectors
M(R) (x̃) = Rij j(x̃); and for tensors M(R) (x̃) =

6
For the spin-2 case, one needs to ensure that the choice of FLRW

background is consistent within the bi-gravity + matter theory.

While some aspects of this are discussed in the appendix, we

leave a detailed exploration to future work.
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Note that the trace Tr[hij ] is equal to twice the Newto-
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be helpful in understanding the space of soliton solutions.
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Note that the trace Tr[hij ] is equal to twice the Newto-
nian potential, Tr[hij ] = 2�. Putting it all together, us-
ing (16), (18), and (19), we get the following Schrödinger
Poisson action

S
e↵

nr
=

Z
d4

x

h
i

2
Tr

h
 

†
 ̇

i
+ c.c. �

1

2m
Tr[r †

· r ]

+ m
2

pl
�r

2� � m � Tr[ †
 ]

i
. (20)

The corresponding equation of motion is the Schrödinger-
Poisson system

i
@

@t
 = �

1

2m
r

2
 + m � ,

r
2� =

m

2m
2

pl

Tr[ †
 ]. (21)

Extension to an FLRW universe can be achieved via r !

r/a and @/@t ! @/@t + 3H/2 where H = ȧ/a.6
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Note that the trace Tr[hij ] is equal to twice the Newto-
nian potential, Tr[hij ] = 2�. Putting it all together, us-
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The corresponding equation of motion is the Schrödinger-
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Extension to an FLRW universe can be achieved via r !

r/a and @/@t ! @/@t + 3H/2 where H = ȧ/a.6

A. Conservation Laws

We now highlight various symmetries of the non-
relativistic e↵ective theory (20). These symmetries will
be helpful in understanding the space of soliton solutions.

First, the action in invariant under  (x) !
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�1x. For scalars, M(R) (x̃) =  (x̃); for vectors
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For the spin-2 case, one needs to ensure that the choice of FLRW

background is consistent within the bi-gravity + matter theory.

While some aspects of this are discussed in the appendix, we

leave a detailed exploration to future work.

much easier to simulate than the relativistic equations 

since fast time-scales are integrated out.

extension to FRW: ∂t → ∂t + 3H/2,∇ → ∇/a

5 components

3 components

1 component

Recent work on non-relativistic case :

 for scalar, see for example example: Guth, Kaiser, Namjoo (2017), Salehian et. al (2021), for vector case Adshead & Lozanov (2021) 
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Figure 2 | A slice of the density field of the  DM simulation on various
scales at z=0.1. This scaled sequence (each of thickness 60 pc) shows
how quantum interference patterns can be clearly seen everywhere from
the large-scale filaments, tangential fringes near the virial boundaries, to
the granular structure inside the haloes. Distinct solitonic cores with radii
⇠0.3–1.6kpc are found within collapsed haloes (which have virial masses
Mvir ⇠ 109˘1011 M�). The density shown here spans over nine orders of
magnitude, from 10�1 to 108 (normalized to the cosmic mean density). The
colour map scales logarithmically, with cyan corresponding to density .10.

giving rise to a co-moving Jeans length, �J / (1+z)1/4m�1/2
B , during

the matter-dominated epoch17. The insensitivity of �J to redshift, z ,
generates a sharp cuto�mass belowwhich structures are suppressed.
Cosmological simulations in this context turn out to be much
more challenging than standard N-body simulations, as the highest
frequency oscillations, !, given approximately by the matter wave
dispersion relation, ! /m�1

B �
�2, where � is the wavelength, occur

on the smallest scales, requiring very fine temporal resolution even
formoderate spatial resolution (Supplementary Fig. 1). In this work,
we optimize an adaptive-mesh-refinement (AMR) scheme, with
graphic processing unit acceleration, improving performance by
almost two orders of magnitude22 (see Supplementary Section 1
for details).

Figure 1 demonstrates that despite the completely di�erent
calculations employed, the pattern of filaments and voids generated
by a conventional N-body particle3CDM simulation is remarkably
indistinguishable from the wavelike 3 DM for the same linear
power spectrum (Supplementary Fig. 3). Here 3 represents the
cosmological constant. This agreement is desirable given the
success of standard 3CDM in describing the statistics of large-scale
structure. To examine the wave nature that distinguishes DM from
CDM on small scales, we re-simulate with a very high maximum
resolution of 60 pc for a 2 Mpc co-moving box, so that the densest
objects formed of &300 pc size are well resolved with ⇠103 grids. A
slice through this box is shown in Fig. 2, revealing fine interference
fringes defining long filaments, with tangential fringes near the
boundaries of virialized objects, where the de Broglie wavelengths
depend on the local velocity of matter. An unexpected feature of
our DMsimulations is the generation of prominent dense coherent
standing waves of dark matter in the centre of every gravitational
bound object, forming a flat core with a sharp boundary (Figs 2
and 3). These dark matter cores grow as material is accreted and
are surrounded by virialized haloes of material with fine-scale,
large-amplitude cellular interference, which continuously fluctuate
in density and velocity, generating quantum and turbulent pressure
support against gravity.

The central density profiles of all our collapsed cores fit well
the stable soliton solution of the Schrödinger–Poisson equation, as
shown in Fig. 3 (see also Supplementary Section 2 and Figs 2 and 4).
On the other hand, except for the lightest halo, which has just formed
and is not yet virialized, the outer profiles of other haloes possess a
steepening logarithmic slope, similar to the Navarro–Frenk–White
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Figure 3 | Radial density profiles of haloes formed in the  DMmodel.
Dashed lines with various symbols show six examples of the halo profiles
normalized to the cosmic mean density. All haloes are found to possess a
distinct inner core fitted extremely well by the soliton solution (solid lines).
A detailed soliton fit for the largest halo is inset, where the error is the root-
mean-square scatter of density in each radial bin. A Navarro–Frenk–White
(NFW) profile representing standard CDM is also shown for comparison
(black dot-dashed line, with a very large scale radius of 10kpc), which fits
well the profiles outside the cores. The yellow hatched area indicates the
⇢300 of the dSph satellites around the Milky Way3,24, which is consistent
with the majority of galaxy haloes formed in the  DM simulations.

(NFW) profile23 of standard CDM. These solitonic cores, which are
gravitationally self-bound and appear as additional mass clumps
superposed on the NFW profile, are clearly distinct from the cores
formed by WDM and collisional CDM, which truncate the NFW
cuspy inner profile at lower values and require an external halo for
confinement. The radius of the soliton scales inversely with mass,
such that the widest cores are the least massive and are hosted by the
least massive galaxies. Eighty percent of the haloes in the simulation
have an average density within 300 pc (defined as ⇢300) in the range
5.3⇥ 10�3–6.1⇥ 10�1 M�/pc3, consistent with the dSph satellites
around the Milky Way3,24, and objects like these are resilient to
close interaction with massive galaxies. By contrast, the very lowest
mass objects in our simulation have ⇢300 ⇠ 4.0⇥ 10�4 M�/pc3 and
Mvir ⇠108 M�, but exist only briefly as they are vulnerable to tidal
disruption by large galaxies in our simulations. Together with the
cuto� in the power spectrum at the Jeans scale (Supplementary
Fig. 3), this leads to a marked suppression of substructure below
a few times 108 M� relative to the prediction of standard CDM
(refs 8,9). A quantitative evaluation of the mass function of satellite
galaxies predicted by  DM with larger simulations is thus another
crucial test to be addressed.

The prominent solitonic cores uncovered in our simulations
provide an opportunity to estimate the boson mass, mB, by
comparison with observations, particularly for dSph galaxies where
dark matter dominates. The local Fornax dSph galaxy is the best
studied case, with thousands of stellar velocity measurements,
allowing a detailed comparison with our soliton mass profile.
We perform a Jeans analysis for the dominant intermediate
metallicity stellar population, which exhibits a nearly uniform
projected velocity dispersion (�k; ref. 25). We simultaneously
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On a conceptual note, the non-relativistic action (29)
cannot distinguish between (i) a set of 2s + 1 (spatial-
)scalars (ii) a spin-s field with 2s + 1 spin multiplicity
degrees of freedom. While the set of (spatial-)scalars will
have no spin angular momentum, they will still have a
conserved “isospin” (31).9 The non-relativistic theory
cannot distinguish between the two cases using gravi-
tational physics alone. This equivalence can be broken
when we include relativistic corrections.

IV. POLARIZED SOLITONS

Making use of the polarization basis (28), we classify
di↵erent (lowest energy) solitons based on their spin mul-
tiplicities. We first discuss ‘extremally polarized’ solitons
(composed of identically polarized plane waves), where

only one of the 2s + 1 polarized fields  (�)

s is non-zero.
Thereafter, we discuss fractionally polarized solitons ob-
tained by linear superpositions of extremally polarized
ones.

A. Extremally polarized solitons

With only one of the polarization fields non-zero, we
can assume the following ansatz

 
(�)

s
(x, t) =  (x) e

iµt
. (34)

That is,  (�)
6= 0 for a particular �, and zero other-

wise. Here µ = const. can be thought of as the ‘chem-
ical potential’. In this case, we have the usual (scalar)
Schrödinger-Poisson system

�µ = �
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r
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| (x)|2, (35)

9
The phenomenology with multiple scalar fields, but with di↵erent

masses, was explored in [28].
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FIG. 2. The “universal” non-relativistic field profile and grav-
itational potential for the soliton solutions. Note that both
profiles must be multiplied by µ/m to get the correct solution
for each µ/m.

along with the following energy (25):
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The lowest energy solution to eq. (35) constitutes the
well known, spherically symmetric, scalar soliton config-
uration [15]. The unique profile (up to scaling of the
amplitudes by µ/m) is shown in Fig. 2.

Since  is real and µ spatially independent, the orbital
angular momentum in (31) vanishes:

L = < (i r ⇥ r) = 0 . (37)

For higher-spin fields, the spin angular momentum den-
sity can be non-vanishing. For the ansatz (34), it is equal
to

S = � 
2
n̂ , � = {�s, ..., 0, ..., s}. (38)

This reflects the extremally polarized nature of the soli-
tons. For each �, this is a coherent collection of plane
waves, all polarized along the n̂ direction. Explicitly, the
total spin angular momentum

Stot =

Z
d
3
xS = �

Z
d
3
x| |

2
n̂ = �Nn̂. (39)

where N is the total particle number in the soliton.

For extremally polarized solitons, the particle number,
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The lowest energy solution to eq. (35) constitutes the
well known, spherically symmetric, scalar soliton config-
uration [15]. The unique profile (up to scaling of the
amplitudes by µ/m) is shown in Fig. 2.

Since  is real and µ spatially independent, the orbital
angular momentum in (31) vanishes:

L = < (i r ⇥ r) = 0 . (37)

For higher-spin fields, the spin angular momentum den-
sity can be non-vanishing. For the ansatz (34), it is equal
to

S = � 
2
n̂ , � = {�s, ..., 0, ..., s}. (38)

This reflects the extremally polarized nature of the soli-
tons. For each �, this is a coherent collection of plane
waves, all polarized along the n̂ direction. Explicitly, the
total spin angular momentum

Stot =

Z
d
3
xS = �

Z
d
3
x| |

2
n̂ = �Nn̂. (39)

where N is the total particle number in the soliton.

For extremally polarized solitons, the particle number,

µ = chemical potential

ground state solutions at fixed particle number
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The lowest energy solution to eq. (35) constitutes the
well known, spherically symmetric, scalar soliton config-
uration [15]. The unique profile (up to scaling of the
amplitudes by µ/m) is shown in Fig. 2.

Since  is real and µ spatially independent, the orbital
angular momentum in (31) vanishes:
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n̂ , � = {�s, ..., 0, ..., s}. (38)

This reflects the extremally polarized nature of the soli-
tons. For each �, this is a coherent collection of plane
waves, all polarized along the n̂ direction. Explicitly, the
total spin angular momentum

Stot =

Z
d
3
xS = �

Z
d
3
x| |

2
n̂ = �Nn̂. (39)

where N is the total particle number in the soliton.
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FIG. 3. A visualization of the two distinct extremally polarized vector solitons. The left soliton has vanishing spin density
(� = 0), and W is oscillating along the z-axis. The right soliton has a spin density S = �| |2ẑ with � = 1. The big arrows
inside the soliton represent the direction of the field W , while the little arrows on the circles represent their motion in time.
The total spin |Stot| = �M/m ⇡ 60.7� (mpl/m)2(µ/m)1/2, where M is the total mass of the soliton.
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where M is the total mass of the soliton. The numerical
co-e�cients are obtained from the universal profile
shown in Fig. 2. Heuristically (µ/m)1/2 ⇠ (1/mL)
where L is the characteristic size of the soliton, and
M ⇠ (mpl/m)2/L. Since in the non-relativistic regime
µ/m ⌧ 1, we expect the maximal values of the above
quantities (40) to be bounded from above by the case
µ ⇠ m. Significant deviations from the above expression
can be expected as one approaches this limit [12].

It is also worth noting that these solitons are perfectly
virialized, Ekin/Epot = �1/2, where Ekin is the term
containing gradients, and Epot is the other term (gravi-
tational potential energy) in (25).

1. Spin-0

For the case of spin-0, we have the following real field
solution for �(= F) in (15)

�(x, t) =

p
2 (x)
p

m
cos!t , (43)

where ! ⌘ m�µ, and there is of-course no intrinsic spin
angular momentum.

2. Spin-1

For the massive spin-1 case, we have three distinct
states corresponding to ±1 and 0 polarizations, which,
for n̂ = ẑ, are conveniently represented by the following
orthonormal set of vectors:
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satisfying (27). For  (�) =  e
iµt✏(�)

1,ẑ
, we have S =

�| |
2
ẑ where � = 0, ±1. Extremally polarized solitons

in terms of the real-valued vector field W (= F) in (15)

size, particle number, energy and spin
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Rik kl(x̃)Rlj . The conserved charge density associated
with this, namely the total angular momentum density
is the following
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as the intrinsic spin and orbital angular momentum den-
sity respectively.7 In the above expressions, s = {0, 1, 2}

for spin-0 (scalar), spin-1 (vector), and spin-2 (tensor)
cases respectively, and "a are the totally anti-symmetric
matrices (generators of rotations). Also, [..]ij means
the matrix obtained by taking a tensor product of the
elements within. For the vector case [  †]ij =  i 
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j
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while for the tensor case [  †]ij =  ik 
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. For the
scalar case this is zero.

The e↵ective non-relativistic action (20) has a global
U(1) symmetry ( !  e
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There are additional conserved charges, which become
apparent when we decompose our field  into a polar-
ization bases, which we turn to next.

B. Decomposition into polarization basis

A massive spin-s field admits 2s + 1 spin multiplic-
ity states in some particular direction n̂, labelled by
� 2 {�s, ..., s}. These states are characterized by the

set {✏(�)
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}, such that upon substituting a plane wave
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7
Note that the total spin, and total orbital angular momentum

are independently conserved.
8
There will also be linear momentum associated with invariance

under spatial translations. This however will not be of any direct

use for us.

where V is a spatial volume. For explicit forms of ✏(�)

s,n̂
,

see (44) and (46) ahead for spin-1 and spin-2 cases, where
we work with n̂ = ẑ without loss of generality. The set
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Using these {✏(�)
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}, the field  admits the following de-
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Correspondingly, the equation of motion is the
Schrödinger Poisson system where we have a set of

Schrödinger field equations for each  
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s , plus the New-
tonian Gauss’ law
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The orbital and spin angular momentum densities (22),

in terms of the  (�)
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Action (29), written in terms of the  (�)

s , is helpful
to identify another set of symmetries. We have global
U(1) invariance for each of the 2s+1 degrees of freedom,
giving 2s + 1 conserved particle numbers
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, (32)

where N =
P

�
N

(�). The fact that each of the polarized
fields has an associated conserved particle number, will
become important to physically understand superposi-
tions of extremally polarized solitons in order to form
fractionally polarized ones.
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inside the soliton represent the direction of the field W , while the little arrows on the circles represent their motion in time.
The total spin |Stot| = �M/m ⇡ 60.7� (mpl/m)2(µ/m)1/2, where M is the total mass of the soliton.

energy and spin-angular momentum are

N =
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where M is the total mass of the soliton. The numerical
co-e�cients are obtained from the universal profile
shown in Fig. 2. Heuristically (µ/m)1/2 ⇠ (1/mL)
where L is the characteristic size of the soliton, and
M ⇠ (mpl/m)2/L. Since in the non-relativistic regime
µ/m ⌧ 1, we expect the maximal values of the above
quantities (40) to be bounded from above by the case
µ ⇠ m. Significant deviations from the above expression
can be expected as one approaches this limit [12].

It is also worth noting that these solitons are perfectly
virialized, Ekin/Epot = �1/2, where Ekin is the term
containing gradients, and Epot is the other term (gravi-
tational potential energy) in (25).

1. Spin-0

For the case of spin-0, we have the following real field
solution for �(= F) in (15)

�(x, t) =

p
2 (x)
p

m
cos!t , (43)

where ! ⌘ m�µ, and there is of-course no intrinsic spin
angular momentum.

2. Spin-1

For the massive spin-1 case, we have three distinct
states corresponding to ±1 and 0 polarizations, which,
for n̂ = ẑ, are conveniently represented by the following
orthonormal set of vectors:
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, we have S =

�| |
2
ẑ where � = 0, ±1. Extremally polarized solitons

in terms of the real-valued vector field W (= F) in (15)
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FIG. 4. The three distinct extremally polarized tensor solitons. For visualization, we plot the eigenvectors of the traceless, 3⇥3
matrix H

(�) representing the polarized solitons in the massive spin-2 field. The eignevectors are scaled by their corresponding
eigenvalues. The leftmost soliton has a vanishing spin density, with each eigenvector (along the co-ordinate axes) of H

(�)

oscillating in phase. The middle soliton has a spin density S = �| |2ẑ with � = 1. The rightmost soliton has a spin density
S = �| |2ẑ with � = 2. The total spin |Stot| = �M/m ⇡ 60.7� (mpl/m)2(µ/m)1/2 which can be macroscopically large for
� 6= 0.
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In fig. 3 we show these extremally polarized solitons.

We note that in [13], the authors provide ground
state solitons  =  (r)eiµt{wx, wy, wz} where wi are
components of a complex unit vector. For the extremally
polarized cases, this corresponds to the choices (44) for
their wi. Our focus on the spin aspect of fields dictated
this choice, which naturally leads to extremally polarized
solitons. More general solitons with arbitrary wi are
discussed in IVB.

3. Spin-2

For the massive spin-2 case we have 5 polarization
states corresponding to spin multiplicities ±2, ±1, and 0.

Again, for n̂ = ẑ, these are represented by the following
orthonormal (and trace free) set of tensors10
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For  (�) =  e
iµt✏(�)

2,ẑ
, we have the spin density S =

�| |
2
ẑ where � = 0, ±1, ±2.

The five extremally polarized solitons in the real-
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oscillating in phase. The middle soliton has a spin density S = �| |2ẑ with � = 1. The rightmost soliton has a spin density
S = �| |2ẑ with � = 2. The total spin |Stot| = �M/m ⇡ 60.7� (mpl/m)2(µ/m)1/2 which can be macroscopically large for
� 6= 0.
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In fig. 3 we show these extremally polarized solitons.

We note that in [13], the authors provide ground
state solitons  =  (r)eiµt{wx, wy, wz} where wi are
components of a complex unit vector. For the extremally
polarized cases, this corresponds to the choices (44) for
their wi. Our focus on the spin aspect of fields dictated
this choice, which naturally leads to extremally polarized
solitons. More general solitons with arbitrary wi are
discussed in IVB.

3. Spin-2

For the massive spin-2 case we have 5 polarization
states corresponding to spin multiplicities ±2, ±1, and 0.

Again, for n̂ = ẑ, these are represented by the following
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2,ẑ = (2✏

(0)
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In fig. 3 we show these extremally polarized solitons.

We note that in [13], the authors provide ground
state solitons  =  (r)eiµt{wx, wy, wz} where wi are
components of a complex unit vector. For the extremally
polarized cases, this corresponds to the choices (44) for
their wi. Our focus on the spin aspect of fields dictated
this choice, which naturally leads to extremally polarized
solitons. More general solitons with arbitrary wi are
discussed in IVB.

3. Spin-2

For the massive spin-2 case we have 5 polarization
states corresponding to spin multiplicities ±2, ±1, and 0.
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1,ẑ )/

p
6.



7

Finally, the conserved energy (25) written in terms of
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(33)

On a conceptual note, the non-relativistic action (29)
cannot distinguish between (i) a set of 2s + 1 (spatial-
)scalars (ii) a spin-s field with 2s + 1 spin multiplicity
degrees of freedom. While the set of (spatial-)scalars will
have no spin angular momentum, they will still have a
conserved “isospin” (31).9 The non-relativistic theory
cannot distinguish between the two cases using gravi-
tational physics alone. This equivalence can be broken
when we include relativistic corrections.

IV. POLARIZED SOLITONS

Making use of the polarization basis (28), we classify
di↵erent (lowest energy) solitons based on their spin mul-
tiplicities. We first discuss ‘extremally polarized’ solitons
(composed of identically polarized plane waves), where

only one of the 2s + 1 polarized fields  (�)

s is non-zero.
Thereafter, we discuss fractionally polarized solitons ob-
tained by linear superpositions of extremally polarized
ones.

A. Extremally polarized solitons

With only one of the polarization fields non-zero, we
can assume the following ansatz

 
(�)

s
(x, t) =  (x) e

iµt
. (34)

That is,  (�)
6= 0 for a particular �, and zero other-

wise. Here µ = const. can be thought of as the ‘chem-
ical potential’. In this case, we have the usual (scalar)
Schrödinger-Poisson system

�µ = �
1

2m
r

2
 + m � 

r
2� =

m

2m
2

pl

| (x)|2, (35)

9
The phenomenology with multiple scalar fields, but with di↵erent

masses, was explored in [28].
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FIG. 2. The “universal” non-relativistic field profile and grav-
itational potential for the soliton solutions. Note that both
profiles must be multiplied by µ/m to get the correct solution
for each µ/m.

along with the following energy (25):

E =

Z
d3

x

h 1

2m
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†
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+
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2

4m
2
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†
 

Z
d3
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4⇡|x � y|
 
†(y) (y)

i
.

(36)

The lowest energy solution to eq. (35) constitutes the
well known, spherically symmetric, scalar soliton config-
uration [15]. The unique profile (up to scaling of the
amplitudes by µ/m) is shown in Fig. 2.

Since  is real and µ spatially independent, the orbital
angular momentum in (31) vanishes:

L = < (i r ⇥ r) = 0 . (37)

For higher-spin fields, the spin angular momentum den-
sity can be non-vanishing. For the ansatz (34), it is equal
to

S = � 
2
n̂ , � = {�s, ..., 0, ..., s}. (38)

This reflects the extremally polarized nature of the soli-
tons. For each �, this is a coherent collection of plane
waves, all polarized along the n̂ direction. Explicitly, the
total spin angular momentum

Stot =

Z
d
3
xS = �

Z
d
3
x| |

2
n̂ = �Nn̂. (39)

where N is the total particle number in the soliton.

For extremally polarized solitons, the particle number,
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FIG. 3. A visualization of the two distinct extremally polarized vector solitons. The left soliton has vanishing spin density
(� = 0), and W is oscillating along the z-axis. The right soliton has a spin density S = �| |2ẑ with � = 1. The big arrows
inside the soliton represent the direction of the field W , while the little arrows on the circles represent their motion in time.
The total spin |Stot| = �M/m ⇡ 60.7� (mpl/m)2(µ/m)1/2, where M is the total mass of the soliton.

energy and spin-angular momentum are

N =
M

m
⇡ 60.7

m
2

pl

m2

⇣
µ

m

⌘1/2

, (40)

E ⇡ �19.2
m

2

pl

m

⇣
µ

m

⌘3/2

, (41)

Stot ⇡ �⇥ 60.7
m

2

pl

m2

⇣
µ

m

⌘1/2
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where M is the total mass of the soliton. The numerical
co-e�cients are obtained from the universal profile
shown in Fig. 2. Heuristically (µ/m)1/2 ⇠ (1/mL)
where L is the characteristic size of the soliton, and
M ⇠ (mpl/m)2/L. Since in the non-relativistic regime
µ/m ⌧ 1, we expect the maximal values of the above
quantities (40) to be bounded from above by the case
µ ⇠ m. Significant deviations from the above expression
can be expected as one approaches this limit [12].

It is also worth noting that these solitons are perfectly
virialized, Ekin/Epot = �1/2, where Ekin is the term
containing gradients, and Epot is the other term (gravi-
tational potential energy) in (25).

1. Spin-0

For the case of spin-0, we have the following real field
solution for �(= F) in (15)

�(x, t) =

p
2 (x)
p

m
cos!t , (43)

where ! ⌘ m�µ, and there is of-course no intrinsic spin
angular momentum.

2. Spin-1

For the massive spin-1 case, we have three distinct
states corresponding to ±1 and 0 polarizations, which,
for n̂ = ẑ, are conveniently represented by the following
orthonormal set of vectors:
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satisfying (27). For  (�) =  e
iµt✏(�)

1,ẑ
, we have S =

�| |
2
ẑ where � = 0, ±1. Extremally polarized solitons

in terms of the real-valued vector field W (= F) in (15)
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where M is the total mass of the soliton. The numerical
co-e�cients are obtained from the universal profile
shown in Fig. 2. Heuristically (µ/m)1/2 ⇠ (1/mL)
where L is the characteristic size of the soliton, and
M ⇠ (mpl/m)2/L. Since in the non-relativistic regime
µ/m ⌧ 1, we expect the maximal values of the above
quantities (40) to be bounded from above by the case
µ ⇠ m. Significant deviations from the above expression
can be expected as one approaches this limit [12].

It is also worth noting that these solitons are perfectly
virialized, Ekin/Epot = �1/2, where Ekin is the term
containing gradients, and Epot is the other term (gravi-
tational potential energy) in (25).

1. Spin-0

For the case of spin-0, we have the following real field
solution for �(= F) in (15)

�(x, t) =

p
2 (x)
p

m
cos!t , (43)

where ! ⌘ m�µ, and there is of-course no intrinsic spin
angular momentum.

2. Spin-1

For the massive spin-1 case, we have three distinct
states corresponding to ±1 and 0 polarizations, which,
for n̂ = ẑ, are conveniently represented by the following
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On a conceptual note, the non-relativistic action (29)
cannot distinguish between (i) a set of 2s + 1 (spatial-
)scalars (ii) a spin-s field with 2s + 1 spin multiplicity
degrees of freedom. While the set of (spatial-)scalars will
have no spin angular momentum, they will still have a
conserved “isospin” (31).9 The non-relativistic theory
cannot distinguish between the two cases using gravi-
tational physics alone. This equivalence can be broken
when we include relativistic corrections.

IV. POLARIZED SOLITONS

Making use of the polarization basis (28), we classify
di↵erent (lowest energy) solitons based on their spin mul-
tiplicities. We first discuss ‘extremally polarized’ solitons
(composed of identically polarized plane waves), where

only one of the 2s + 1 polarized fields  (�)

s is non-zero.
Thereafter, we discuss fractionally polarized solitons ob-
tained by linear superpositions of extremally polarized
ones.

A. Extremally polarized solitons

With only one of the polarization fields non-zero, we
can assume the following ansatz
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The phenomenology with multiple scalar fields, but with di↵erent

masses, was explored in [28].
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FIG. 2. The “universal” non-relativistic field profile and grav-
itational potential for the soliton solutions. Note that both
profiles must be multiplied by µ/m to get the correct solution
for each µ/m.

along with the following energy (25):

E =

Z
d3

x

h 1

2m
r 

†
· r 

+
m

2

4m
2

pl

 
†
 

Z
d3

y

4⇡|x � y|
 
†(y) (y)

i
.

(36)

The lowest energy solution to eq. (35) constitutes the
well known, spherically symmetric, scalar soliton config-
uration [15]. The unique profile (up to scaling of the
amplitudes by µ/m) is shown in Fig. 2.

Since  is real and µ spatially independent, the orbital
angular momentum in (31) vanishes:

L = < (i r ⇥ r) = 0 . (37)

For higher-spin fields, the spin angular momentum den-
sity can be non-vanishing. For the ansatz (34), it is equal
to

S = � 
2
n̂ , � = {�s, ..., 0, ..., s}. (38)

This reflects the extremally polarized nature of the soli-
tons. For each �, this is a coherent collection of plane
waves, all polarized along the n̂ direction. Explicitly, the
total spin angular momentum

Stot =

Z
d
3
xS = �

Z
d
3
x| |

2
n̂ = �Nn̂. (39)

where N is the total particle number in the soliton.

For extremally polarized solitons, the particle number,
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system for nonzero-spin fields, which we call p-solitons.
These include extremally polarized solitons which are
coherent collections of identically polarized plane waves.
The extremally polarized solitons can be used as a
basis set to construct fractionally polarized solitons
via superposition. All p-solitons have a spherically
symmetric (universal) energy density profile, although
the field configuration is not spherically symmetric.

The orbital angular momentum is zero for p-solitons,
but spin angular momentum need not be. In the ex-
tremal case, the spin angular momentum is simply the
spin multiplicity � times the macroscopically large par-
ticle number of the soliton. Explicitly

Stot = �
M

m
n̂ , (59)

where M � m is the total mass of the soliton and m is
the mass of the dark spin-s field, and the above expres-
sion is in units of ~. The instrinsic spin of our solitons
can also have implications for substructure in dark mat-
ter today, as well as for the formation of primordial black
holes, baryogenesis in the early Universe, etc.

For comparison, the average value of a dimension-
less (orbital) angular momentum parameter, ⇤ ⌘

J

p
|E|/GM

5/2, which is used to quantify the angular
momentum of dark matter halos in N-body simulations,
is ⇡ 0.045 [46]. For our p-solitons, assuming a uniform
distribution of the magnitude of the total spin, we have
h⇤i = ⇤max/2 = 0.12s. Here, ⇤max is the value for an
extremally polarized soliton and s is the spin of the field.
For another comparison, the ratio of the spin angular mo-
mentum of our extremal soliton to that of an equal mass
black hole is Stot/Jbh = 8⇡�m

2

pl
/(aMm) with a < 1.

This ratio can be larger than unity when M is su�ciently
small.15

We also compared the energy, particle number and
spin of p-solitons with other higher energy, but zero
total angular momentum solitons with hedgehog config-
urations of the fields.

Distinguishability and Implications: We ar-
gued that it is possible to distinguish two interacting
p-solitons from their scalar counterparts. Limiting
ourselves to gravitational interactions in the non-
relativistic limit, we discussed how collisions between
two higher-spin p-solitons cannot be mimicked by two
scalar solitons unless the p-solitons are identically
polarized. Such collisions can in principle be probed by
test particles, including photons. We highlighted how
non-gravitational couplings to photons can o↵er further
detectability avenues via specific polarization patterns
of the outgoing electromagnetic radiation generated by,
for example, p-soliton collisions.

15
We used black-hole angular momentum Jbh = aGM2

.

B. Future Directions

Formation mechanisms: Formation mechanisms of
solitons in scalar fields have been studied before both
with and without self-interactions [32, 47, 48]; for higher-
spin fields this remains an open question. Coupling the
higher-spin fields to a coherently oscillating scalar can
lead to e�cient production of such fields (for example,
see [49–51]). Higher-spin fields can also be populated
via gravitational particle production [52, 53](albeit with
large masses). Solitons could form via self-interactions,
or via gravitational clustering in these or in ultra-light
fields. We hope to carry out a numerical investigation
of the cosmic history of dark, nonzero-spin fields and
formation mechanism of their solitons, which would
allow a statistical prediction of their their masses and
spins in the early or contemporary universe. For a recent
analytic approach for the vector case, see [54].

Extension to higher spin fields: In general, an
integer spin-s degree of freedom in embedded in a
rank s field (meaning an object carrying s space-time
indices). Without mass, the fields are gauge fields (for
s � 1) and depending upon the spin, admit a rich
gauge invariance (see [55, 56] and references therein for
a classic review). The gauge structure makes sure that
there are only two physical ±s spin multiplicity states.
Another equivalent way to construct the Lagrangian
density is to add all the possible Lorentz invariant
kinetic terms in a way that leads to no ghosts, with only
two degrees of freedom surviving (similar to the case
of spin-1 and spin-2). Then, add all possible Lorentz
invariant mass terms such that no ghosts, but only the
rest 2s � 1 spin multiplicity states now appear. Even
though we don’t carry out the exercise explicitly for a
full Lorentz invariant relativistic theory, we expect that
in the non-relativistic and weak field gravity regime, the
action is still (29). We have kept most of our expressions
in this paper as general as possible, and only in IV
have we considered the specific cases of spin-1 and
spin-2 solitons. We leave a detailed study of a fully
Lorentz invariant spin-3 and higher fields for future work.

Relativistic corrections: In this paper we re-
stricted ourselves to the non-relativistic regime, and
found s + 1 distinct, but degenerate (in energy) soliton
configurations for a spin-s bosonic field. The fate of
these solutions when relativistic corrections are added,
especially for spin-1 and spin-2, is an important question
to consider (for the spin-0 case, see [12]). In the
non-relativistic limit, we essentially have 2s + 1 spin
multiplicity fields with a conserved particle number
within each, and thus all of the di↵erent p-solitons were
degenerate and stable. However at sub-leading order,
the energy momentum tensor (especially for the cases of
spin-1 and higher fields) contains non-trivial components
due to the spin structure which we do not focus on in
this paper. This might lift the degeneracy between the

orbital angular momentum is zero

 (�)
s (x, t) =  (x)eiµt✏(�)s,n̂

6

Rik kl(x̃)Rlj . The conserved charge density associated
with this, namely the total angular momentum density
is the following

Jk = s <

⇣
i "ijk[  

†]ij
⌘

+ <

⇣
i "ijkTr[ †

@i ]xj

⌘
(22)

where we identify

Sk = s <

⇣
i "ijk[  

†]ij
⌘

, (23)

Lk = <

⇣
i "ijkTr[ †

@i ]xj

⌘

as the intrinsic spin and orbital angular momentum den-
sity respectively.7 In the above expressions, s = {0, 1, 2}

for spin-0 (scalar), spin-1 (vector), and spin-2 (tensor)
cases respectively, and "a are the totally anti-symmetric
matrices (generators of rotations). Also, [..]ij means
the matrix obtained by taking a tensor product of the
elements within. For the vector case [  †]ij =  i 

†
j
,

while for the tensor case [  †]ij =  ik 
†
kj

. For the
scalar case this is zero.

The e↵ective non-relativistic action (20) has a global
U(1) symmetry ( !  e

i↵) leading to a conserved par-
ticle number

N =

Z
d
3
xTr[ †

 ] . (24)

Along with rotational invariance, the usual time-
translation invariance8 of (20) yields a conserved energy:

E =

Z
d3

x

h 1

2m
Tr[r †

· r ]

+
m

2

4m
2

pl

Tr[ †
 ]

Z
d3

y

4⇡|x � y|
Tr[ †(y) (y)]

i
(25)

There are additional conserved charges, which become
apparent when we decompose our field  into a polar-
ization bases, which we turn to next.

B. Decomposition into polarization basis

A massive spin-s field admits 2s + 1 spin multiplic-
ity states in some particular direction n̂, labelled by
� 2 {�s, ..., s}. These states are characterized by the

set {✏(�)

s,n̂
}, such that upon substituting a plane wave

 
(�) = V

�1/2
e
ik·x✏(�)

s,n̂
in (23), we get

n̂ · S
⇣
 

(�)

⌘
= n̂ · S

⇣
✏(�)

s,n̂

⌘
=
�

V
8� 2 {�s, ..s}

(26)

7
Note that the total spin, and total orbital angular momentum

are independently conserved.
8
There will also be linear momentum associated with invariance

under spatial translations. This however will not be of any direct

use for us.

where V is a spatial volume. For explicit forms of ✏(�)

s,n̂
,

see (44) and (46) ahead for spin-1 and spin-2 cases, where
we work with n̂ = ẑ without loss of generality. The set

{✏(�)

s,n̂
} is orthogonal and complete in the sense:

Tr[✏(�) †
s,n̂

✏(�
0
)

s,n̂
] = ��,�0 ,

X

�

h
✏(�)

s,n̂
✏(�)†
s,n̂

i

ij

/ �ij . (27)

Using these {✏(�)

s,n̂
}, the field  admits the following de-

composition

 (x, t) =
X

�

 
(�)

s
(x, t)✏(�)

s,n̂
, (28)

where  (�)

s is the field with polarization � in the n̂ direc-

tion. In terms of these di↵erent polarized fields  (�)

s , the
action has the following form

S
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Correspondingly, the equation of motion is the
Schrödinger Poisson system where we have a set of

Schrödinger field equations for each  
(�)

s , plus the New-
tonian Gauss’ law
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The orbital and spin angular momentum densities (22),

in terms of the  (�)

s are

Sk = s

X

�,�0

<

⇣
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0
) †
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s
"ijk[✏

(�)

s,n̂
✏(�

0
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]ij

⌘
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<
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"ijk @i 
(�)

s
x
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⌘
. (31)

Action (29), written in terms of the  (�)

s , is helpful
to identify another set of symmetries. We have global
U(1) invariance for each of the 2s+1 degrees of freedom,
giving 2s + 1 conserved particle numbers

N
(�) =

Z
d3

x 
(�) †
s

 
(�)

s
, (32)

where N =
P

�
N

(�). The fact that each of the polarized
fields has an associated conserved particle number, will
become important to physically understand superposi-
tions of extremally polarized solitons in order to form
fractionally polarized ones.



extremally polarized solitons

Spin

Polarized Solitons in Higher-Spin Wave Dark Matter
Mudit Jain & Mustafa A.  Amin

arXiv:  2109.04892

x
y

z

� = 0 � = ±1 � = ±2

Stot = ~0 Stot = Stot =

x
y

z

� = 0 � = ±1

Stot = ~0 Stot =

Klein-Gordon (s =0) 

Proca           (s = 1) 

Fierz-Pauli    (s = 2)

2s+1 component 
Schrödinger non-relativistic limit

Ei
ns

te
in

 
   

 + s+1 solitons

s =
0

s = 1

s = 2

spin multiplicity = 0 1 2

Po
iss

on
 

   
 +

x
y

z

� = 0 � = ±1 � = ±2

Stot = ~0 Stot = Stot =

x
y

z

� = 0 � = ±1

Stot = ~0 Stot =

x
y

z

� = 0 � = ±1 � = ±2

Stot = ~0 Stot = Stot =

s = 1

s = 2

vector

tensor

s+ 1 extremally

polarized solitons

� = 0 � = 1 � = 2

macroscopic spin  
N =  # of particles in soliton

Stot/~ = �Nẑ
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system for nonzero-spin fields, which we call p-solitons.
These include extremally polarized solitons which are
coherent collections of identically polarized plane waves.
The extremally polarized solitons can be used as a
basis set to construct fractionally polarized solitons
via superposition. All p-solitons have a spherically
symmetric (universal) energy density profile, although
the field configuration is not spherically symmetric.

The orbital angular momentum is zero for p-solitons,
but spin angular momentum need not be. In the ex-
tremal case, the spin angular momentum is simply the
spin multiplicity � times the macroscopically large par-
ticle number of the soliton. Explicitly

Stot = �
M

m
n̂ , (59)

where M � m is the total mass of the soliton and m is
the mass of the dark spin-s field, and the above expres-
sion is in units of ~. The instrinsic spin of our solitons
can also have implications for substructure in dark mat-
ter today, as well as for the formation of primordial black
holes, baryogenesis in the early Universe, etc.

For comparison, the average value of a dimension-
less (orbital) angular momentum parameter, ⇤ ⌘

J

p
|E|/GM

5/2, which is used to quantify the angular
momentum of dark matter halos in N-body simulations,
is ⇡ 0.045 [46]. For our p-solitons, assuming a uniform
distribution of the magnitude of the total spin, we have
h⇤i = ⇤max/2 = 0.12s. Here, ⇤max is the value for an
extremally polarized soliton and s is the spin of the field.
For another comparison, the ratio of the spin angular mo-
mentum of our extremal soliton to that of an equal mass
black hole is Stot/Jbh = 8⇡�m

2

pl
/(aMm) with a < 1.

This ratio can be larger than unity when M is su�ciently
small.15

We also compared the energy, particle number and
spin of p-solitons with other higher energy, but zero
total angular momentum solitons with hedgehog config-
urations of the fields.

Distinguishability and Implications: We ar-
gued that it is possible to distinguish two interacting
p-solitons from their scalar counterparts. Limiting
ourselves to gravitational interactions in the non-
relativistic limit, we discussed how collisions between
two higher-spin p-solitons cannot be mimicked by two
scalar solitons unless the p-solitons are identically
polarized. Such collisions can in principle be probed by
test particles, including photons. We highlighted how
non-gravitational couplings to photons can o↵er further
detectability avenues via specific polarization patterns
of the outgoing electromagnetic radiation generated by,
for example, p-soliton collisions.

15
We used black-hole angular momentum Jbh = aGM2

.

B. Future Directions

Formation mechanisms: Formation mechanisms of
solitons in scalar fields have been studied before both
with and without self-interactions [32, 47, 48]; for higher-
spin fields this remains an open question. Coupling the
higher-spin fields to a coherently oscillating scalar can
lead to e�cient production of such fields (for example,
see [49–51]). Higher-spin fields can also be populated
via gravitational particle production [52, 53](albeit with
large masses). Solitons could form via self-interactions,
or via gravitational clustering in these or in ultra-light
fields. We hope to carry out a numerical investigation
of the cosmic history of dark, nonzero-spin fields and
formation mechanism of their solitons, which would
allow a statistical prediction of their their masses and
spins in the early or contemporary universe. For a recent
analytic approach for the vector case, see [54].

Extension to higher spin fields: In general, an
integer spin-s degree of freedom in embedded in a
rank s field (meaning an object carrying s space-time
indices). Without mass, the fields are gauge fields (for
s � 1) and depending upon the spin, admit a rich
gauge invariance (see [55, 56] and references therein for
a classic review). The gauge structure makes sure that
there are only two physical ±s spin multiplicity states.
Another equivalent way to construct the Lagrangian
density is to add all the possible Lorentz invariant
kinetic terms in a way that leads to no ghosts, with only
two degrees of freedom surviving (similar to the case
of spin-1 and spin-2). Then, add all possible Lorentz
invariant mass terms such that no ghosts, but only the
rest 2s � 1 spin multiplicity states now appear. Even
though we don’t carry out the exercise explicitly for a
full Lorentz invariant relativistic theory, we expect that
in the non-relativistic and weak field gravity regime, the
action is still (29). We have kept most of our expressions
in this paper as general as possible, and only in IV
have we considered the specific cases of spin-1 and
spin-2 solitons. We leave a detailed study of a fully
Lorentz invariant spin-3 and higher fields for future work.

Relativistic corrections: In this paper we re-
stricted ourselves to the non-relativistic regime, and
found s + 1 distinct, but degenerate (in energy) soliton
configurations for a spin-s bosonic field. The fate of
these solutions when relativistic corrections are added,
especially for spin-1 and spin-2, is an important question
to consider (for the spin-0 case, see [12]). In the
non-relativistic limit, we essentially have 2s + 1 spin
multiplicity fields with a conserved particle number
within each, and thus all of the di↵erent p-solitons were
degenerate and stable. However at sub-leading order,
the energy momentum tensor (especially for the cases of
spin-1 and higher fields) contains non-trivial components
due to the spin structure which we do not focus on in
this paper. This might lift the degeneracy between the

orbital angular momentum is zero

h⇤isol/h⇤iDM halo ⇡ 3s > 1

DM halos

BHs
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system for nonzero-spin fields, which we call p-solitons.
These include extremally polarized solitons which are
coherent collections of identically polarized plane waves.
The extremally polarized solitons can be used as a
basis set to construct fractionally polarized solitons
via superposition. All p-solitons have a spherically
symmetric (universal) energy density profile, although
the field configuration is not spherically symmetric.

The orbital angular momentum is zero for p-solitons,
but spin angular momentum need not be. In the ex-
tremal case, the spin angular momentum is simply the
spin multiplicity � times the macroscopically large par-
ticle number of the soliton. Explicitly

Stot = �
M

m
n̂ , (59)

where M � m is the total mass of the soliton and m is
the mass of the dark spin-s field, and the above expres-
sion is in units of ~. The instrinsic spin of our solitons
can also have implications for substructure in dark mat-
ter today, as well as for the formation of primordial black
holes, baryogenesis in the early Universe, etc.

For comparison, the average value of a dimension-
less (orbital) angular momentum parameter, ⇤ ⌘

J

p
|E|/GM

5/2, which is used to quantify the angular
momentum of dark matter halos in N-body simulations,
is ⇡ 0.045 [46]. For our p-solitons, assuming a uniform
distribution of the magnitude of the total spin, we have
h⇤i = ⇤max/2 = 0.12s. Here, ⇤max is the value for an
extremally polarized soliton and s is the spin of the field.
For another comparison, the ratio of the spin angular mo-
mentum of our extremal soliton to that of an equal mass
black hole is Stot/Jbh = 8⇡�m

2

pl
/(aMm) with a < 1.

This ratio can be larger than unity when M is su�ciently
small.15

We also compared the energy, particle number and
spin of p-solitons with other higher energy, but zero
total angular momentum solitons with hedgehog config-
urations of the fields.

Distinguishability and Implications: We ar-
gued that it is possible to distinguish two interacting
p-solitons from their scalar counterparts. Limiting
ourselves to gravitational interactions in the non-
relativistic limit, we discussed how collisions between
two higher-spin p-solitons cannot be mimicked by two
scalar solitons unless the p-solitons are identically
polarized. Such collisions can in principle be probed by
test particles, including photons. We highlighted how
non-gravitational couplings to photons can o↵er further
detectability avenues via specific polarization patterns
of the outgoing electromagnetic radiation generated by,
for example, p-soliton collisions.

15
We used black-hole angular momentum Jbh = aGM2

.

B. Future Directions

Formation mechanisms: Formation mechanisms of
solitons in scalar fields have been studied before both
with and without self-interactions [32, 47, 48]; for higher-
spin fields this remains an open question. Coupling the
higher-spin fields to a coherently oscillating scalar can
lead to e�cient production of such fields (for example,
see [49–51]). Higher-spin fields can also be populated
via gravitational particle production [52, 53](albeit with
large masses). Solitons could form via self-interactions,
or via gravitational clustering in these or in ultra-light
fields. We hope to carry out a numerical investigation
of the cosmic history of dark, nonzero-spin fields and
formation mechanism of their solitons, which would
allow a statistical prediction of their their masses and
spins in the early or contemporary universe. For a recent
analytic approach for the vector case, see [54].

Extension to higher spin fields: In general, an
integer spin-s degree of freedom in embedded in a
rank s field (meaning an object carrying s space-time
indices). Without mass, the fields are gauge fields (for
s � 1) and depending upon the spin, admit a rich
gauge invariance (see [55, 56] and references therein for
a classic review). The gauge structure makes sure that
there are only two physical ±s spin multiplicity states.
Another equivalent way to construct the Lagrangian
density is to add all the possible Lorentz invariant
kinetic terms in a way that leads to no ghosts, with only
two degrees of freedom surviving (similar to the case
of spin-1 and spin-2). Then, add all possible Lorentz
invariant mass terms such that no ghosts, but only the
rest 2s � 1 spin multiplicity states now appear. Even
though we don’t carry out the exercise explicitly for a
full Lorentz invariant relativistic theory, we expect that
in the non-relativistic and weak field gravity regime, the
action is still (29). We have kept most of our expressions
in this paper as general as possible, and only in IV
have we considered the specific cases of spin-1 and
spin-2 solitons. We leave a detailed study of a fully
Lorentz invariant spin-3 and higher fields for future work.

Relativistic corrections: In this paper we re-
stricted ourselves to the non-relativistic regime, and
found s + 1 distinct, but degenerate (in energy) soliton
configurations for a spin-s bosonic field. The fate of
these solutions when relativistic corrections are added,
especially for spin-1 and spin-2, is an important question
to consider (for the spin-0 case, see [12]). In the
non-relativistic limit, we essentially have 2s + 1 spin
multiplicity fields with a conserved particle number
within each, and thus all of the di↵erent p-solitons were
degenerate and stable. However at sub-leading order,
the energy momentum tensor (especially for the cases of
spin-1 and higher fields) contains non-trivial components
due to the spin structure which we do not focus on in
this paper. This might lift the degeneracy between the
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FIG. 4. The three distinct extremally polarized tensor solitons. For visualization, we plot the eigenvectors of the traceless, 3⇥3
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� 6= 0.

are

W (±1)(x, t) =
 (x)
p

m

0

@
cos!t

± sin!t

0

1

A ,

W (0)(x, t) =

p
2 (x)
p

m

0

@
0
0

cos!t

1

A . (45)

In fig. 3 we show these extremally polarized solitons.

We note that in [13], the authors provide ground
state solitons  =  (r)eiµt{wx, wy, wz} where wi are
components of a complex unit vector. For the extremally
polarized cases, this corresponds to the choices (44) for
their wi. Our focus on the spin aspect of fields dictated
this choice, which naturally leads to extremally polarized
solitons. More general solitons with arbitrary wi are
discussed in IVB.

3. Spin-2

For the massive spin-2 case we have 5 polarization
states corresponding to spin multiplicities ±2, ±1, and 0.

Again, for n̂ = ẑ, these are represented by the following
orthonormal (and trace free) set of tensors10
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For  (�) =  e
iµt✏(�)

2,ẑ
, we have the spin density S =

�| |
2
ẑ where � = 0, ±1, ±2.

The five extremally polarized solitons in the real-
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FIG. 3. A visualization of the two distinct extremally polarized vector solitons. The left soliton has vanishing spin density
(� = 0), and W is oscillating along the z-axis. The right soliton has a spin density S = �| |2ẑ with � = 1. The big arrows
inside the soliton represent the direction of the field W , while the little arrows on the circles represent their motion in time.
The total spin |Stot| = �M/m ⇡ 60.7� (mpl/m)2(µ/m)1/2, where M is the total mass of the soliton.

energy and spin-angular momentum are

N =
M

m
⇡ 60.7

m
2

pl

m2

⇣
µ

m

⌘1/2

, (40)

E ⇡ �19.2
m

2

pl

m

⇣
µ

m

⌘3/2

, (41)

Stot ⇡ �⇥ 60.7
m

2

pl

m2

⇣
µ

m

⌘1/2

n̂ , (42)

where M is the total mass of the soliton. The numerical
co-e�cients are obtained from the universal profile
shown in Fig. 2. Heuristically (µ/m)1/2 ⇠ (1/mL)
where L is the characteristic size of the soliton, and
M ⇠ (mpl/m)2/L. Since in the non-relativistic regime
µ/m ⌧ 1, we expect the maximal values of the above
quantities (40) to be bounded from above by the case
µ ⇠ m. Significant deviations from the above expression
can be expected as one approaches this limit [12].

It is also worth noting that these solitons are perfectly
virialized, Ekin/Epot = �1/2, where Ekin is the term
containing gradients, and Epot is the other term (gravi-
tational potential energy) in (25).

1. Spin-0

For the case of spin-0, we have the following real field
solution for �(= F) in (15)

�(x, t) =

p
2 (x)
p

m
cos!t , (43)

where ! ⌘ m�µ, and there is of-course no intrinsic spin
angular momentum.

2. Spin-1

For the massive spin-1 case, we have three distinct
states corresponding to ±1 and 0 polarizations, which,
for n̂ = ẑ, are conveniently represented by the following
orthonormal set of vectors:

✏(±1)

1,ẑ
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1
p

2

0

@
1
±i
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1

A ; ✏(0)

1,ẑ
=

0

@
0
0
1

1

A . (44)

satisfying (27). For  (�) =  e
iµt✏(�)

1,ẑ
, we have S =

�| |
2
ẑ where � = 0, ±1. Extremally polarized solitons

in terms of the real-valued vector field W (= F) in (15)
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FIG. 4. The three distinct extremally polarized tensor solitons. For visualization, we plot the eigenvectors of the traceless, 3⇥3
matrix H

(�) representing the polarized solitons in the massive spin-2 field. The eignevectors are scaled by their corresponding
eigenvalues. The leftmost soliton has a vanishing spin density, with each eigenvector (along the co-ordinate axes) of H

(�)

oscillating in phase. The middle soliton has a spin density S = �| |2ẑ with � = 1. The rightmost soliton has a spin density
S = �| |2ẑ with � = 2. The total spin |Stot| = �M/m ⇡ 60.7� (mpl/m)2(µ/m)1/2 which can be macroscopically large for
� 6= 0.

are
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A ,

W (0)(x, t) =

p
2 (x)
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@
0
0

cos!t
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A . (45)

In fig. 3 we show these extremally polarized solitons.

We note that in [13], the authors provide ground
state solitons  =  (r)eiµt{wx, wy, wz} where wi are
components of a complex unit vector. For the extremally
polarized cases, this corresponds to the choices (44) for
their wi. Our focus on the spin aspect of fields dictated
this choice, which naturally leads to extremally polarized
solitons. More general solitons with arbitrary wi are
discussed in IVB.

3. Spin-2

For the massive spin-2 case we have 5 polarization
states corresponding to spin multiplicities ±2, ±1, and 0.

Again, for n̂ = ẑ, these are represented by the following
orthonormal (and trace free) set of tensors10
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2,ẑ
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1
p

6

0

@
�1 0 0
0 �1 0
0 0 2

1

A (46)

For  (�) =  e
iµt✏(�)

2,ẑ
, we have the spin density S =

�| |
2
ẑ where � = 0, ±1, ±2.

The five extremally polarized solitons in the real-
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These can be obtained through tensor products of the spin-1

polarization vectors: ✏
(±2)
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1,ẑ )/

p
2; and ✏

(0)
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system for nonzero-spin fields, which we call p-solitons.
These include extremally polarized solitons which are
coherent collections of identically polarized plane waves.
The extremally polarized solitons can be used as a
basis set to construct fractionally polarized solitons
via superposition. All p-solitons have a spherically
symmetric (universal) energy density profile, although
the field configuration is not spherically symmetric.

The orbital angular momentum is zero for p-solitons,
but spin angular momentum need not be. In the ex-
tremal case, the spin angular momentum is simply the
spin multiplicity � times the macroscopically large par-
ticle number of the soliton. Explicitly

Stot = �
M

m
n̂ , (59)

where M � m is the total mass of the soliton and m is
the mass of the dark spin-s field, and the above expres-
sion is in units of ~. The instrinsic spin of our solitons
can also have implications for substructure in dark mat-
ter today, as well as for the formation of primordial black
holes, baryogenesis in the early Universe, etc.

For comparison, the average value of a dimension-
less (orbital) angular momentum parameter, ⇤ ⌘

J

p
|E|/GM

5/2, which is used to quantify the angular
momentum of dark matter halos in N-body simulations,
is ⇡ 0.045 [46]. For our p-solitons, assuming a uniform
distribution of the magnitude of the total spin, we have
h⇤i = ⇤max/2 = 0.12s. Here, ⇤max is the value for an
extremally polarized soliton and s is the spin of the field.
For another comparison, the ratio of the spin angular mo-
mentum of our extremal soliton to that of an equal mass
black hole is Stot/Jbh = 8⇡�m

2

pl
/(aMm) with a < 1.

This ratio can be larger than unity when M is su�ciently
small.15

We also compared the energy, particle number and
spin of p-solitons with other higher energy, but zero
total angular momentum solitons with hedgehog config-
urations of the fields.

Distinguishability and Implications: We ar-
gued that it is possible to distinguish two interacting
p-solitons from their scalar counterparts. Limiting
ourselves to gravitational interactions in the non-
relativistic limit, we discussed how collisions between
two higher-spin p-solitons cannot be mimicked by two
scalar solitons unless the p-solitons are identically
polarized. Such collisions can in principle be probed by
test particles, including photons. We highlighted how
non-gravitational couplings to photons can o↵er further
detectability avenues via specific polarization patterns
of the outgoing electromagnetic radiation generated by,
for example, p-soliton collisions.

15
We used black-hole angular momentum Jbh = aGM2

.

B. Future Directions

Formation mechanisms: Formation mechanisms of
solitons in scalar fields have been studied before both
with and without self-interactions [32, 47, 48]; for higher-
spin fields this remains an open question. Coupling the
higher-spin fields to a coherently oscillating scalar can
lead to e�cient production of such fields (for example,
see [49–51]). Higher-spin fields can also be populated
via gravitational particle production [52, 53](albeit with
large masses). Solitons could form via self-interactions,
or via gravitational clustering in these or in ultra-light
fields. We hope to carry out a numerical investigation
of the cosmic history of dark, nonzero-spin fields and
formation mechanism of their solitons, which would
allow a statistical prediction of their their masses and
spins in the early or contemporary universe. For a recent
analytic approach for the vector case, see [54].

Extension to higher spin fields: In general, an
integer spin-s degree of freedom in embedded in a
rank s field (meaning an object carrying s space-time
indices). Without mass, the fields are gauge fields (for
s � 1) and depending upon the spin, admit a rich
gauge invariance (see [55, 56] and references therein for
a classic review). The gauge structure makes sure that
there are only two physical ±s spin multiplicity states.
Another equivalent way to construct the Lagrangian
density is to add all the possible Lorentz invariant
kinetic terms in a way that leads to no ghosts, with only
two degrees of freedom surviving (similar to the case
of spin-1 and spin-2). Then, add all possible Lorentz
invariant mass terms such that no ghosts, but only the
rest 2s � 1 spin multiplicity states now appear. Even
though we don’t carry out the exercise explicitly for a
full Lorentz invariant relativistic theory, we expect that
in the non-relativistic and weak field gravity regime, the
action is still (29). We have kept most of our expressions
in this paper as general as possible, and only in IV
have we considered the specific cases of spin-1 and
spin-2 solitons. We leave a detailed study of a fully
Lorentz invariant spin-3 and higher fields for future work.

Relativistic corrections: In this paper we re-
stricted ourselves to the non-relativistic regime, and
found s + 1 distinct, but degenerate (in energy) soliton
configurations for a spin-s bosonic field. The fate of
these solutions when relativistic corrections are added,
especially for spin-1 and spin-2, is an important question
to consider (for the spin-0 case, see [12]). In the
non-relativistic limit, we essentially have 2s + 1 spin
multiplicity fields with a conserved particle number
within each, and thus all of the di↵erent p-solitons were
degenerate and stable. However at sub-leading order,
the energy momentum tensor (especially for the cases of
spin-1 and higher fields) contains non-trivial components
due to the spin structure which we do not focus on in
this paper. This might lift the degeneracy between the
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valued trace-free tensor field are:

H
(±2)(x, t) =

 (x)
p

2m

0

@
cos !t ± sin !t 0

± sin !t � cos !t 0
0 0 0

1

A

H
(±1)(x, t) =

 (x)
p

2m

0

@
0 0 cos !t

0 0 ± sin !t

cos !t ± sin !t 0

1

A

H
(0)(x, t) =

 (x)
p

3m

0

@
�1 0 0
0 �1 0
0 0 2

1

A cos !t, (47)

Fig. 4 shows these extremally polarized solitons (with
spin density along the z axis). The authors in [14] also
discussed ground state solitons in a spherical harmonic
basis, but without an explicit focus on spin coherence in
a particular direction. Our extremally polarized solitons,
however, are naturally seen in the plane wave polarization
basis (chosen with respect to a definite direction).

B. Fractionally polarized solitons

Here we construct non-extremal polarized solitons, ob-
tained through linear superpositions of the extremal ones.
Since we have U(1) invariance for each polarization field

 
(�)

s , we can superpose them to form new solutions. That
is to say that we can have

 (x, t) =  (x)
X

�

c�e
i(µt�'�)✏(�)

s,n̂
(48)

with
X

�

c
2

�
= 1. (49)

The reason to enforce (49) is to ensure that we have
the same particle number density as in the case of
extremally polarized solitons (and hence also the same
energy), which in turn guarantees that  (x) obeys the
same Schrödinger Poisson system (35).

The corresponding real valued counterpart is

F(x, t) =
X

�

c�F (�)(x, t + '�/!) , (50)

where F (�) are extremally polarized solitons (equal to
W (�) for spin-1 (45); H(�) for spin-2 (47)).

Similar to the case of extremally polarized solitons, the
orbital angular momentum density, obtained by substi-
tuting (48) into (31) is zero. On the other hand the spin
density is

Sk = s| (x)|2
X

��0

<

h
ic�c�0e

i('��'�0 )
✏ijk[✏

(�
0
)

s,n̂
✏(�)†
s,n̂

]ij
i
.

(51)

The total spin need not be equal to �N where
� 2 {�s, .., s} for general {c�,'�}. However, for a
class of {c�,'�} which simply amount to rotations of
extremally polarized solitons, we will again get �N for
the total spin.

Superposing basis solutions (extremally polarized) to
form new solutions, while keeping the total particle num-
ber fixed, is just taking di↵erent fractions of these ex-
tremally polarized solitons and putting them on top of
each other (c.f. (50)). The reason this is allowed is be-
cause there is a U(1) invariance within each polarization
sector. From a phenomenological point of view, there
could be extra spin induced interactions that favor same
polarization states for a collection of particles in some
region (e.g. Ising model). For such situations, it may
be that there is a higher chance of extremally polarized
solitons to form over fractionally polarized ones due to
Bose-Einstein statistics. We leave such questions for fu-
ture work.

C. (s/2, s/2) representation of polarized solitons

There exists a simple understanding of the space of all
polarized solitons in terms of the (m, n) representation
of the rotation group SO(3). Guided by the U(1) and
SO(3) invariance of the general action (29), and the fact
that there are 2s + 1 d.o.f. with � ! �� obtainable via
simple rotation, we can represent our full space of soli-
ton solutions via (s/2, s/2) representation of the SO(3)
group. The representation is reducible, meaning it ad-
mits a total of s + 1 SO(3) invariant sub-spaces, each
containing the di↵erent (absolute value of-) polarizations
|�| 2 {0, 1, ..s}. These are our distinct extremally po-
larized solitons. These s + 1 extremally polarized soli-
tons form a basis, and can give rise to fractionally po-
larized solitons via appropriate superpositions (due to
separate U(1) within each polarization sector). The full
space of solutions is the product space of these s + 1
subspaces, hosting a general soliton. A physical soli-
ton spontaneously breaks the SO(3) invariance of the
action (20), (or equivalently (29)). Table I shows the rep-
resentation of gravitationally bound polarized solitons in
bosonic fields considered in this paper.

TABLE I. (m,n) representation of the gravitationally bound
soliton states in non-relativistic integer spin field theories

Soliton states Massive field (spin)
(0,0) scalar (0)
(1/2,1/2) vector (1)
(1,1) tensor (2)
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Fig. 4 shows these extremally polarized solitons (with
spin density along the z axis). The authors in [14] also
discussed ground state solitons in a spherical harmonic
basis, but without an explicit focus on spin coherence in
a particular direction. Our extremally polarized solitons,
however, are naturally seen in the plane wave polarization
basis (chosen with respect to a definite direction).

B. Fractionally polarized solitons

Here we construct non-extremal polarized solitons, ob-
tained through linear superpositions of the extremal ones.
Since we have U(1) invariance for each polarization field
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The reason to enforce (49) is to ensure that we have
the same particle number density as in the case of
extremally polarized solitons (and hence also the same
energy), which in turn guarantees that  (x) obeys the
same Schrödinger Poisson system (35).

The corresponding real valued counterpart is
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where F (�) are extremally polarized solitons (equal to
W (�) for spin-1 (45); H(�) for spin-2 (47)).

Similar to the case of extremally polarized solitons, the
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The total spin need not be equal to �N where
� 2 {�s, .., s} for general {c�,'�}. However, for a
class of {c�,'�} which simply amount to rotations of
extremally polarized solitons, we will again get �N for
the total spin.

Superposing basis solutions (extremally polarized) to
form new solutions, while keeping the total particle num-
ber fixed, is just taking di↵erent fractions of these ex-
tremally polarized solitons and putting them on top of
each other (c.f. (50)). The reason this is allowed is be-
cause there is a U(1) invariance within each polarization
sector. From a phenomenological point of view, there
could be extra spin induced interactions that favor same
polarization states for a collection of particles in some
region (e.g. Ising model). For such situations, it may
be that there is a higher chance of extremally polarized
solitons to form over fractionally polarized ones due to
Bose-Einstein statistics. We leave such questions for fu-
ture work.

C. (s/2, s/2) representation of polarized solitons

There exists a simple understanding of the space of all
polarized solitons in terms of the (m, n) representation
of the rotation group SO(3). Guided by the U(1) and
SO(3) invariance of the general action (29), and the fact
that there are 2s + 1 d.o.f. with � ! �� obtainable via
simple rotation, we can represent our full space of soli-
ton solutions via (s/2, s/2) representation of the SO(3)
group. The representation is reducible, meaning it ad-
mits a total of s + 1 SO(3) invariant sub-spaces, each
containing the di↵erent (absolute value of-) polarizations
|�| 2 {0, 1, ..s}. These are our distinct extremally po-
larized solitons. These s + 1 extremally polarized soli-
tons form a basis, and can give rise to fractionally po-
larized solitons via appropriate superpositions (due to
separate U(1) within each polarization sector). The full
space of solutions is the product space of these s + 1
subspaces, hosting a general soliton. A physical soli-
ton spontaneously breaks the SO(3) invariance of the
action (20), (or equivalently (29)). Table I shows the rep-
resentation of gravitationally bound polarized solitons in
bosonic fields considered in this paper.

TABLE I. (m,n) representation of the gravitationally bound
soliton states in non-relativistic integer spin field theories

Soliton states Massive field (spin)
(0,0) scalar (0)
(1/2,1/2) vector (1)
(1,1) tensor (2)
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FIG. 4. The three distinct extremally polarized tensor solitons. For visualization, we plot the eigenvectors of the traceless, 3⇥3
matrix H

(�) representing the polarized solitons in the massive spin-2 field. The eignevectors are scaled by their corresponding
eigenvalues. The leftmost soliton has a vanishing spin density, with each eigenvector (along the co-ordinate axes) of H

(�)

oscillating in phase. The middle soliton has a spin density S = �| |2ẑ with � = 1. The rightmost soliton has a spin density
S = �| |2ẑ with � = 2. The total spin |Stot| = �M/m ⇡ 60.7� (mpl/m)2(µ/m)1/2 which can be macroscopically large for
� 6= 0.
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In fig. 3 we show these extremally polarized solitons.

We note that in [13], the authors provide ground
state solitons  =  (r)eiµt{wx, wy, wz} where wi are
components of a complex unit vector. For the extremally
polarized cases, this corresponds to the choices (44) for
their wi. Our focus on the spin aspect of fields dictated
this choice, which naturally leads to extremally polarized
solitons. More general solitons with arbitrary wi are
discussed in IVB.

3. Spin-2

For the massive spin-2 case we have 5 polarization
states corresponding to spin multiplicities ±2, ±1, and 0.

Again, for n̂ = ẑ, these are represented by the following
orthonormal (and trace free) set of tensors10
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=

1

2

0

@
1 ±i 0
±i �1 0
0 0 0

1

A

✏(±1)

2,ẑ
=

1

2

0

@
0 0 1
0 0 ±i

1 ±i 0

1

A

✏(0)

2,ẑ
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For  (�) =  e
iµt✏(�)

2,ẑ
, we have the spin density S =

�| |
2
ẑ where � = 0, ±1, ±2.

The five extremally polarized solitons in the real-
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2,ẑ = ✏

(±1)
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oscillating in phase. The middle soliton has a spin density S = �| |2ẑ with � = 1. The rightmost soliton has a spin density
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� 6= 0.
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In fig. 3 we show these extremally polarized solitons.

We note that in [13], the authors provide ground
state solitons  =  (r)eiµt{wx, wy, wz} where wi are
components of a complex unit vector. For the extremally
polarized cases, this corresponds to the choices (44) for
their wi. Our focus on the spin aspect of fields dictated
this choice, which naturally leads to extremally polarized
solitons. More general solitons with arbitrary wi are
discussed in IVB.
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FIG. 4. The three distinct extremally polarized tensor solitons. For visualization, we plot the eigenvectors of the traceless, 3⇥3
matrix H

(�) representing the polarized solitons in the massive spin-2 field. The eignevectors are scaled by their corresponding
eigenvalues. The leftmost soliton has a vanishing spin density, with each eigenvector (along the co-ordinate axes) of H

(�)

oscillating in phase. The middle soliton has a spin density S = �| |2ẑ with � = 1. The rightmost soliton has a spin density
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� 6= 0.
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In fig. 3 we show these extremally polarized solitons.

We note that in [13], the authors provide ground
state solitons  =  (r)eiµt{wx, wy, wz} where wi are
components of a complex unit vector. For the extremally
polarized cases, this corresponds to the choices (44) for
their wi. Our focus on the spin aspect of fields dictated
this choice, which naturally leads to extremally polarized
solitons. More general solitons with arbitrary wi are
discussed in IVB.

3. Spin-2

For the massive spin-2 case we have 5 polarization
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orthonormal (and trace free) set of tensors10
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=

1

2

0

@
0 0 1
0 0 ±i

1 ±i 0

1

A

✏(0)

2,ẑ
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valued trace-free tensor field are:
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Fig. 4 shows these extremally polarized solitons (with
spin density along the z axis). The authors in [14] also
discussed ground state solitons in a spherical harmonic
basis, but without an explicit focus on spin coherence in
a particular direction. Our extremally polarized solitons,
however, are naturally seen in the plane wave polarization
basis (chosen with respect to a definite direction).

B. Fractionally polarized solitons

Here we construct non-extremal polarized solitons, ob-
tained through linear superpositions of the extremal ones.
Since we have U(1) invariance for each polarization field
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s , we can superpose them to form new solutions. That
is to say that we can have
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The reason to enforce (49) is to ensure that we have
the same particle number density as in the case of
extremally polarized solitons (and hence also the same
energy), which in turn guarantees that  (x) obeys the
same Schrödinger Poisson system (35).

The corresponding real valued counterpart is

F(x, t) =
X

�

c�F (�)(x, t + '�/!) , (50)

where F (�) are extremally polarized solitons (equal to
W (�) for spin-1 (45); H(�) for spin-2 (47)).

Similar to the case of extremally polarized solitons, the
orbital angular momentum density, obtained by substi-
tuting (48) into (31) is zero. On the other hand the spin
density is
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The total spin need not be equal to �N where
� 2 {�s, .., s} for general {c�,'�}. However, for a
class of {c�,'�} which simply amount to rotations of
extremally polarized solitons, we will again get �N for
the total spin.

Superposing basis solutions (extremally polarized) to
form new solutions, while keeping the total particle num-
ber fixed, is just taking di↵erent fractions of these ex-
tremally polarized solitons and putting them on top of
each other (c.f. (50)). The reason this is allowed is be-
cause there is a U(1) invariance within each polarization
sector. From a phenomenological point of view, there
could be extra spin induced interactions that favor same
polarization states for a collection of particles in some
region (e.g. Ising model). For such situations, it may
be that there is a higher chance of extremally polarized
solitons to form over fractionally polarized ones due to
Bose-Einstein statistics. We leave such questions for fu-
ture work.

C. (s/2, s/2) representation of polarized solitons

There exists a simple understanding of the space of all
polarized solitons in terms of the (m, n) representation
of the rotation group SO(3). Guided by the U(1) and
SO(3) invariance of the general action (29), and the fact
that there are 2s + 1 d.o.f. with � ! �� obtainable via
simple rotation, we can represent our full space of soli-
ton solutions via (s/2, s/2) representation of the SO(3)
group. The representation is reducible, meaning it ad-
mits a total of s + 1 SO(3) invariant sub-spaces, each
containing the di↵erent (absolute value of-) polarizations
|�| 2 {0, 1, ..s}. These are our distinct extremally po-
larized solitons. These s + 1 extremally polarized soli-
tons form a basis, and can give rise to fractionally po-
larized solitons via appropriate superpositions (due to
separate U(1) within each polarization sector). The full
space of solutions is the product space of these s + 1
subspaces, hosting a general soliton. A physical soli-
ton spontaneously breaks the SO(3) invariance of the
action (20), (or equivalently (29)). Table I shows the rep-
resentation of gravitationally bound polarized solitons in
bosonic fields considered in this paper.

TABLE I. (m,n) representation of the gravitationally bound
soliton states in non-relativistic integer spin field theories

Soliton states Massive field (spin)
(0,0) scalar (0)
(1/2,1/2) vector (1)
(1,1) tensor (2)
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FIG. 5. The left panel shows collisions between vector solitons that can be replicated by solitons in a single scalar field. The
right panel shows examples of collisions which cannot be replicated by solitons in a single scalar field.

D. Beyond ground-state solitons

Spherically symmetric, single node solitons for the
spin-1 and spin-2 fields are the ‘hedgehog’-like configura-
tions, with Cartesian components [13, 14]11

Wj(x, t) = f(r)
x
j

r
cos!t ,

Hij(x, t) = g(r)

✓
3
x
i
x
j

r2
� �ij

◆
cos!t , (52)

where f(0) = g(0) = 0. That is, there is a node in the
profile at the origin. Both hedgehogs have higher ener-
gies (at a fixed particle number) compared to the ground
state solitons discussed earlier, and have zero spin and
orbital angular momentum. Explicitly, after fixing the
particle number to be the same as the polarized solitons
(Ns

hh
= N), we have E

s=1

hh
⇡ 0.33E and E

s=2

hh
⇡ 0.17E

where E < 0 and N are given in (40). Note that
�E = E

s

hh
� E > 0. A linear stability analysis was pro-

vided in [14] to argue that the hedgehogs in spin-2 case
are unstable and might transition to p-solitons. As with
scalar solitons, excited configurations with additional
nodes and orbital angular momentum might be pos-
sible with higher-spin fields, albeit with shorter lifetimes.

So far we have only allowed for spherically symmet-
ric energy densities. It is possible to construct non-
spherically symmetric configurations, such as domain
walls, strings/vortices etc. [13]; the possible space of ex-
tended field configurations with higher-spin fields is likely
to be quite rich. The full classification is beyond the
scope of the present paper, but it is worth pursuing since

11
For relativistic hedgehogs in complex-valued Proca-fields, see

[29].

it might provide new avenues to probe these higher-spin
fields.

V. DISTINGUISHABILITY & PROBES OF
POLARIZED SOLITONS

Having shown that we have quite a rich space of soliton
solutions, we briefly discuss some of the phenomenolog-
ical implications. Alongside these implications, we ad-
dress some conceptual questions: Can higher-spin soli-
tons be distinguished from scalar solitons? Can solitons
with di↵erent polarizations be distinguished using only
gravitational interactions?

A. Gravitational interactions

Let us consider collisions between solitons A and B

in a spin-s field. We show below that only if the two
solitons di↵er by just an overall phase, can the collision be
mimicked by two scalar solitons. Otherwise, in general,
the higher-spin nature of the fields will leave an imprint in
the observables related to the collision of the two solitons.

For simplicity, let us consider a collision between two
extremally polarized solitons, initially far away from each
other, such that the field admits the following ansatz

 s

���
t=0

=  A (x + x0) ✏(�)

s,n̂
+ e

i✓
 B (x � x0) ✏(�

0
)

s,n̂0 . (53)

The corresponding initial number and current densities
are

Ns

���
t=0

=  
2

A
+  

2

B
+  A B

⇣
e
i✓ Tr[✏(�
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(�)†
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. (54)

distinguishable via collisions!

can be replicated by single scalar field cannot be replicated by single scalar field
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b
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b
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b
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b
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b
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p
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✓
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=
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=
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p
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b
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d
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b
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p
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b
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⇡
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=
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w
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ra
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b
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b
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b
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p
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w
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h
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b
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ra
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b
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ra
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p
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b
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b
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b
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r
e
la
t
iv
is
t
ic

h
e
d
g
e
h
o
g
s
in

c
o
m
p
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P
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p
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h
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T
h
e
le
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p
an

el
sh
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s
co
ll
is
io
n
s
b
et
w
ee
n
ve
ct
or

so
li
to
n
s
th
at

ca
n
b
e
re
p
li
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te
d
b
y
so
li
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n
s
in

a
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n
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e
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al
ar
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el
d
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h
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sh
ow
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p
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n
s
w
h
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n
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b
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p
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ca
te
d
b
y
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e
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p
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=
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=
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p
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b
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d
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b
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p
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b
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⇡
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w
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ra
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b
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b
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w
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h
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b
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b
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ce
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1
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o
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r
e
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h
e
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o
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p
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P
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p
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p
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w

e
ad

-
d
re

ss
so

m
e

co
n
ce

p
tu

al
qu

es
ti

on
s:

C
an

h
ig

h
er

-s
p
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b
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b
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ra
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ra
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b
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b
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Vector oscillons

Hong-Yi Zhang,⇤ Mustafa A. Amin,† and Mudit Jain‡

Department of Physics and Astronomy, Rice University, Houston, TX 77005, USA

(Dated: September 24, 2021)

Oscillons are spatially localized, time-periodic and exceptionally long-lived configurations that
were primarily proposed in scalar field theories. In this letter, we demonstrate that oscillons can
also exist in real-valued massive spin-1 fields with attractive self-interactions. We find three types of
vector oscillons with approximately spherically symmetric energy density, which we call directional,
spinning and hedgehog oscillons respectively. And among these objects, the cylindrically symmetric
directional states are the lowest energy configuration for a fixed particle number. Fully relativistic
simulations show that all of them are attractor solutions in 3 + 1 dimensions and can be long-lived.
This makes vector oscillons potentially relevant to cosmological theories such as the vector field
inflation, dark photon dark matter and Proca Q-balls and stars.

MJ:

• I have not paid much attention to the gram-
mer/sentencing, unless it was easy enough for me
to make small changes here and there.

Introduction.– As spatially localized and long-lived os-
cillating configurations of scalar fields [1–7], oscillons
have drawn considerable attention in cosmology. For ex-
ample, they might play a notable role during (p)reheating
[8–18], make up of axion-like dark matter [19–23] and also
generate numerous observable signals [24–32]. In this pa-
per, we find that vector fields can also cluster as oscillons
due to self-interactions.We ignore gravity in this work,
blah.

Specifically, we study a phenomenological real-valued
massive spin 1 field Wµ with the Lagrangian1

L = �1

4
Fµ⌫F

µ⌫ � V (WµW
µ) , (1)

where Fµ⌫ = @µW⌫ � @⌫Wµ and the potential

V (WµW
µ) =

m
2

2
WµW

µ +
�

4
(WµW

µ)2 +
h

6
(WµW

µ)3

+... (2)

We should use a different symbol, perhaps � (?). It might
lead to confusion with the Planck constant. Also, use a
different symbol for the original field (maybe Aµ), than
the re-scaled field Wµ. This type of potential may arise
from the interaction of Wµ to other matter and/or non-
minimal coupling of Wµ to gravity (but we are ignoring
gravity in this work, mention something to this effect),
analogous to the effective potential for a scalar field. In

⇤ hongyi@rice.edu
† mustafa.a.amin@rice.edu
‡ mudit.jain@tufts.edu
1 We use the natural units c = ~ = 1 and stick to Cartesian co-

ordinates unless otherwise stated. We adopt mostly plus sig-
nature for the Minkowski metric. Also, Wµ = (W0,Wi) giving
Wµ = (�W0,Wi).

the appendix we show that such an attractive (effective)
potential indeed arises in the low energy limit of U(1)
Abelian Higgs model with a heavy Higgs. Without loss
of generality, we will set m = 1 and � = ±12. I don’t
see how can � be positive. If the effective potential arises
from integrating out a heavy scalar, then it must be nega-
tive since the scalar mediates an attractive force. Similar
is the case if the interaction was mediated by a heavy
spin-2 particle (at-least in principle, set aside issues with
spin-2). In this sense, the only way to have a negative
� then, is to have the interaction mediated by a spin-1
particle. But in this case we would be necessarily forced
onto a Yang Mills theory in which all the spin-1 dofs have
similar masses, arising let’s say due to Higgs mechanism.
Then there cannot be a large heirarchy between masses
of the different spin-1 dof, such that we can integrated
out all but one of them to arrive at the effective potential
(with sign(�) = �1). The equations of motion are

�r2
W0 + @tr · W + 2V 0(WµW

µ)W0 = 0 ,

(3)
@
2

tW � @trW0 + r ⇥ r ⇥ W + 2V 0(WµW
µ)W = 0 ,

(4)

where r ⇥ r ⇥ W = r(r · W ) � r2W . In order to
find localized configurations with the lowest-energy for a
fixed particle number This is a little ambiguous. Mention
that these objects are not all lowest energy bound states,
blah blah, we consider oscillons with some sort of spher-
ical symmetry, i.e. either some components of Wi are
(approximately) radially symmetric or the entire vector
field Wµ is spherically symmetric. As illustrated in fig-
ure 1, we call these localized clumps directional, spinning
and hedgehog oscillons.

Once a solution is found, the energy can be given by the
Noether’s current associated with spacetime translations

T
µ⌫ = @

⌫
W�F

µ� + g
µ⌫L . (5)

2 This can be achieved by redefining the field and spacetime coor-
dinates as xµ ! xµ/m, Wµ ! mWµ/

p
|�| and h ! h�2/m2.
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electromagnetic coupling and radiation ( axion + photons )

!p 6= 0

Lint ⇠ g���Fµ⌫ F̃
µ⌫

MA & Mou (2020)

MA, Long, Mou & Saffin (2021)

see for example: Buckley, Dev,  Ferrer,  Huang (2021)



spin-s + photons: spin of soliton & polarization of photons

!p 6= 0

12

For the scalar case (s = 0, ✏(�)

0,n̂
= 1), we have

N0

���
t=0

=  
2

A
+  

2

B
+ 2 A B cos ✓ (55)

j0

���
t=0

=
sin ✓

m
( Br A �  Ar B) . (56)

Now to compare the collision scenario with the scalar
case, we wish to start with equal number densities in
the scalar and higher-spin cases. That is, Ns = N0 at
t = 0. To achieve this condition we have two possibilities

(1) Tr[✏(�)

s,n̂
✏(�

0
)†

s,n̂0 ] 6= 1 and real, with ✓ = ⇡/2; (2)

Tr[✏(�)

s,n̂
✏(�

0
)†

s,n̂0 ] = 1, that is � = �
0 and n̂ = n̂

0. For

possibility (1), js = ~0 while j0 6= ~0 at t = 0, so the
collision will proceed di↵erently in the scalar vs. the
higher-spin case. Specifically, the densities, and hence
the gravitational potential, will also evolve di↵erently in
the two cases. Possibility (2) essentially reduces to the
scalar case as expected. This result is summarized in
Fig. 5 (as an example for spin-1 fields).

Thus, using collisions we can tell whether two solitons
in a given spin-s field had the same spin density or not.
This would not be possible with individual solitons in iso-
lation using the gravitational potential alone. We leave a
detailed analysis of how exactly the potential evolves and
the associated phenomenological avenues such as motion
of test particles in this dynamical potential [30] or merger
rates of solitons [31] for future work.12

More generally, many existing studies carried out for
scalar dark matter, can be repeated for the case of higher-
spin dark matter including soliton formation mechanisms
[32], halo formation [31], dynamical friction [33], gener-
ation of gravitational waves [34], time delays caused in
pulsar timing arrays by time-dependent pressures and en-
ergy densities [35], black-hole superradiance and ‘gravi-
tational atoms’[36], transient vortices [37] etc. Some of
these have already been extended to higher-spin fields,
see for example, [38–40].

B. Non-gravitational interactions

One can envision many scenarios where the higher-spin
fields couple to the Standard Model such that it opens
up channels for polarized solitons to be detectable. One
possibility is to have some high energy scale(s) g

�1

F�
, such

that in the low-energy e↵ective theory we have:

Lint ⇠

(
g
2

W�
WµW

µ
F↵�F̃

↵� spin�1

g
2

H�
(Hµ⌫H

µ⌫
� H

2) F↵�F̃
↵� spin�2

. (57)

12
With R. Karur and P. Mocz, we are investigating soliton inter-

actions using numerical simulations of the multi-component SP

system.

In the non-relativistic limit, such interactions reduce to

Lint ⇠ g
2

F�
Tr[FF ] F↵�F̃

↵�
, (58)

where F = W and H for spin-1 and spin-2 cases respec-
tively. Here, Fµ⌫ is the electromagnetic field strength
tensor, and F̃µ⌫ is its dual. Such couplings may have
similar phenomenological implications like the axion pho-
ton case [41, 42], but with an important di↵erence due
to the polarization state of the soliton. Specifically,
Tr[FF ] is time-independent for maximally spinning soli-
tons (� 6= 0), but is time-dependent (periodic) for the
� = 0 case and also for fractionally polarized solitons.
Besides emission from a single soliton, a collision between
any two non-zero spin solitons may result in radiation
that has a specific polarization pattern, depending upon
their polarization (for the spin-0 soliton collisions, see for
example [43–45]).

The above interactions are CP odd. One can have CP
even interactions as well, by replacing FF̃ by F

2 or other
contractions between F and our higher-spin fields. How-
ever, one needs to be careful to avoid issues of ghosts
and superluminality.13 Another possibility for the mas-
sive spin-1 case could be to have kinetic mixing with the
usual electromagnetism ⇠ Fµ⌫G

µ⌫ .14

VI. SUMMARY AND FUTURE DIRECTIONS

Massive, scalar (spin-0), vector (spin-1) or tensor fields
(spin-2) can make up all/part of the dark matter, or play
a role in the early universe. In this paper, we explored
the non-relativistic limit of such fields, and derived polar-
ized ground-state solitons in such fields. We summarize
our main results below, and also discuss possible future
directions.

A. Summary

Non-relativistic Limit: Starting with the quadratic
(free) action for massive spin-0,1,2 fields + leading
gravitational interactions, we derived an e↵ective action
and equations of motion in the non-relativisitic regime.
We arrived at the non-relativistic action by first using
the constraint equations and deriving a quadratic action
for physical degrees of freedom in the massive spin-s
field. Our non-relativistic system for a field with spin s,
is a multi-component Schrödinger-Poisson (SP) system
with 2s + 1 independent d.o.f.

p-Solitons: Using a polarization basis, we enumerate
the full space of lowest energy soliton solutions in the SP

13
We would like to thank M. P. Hertzberg for bringing these issues

to our attention.
14

We thank Andrew Long for this suggestion.
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these have already been extended to higher-spin fields,
see for example, [38–40].

B. Non-gravitational interactions

One can envision many scenarios where the higher-spin
fields couple to the Standard Model such that it opens
up channels for polarized solitons to be detectable. One
possibility is to have some high energy scale(s) g

�1

F�
, such

that in the low-energy e↵ective theory we have:

Lint ⇠

(
g
2

W�
WµW

µ
F↵�F̃

↵� spin�1

g
2

H�
(Hµ⌫H

µ⌫
� H

2) F↵�F̃
↵� spin�2

. (57)

12
With R. Karur and P. Mocz, we are investigating soliton inter-

actions using numerical simulations of the multi-component SP

system.

In the non-relativistic limit, such interactions reduce to

Lint ⇠ g
2

F�
Tr[FF ] F↵�F̃

↵�
, (58)

where F = W and H for spin-1 and spin-2 cases respec-
tively. Here, Fµ⌫ is the electromagnetic field strength
tensor, and F̃µ⌫ is its dual. Such couplings may have
similar phenomenological implications like the axion pho-
ton case [41, 42], but with an important di↵erence due
to the polarization state of the soliton. Specifically,
Tr[FF ] is time-independent for maximally spinning soli-
tons (� 6= 0), but is time-dependent (periodic) for the
� = 0 case and also for fractionally polarized solitons.
Besides emission from a single soliton, a collision between
any two non-zero spin solitons may result in radiation
that has a specific polarization pattern, depending upon
their polarization (for the spin-0 soliton collisions, see for
example [43–45]).

The above interactions are CP odd. One can have CP
even interactions as well, by replacing FF̃ by F

2 or other
contractions between F and our higher-spin fields. How-
ever, one needs to be careful to avoid issues of ghosts
and superluminality.13 Another possibility for the mas-
sive spin-1 case could be to have kinetic mixing with the
usual electromagnetism ⇠ Fµ⌫G

µ⌫ .14

VI. SUMMARY AND FUTURE DIRECTIONS

Massive, scalar (spin-0), vector (spin-1) or tensor fields
(spin-2) can make up all/part of the dark matter, or play
a role in the early universe. In this paper, we explored
the non-relativistic limit of such fields, and derived polar-
ized ground-state solitons in such fields. We summarize
our main results below, and also discuss possible future
directions.

A. Summary

Non-relativistic Limit: Starting with the quadratic
(free) action for massive spin-0,1,2 fields + leading
gravitational interactions, we derived an e↵ective action
and equations of motion in the non-relativisitic regime.
We arrived at the non-relativistic action by first using
the constraint equations and deriving a quadratic action
for physical degrees of freedom in the massive spin-s
field. Our non-relativistic system for a field with spin s,
is a multi-component Schrödinger-Poisson (SP) system
with 2s + 1 independent d.o.f.

p-Solitons: Using a polarization basis, we enumerate
the full space of lowest energy soliton solutions in the SP

13
We would like to thank M. P. Hertzberg for bringing these issues

to our attention.
14

We thank Andrew Long for this suggestion.

NR limit

MA & Mou (2020)

MA, Long, Mou & Saffin (2021)

Fµ⌫G
µ⌫

see for example: Buckley, Dev,  Ferrer,  Huang (2021)
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FIG. 1. Anatomy of a cosmic filament. We show, for CDM, WDM, and FDM cosmologies: (a) the projected dark matter
distribution in the simulation domain at redshift z = 5.5; (b) projections of dark matter, gas, and stars in a filament; and (c)
slices of the dark matter through a filament. In CDM the dark matter fragments into subhalos on all scales. WDM exhibits
rich caustic structures. FDM has interference patterns at the scales of the de Broglie wavelength, which regularize caustic
singularities. These di↵erences in small-scale structure will help constrain the elusive nature of dark matter.

(WDM), which is often associated with fermionic dark
matter

:::::::
fermions

:
of particle mass of a few keV (typi-

cally treated as collisionless), Peccei-Quinn axions [28]
which are bosons of mass ⇠ 10�5–10�3 eV, and the ul-
tralight FDM of mass m ⇠ 10�22 eV, which is described
by a classical scalar field and exhibits wave phenomena
on scales of the de Broglie wavelength �dB of a few kpc
[18–21, 29, 30]. FDM may be axions expected in string
theory, which suggests the existence of a plenitude of
particles with masses over a broad range 10�33–10�10 eV
[29].

::::::::::::::
�dB ⇠ few ⇥ kpc

::::::::::::::
[18–21, 29, 30].

:
WDM and FDM

both yield smoother structures than CDM on scales be-
low few kpc, due to either thermal motion (WDM) [23]
or quantum pressure (FDM)

:::
[18]. The existence of dwarf

galaxies in dark matter halos with masses of ⇠ 109 times
the mass of the sun (M�) in the local Universe, as well as
measurements of the ‘lumpiness’ of the dark matter dis-
tribution, constrain WDM and FDM theories, favoring

particle masses above mWDM ⇠ 3 keV and m ⇠ 10�22 eV
respectively [31]

:::::::
[31, 32]. However, for FDM these con-

straints can only be used as guidelines, being based on
simulations that ignore the impact of wave e↵ects on
baryons.
The first objects in the Universe o↵er a unique way

to tighten the observational constraints. Compared to
the local Universe, in which galaxies in

:::::::
1011 M�:

dark
matter halos of 1011 M� are typical, an early CDM uni-
verse (at redshift z ⇠ 30when the Universe is

:
,
::::
i.e.,

108 years old
::::
after

:::
the

::::
Big

:::::
Bang) is populated by much

smaller nearly-spherical halos of ⇠ 105�107 M� in which
proto-galaxies are born [33]. In contrast, the

:::::
WDM

:
first

star-forming structures in WDM form later and are fila-
mentary due to the initial suppression of the dark matter
power spectrum by particle free-streaming [34, 35]. Com-
pared to WDM, wavelike FDM additionally features in-
terference patterns and soliton coreson kpc scales, as is
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We study Bose-Einstein condensation and formation of Bose stars in the virialized dark matter
halos/miniclusters by universal gravitational interactions. We prove that this phenomenon does
occur and it is described by kinetic equation. We give expression for the condensation time. Our
results suggest that Bose stars may form kinetically in the mainstream dark matter models such as
invisible QCD axions and Fuzzy Dark Matter.

1. Introduction. Bose stars are lumps of Bose -
Einstein condensate bounded by self-gravity [1, 2]. They
can be made of condensed dark matter (DM) bosons —
say, invisible QCD axions [3] or Fuzzy DM [4]. That is
why their physics, phenomenology and observational sig-
natures remain in the focus of cosmological research for
decades [5], see recent papers [6, 7]. Unfortunately, for-
mation of Bose stars is still poorly understood and many
recent works have to assume their existence.

In this Letter we study Bose-Einstein condensation in
the virialized DM halos/miniclusters caused by univer-
sal gravitational interactions. We work at large occupa-
tion numbers which is correct if the DM bosons are light.
Notably, we consider kinetic regime where the initial co-
herence length and period of the DM particles are close
to the de Broglie values (mv)�1 and (mv

2)�1 and much
smaller than the halo size R and condensation time ⌧gr,

mvR � 1 , mv
2
⌧gr � 1 . (1)

We numerically solve microscopic equations for the en-
semble of gravitating bosons in this case and find that
the Bose stars indeed form. We derive expression for ⌧gr
and study kinetics of the process.

Up to our knowledge, gravitational Bose-Einstein con-
densation in kinetic regime has not been observed in
simulations before. Old works considered only con-
tact interactions between the DM bosons [8] which
are non-universal and suppressed by quartic constants
� ⇠ 10�50 [9] and 10�100 [10] in models of QCD axions
and string axions/Fuzzy DM. Our results show that in
these cases gravitational condensation is faster: although
the Newton’s constant Gm

2 is tiny, its e↵ect is enhanced
by collective interaction of large fluctuations in the boson
gas at large distances, cf. [11].

On the other hand, all previous numerical studies of
Bose star formation considered coherent initial configura-
tions of the bosonic field — a Gaussian wavepacket [12] or
the Bose stars themself [13, 14]. A spectacular simulation
of structure formation by wavelike/Fuzzy DM [13, 15]
started from (almost) homogeneous Bose-Einstein con-
densate. In all these cases the Bose stars form almost
immediately [12, 13] from the lowest-energy part of the
initial condensate.

We consider entirely di↵erent situation (1) when the
DM bosons are virialized in the initial state. The closest

t̃ = 0 | ̃|

ỹ

x̃ x̃

t̃ = 1.3 · 106

0

.02

.1

FIG. 1. Formation of Bose star from random field with initial
distribution | ̃p̃|2 / e�p̃2

and total mass Ñ = 50 in the box
0  x̃, ỹ, z̃ < 125. These values correspond to the center of
the axion minicluster with Mc ⇠ 10�13M� and � ⇠ 2.7 in
Sec. 8. (a), (b) Sections z̃ = const of the solution | ̃(t̃, x̃)|
at (a) t̃ = 0 and (b) t̃ > ⌧̃gr ⇡ 1.08 · 106. (c) Radial profile
| ̃(r̃)| of the object in Fig. 1b (points) compared to the Bose
star  ̃s(r̃) with !̃s ⇡ �0.7 (line). (d) Maximum of | ̃(x̃)|
over the box as a function of time. (e) Spectra (3) at times
of Figs. 1a, b and at the eve of Bose star nucleation, t̃ =
1.05 · 106 ⇠ ⌧̃gr. (f) The spectrum at t ⇠ ⌧gr (dashed line)
versus the solution of Eq. (5) (circles) and thermal law F̃ /
!̃�1/2 (dots).
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future possibilities …

- formation mechanisms for higher spin dark matter (misalighnment?, gravitational?) 

- BH superradiance with higher spin fields

- dynamical friction

- vortices 

- pulsar timing measurements 

- direct detection  

- condensation time scales

- lifetimes of higher spin solitons

- relativistic effects ( for scalar with gravitation, see Salehian, Kaiser, Guth, Namjoo and more recent +Zhang, MA…) 
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Ultra-light dark matter 3

Fig. 1 Sketch (not to scale) of the huge range of possible DM models that have been conceived. They span many orders of magnitude
in mass, with DM represented by very distinct phenomena, ranging from new elementary particles to black holes.

structures we see in our universe today, as is evident in observations of the large scale structure of our universe
(Anderson et al. 2014; Tegmark et al. 2004).

With all this evidence coming from precise astrophysical and cosmological observations, cosmologists have con-
verged to a phenomenological model to describe our universe, the ⇤CDM model. This model is currently the
concordance model of cosmology and it accumulates a number of observational successes. It exhibits outstanding
agreement with current cosmological observations (Anderson et al. 2014), which is manifested in the parameters
of this model being constrained at the percent and sub-percent level. This incredibly simple model is described by
only six parameters and parametrizes a large amount of the universe’s history. It describes a universe that is flat
and seeded by nearly scale invariant perturbations, composed of baryons, which amount to approximately 5% of
the energy density of the universe, a small radiation component, but in its majority is composed of two unknown
ingredients. The energy budget of the universe is dominated (⇠ 70%) by a component responsible for the current
accelerated expansion of the universe called dark energy, and a clustering component, the dark matter, making up
to ⇠ 25% of our universe. These large-scale observations give a coarse-grained description of these non-baryonic
components in the hydrodynamical limit where dark matter is described as a perfect fluid with very small pressure
(w ⇡ 0) and sound speed, cs ⇡ 0, that does not interact, at least strongly, with baryonic matter. Dark energy is
parametrized by a cosmological constant, the simplest model for the present accelerated expansion of our universe.

Therefore, within ⇤CDM, the Cold Dark Matter (CDM) paradigm emerged from the large scale observations
and describes the component responsible for the formation of the structures of our universe through gravitational
clustering. In the CDM model, DM is described by a perfect fluid that must be massive, su�ciently cold, which
means non-relativistic at the time of structure formation, and collisionless in order to explain the observational data
on large linear scales. This coarse-grained description of a CDM is very successful in fitting the linear, large scales
observations from the CMB, LSS, to clusters, and general properties of galaxies.

However, even though we know the hydrodynamical properties of DM on large scales to a very high precision, the
microphysics of the DM component remains unknown. This allows for the creation of a plethora of possible models
of DM. Those models recover the large scale properties of CDM, but invoke very di↵erent objects and phenomena
to play the role of DM.

This incredible variety of viable models of DM can be seen in the huge range of masses those models cover, as
shown in Fig. 1. This figure shows many di↵erent broad classes of DM models, and each of which might contain
many di↵erent specific models. It spans more than 80 orders of magnitude and shows very di↵erent hypothesis for
DM, from new elementary particles, to composite objects (Jacobs et al. 2015; Khlopov 2019), up to astrophysical
size primordial black holes (for a review on recent bounds see (Carr et al. 2020; Carr and Kuhnel 2020)). This shows
us that although we have gathered a lot of knowledge about the gravitational properties of DM, the nature of DM
is still elusive, with the current data still allowing a huge amount of highly di↵erent models.

The possibility that dark matter could be a long lived particle is very appealing. Specially if these candidates
are expected candidates from extensions of the standard model of particle physics. One class of models that became
the preferred candidates for the DM particles are WIMP, weakly interacting massive particles, which represent new
elementary particles that interact with baryons not only gravitationally but also through the weak force or a new
force of comparable strength (Roszkowski et al. 2018; Lin 2019). The strong motivation for this candidate is because
if it is thermally produced in the early universe, the relic abundance of particles that have mass of the order of the
electroweak scale, and a coupling of order one, corresponds precisely to the abundance of DM in our universe. The
possibility that WIMP could also be discovered by direct detection experiments is also an important motivation to
search for this candidate. There is a great experimental e↵ort to constrain the properties of WIMP DM with the
parameter space being very restricted over the past few years. Given the complex phenomenology from the possible
models of WIMP DM and their interaction with the standard model particles, the translation of those bounds to the

Spin

Mass

0

1

2 - large occupation numbers

-   classical fields/wave dynamics

- macroscopic/astrophysical scales

N / (mpl/m)2

�c ⇠ 10 cm (m/10�6 eV)�1 ⇠ 1016 cm (m/10�21 eV)�1
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FIG. 1. A visual summary of some of the main results of our paper.

novel class of extremally polarized solitons with spin
Stot/~ = �M/m which can be macroscopically large for
M � m. Here, m is the mass of the field, M is the
mass of the soliton and � is the spin multiplicity. These
coherent solitons (along with fractionally polarized
ones mentioned earlier) might open up new avenues for
observationally probing higher-spin fields.

We find that even within Newtonian gravity it might
be possible to distinguish interacting solitons with dif-
ferent polarizations. Going beyond Newtonian gravity,
which we do not pursue here, might remove degeneracies
between di↵erent polarizations of the higher-spin fields
even further. We also discuss possibilities of probing
this higher-spin dark matter via non-gravitational
interactions, taking advantage of the polarization state
of the solitons.

The paper is organized as follows. In section II we
discuss our model for the case of dark scalar, vector,
and tensor massive fields, leaving additional details in
Appendix A. In section III we provide the e↵ective non-
relativistic action (which is the Schrödinger-Poisson sys-
tem) for these dark integer spin fields, and discuss the
various symmetries of the action. In section IV we dis-
cuss the gravitationally bound solitons. In section V we
discuss their distinguishability, primarily within Newto-
nian gravity, and also mention other non-gravitational
couplings that can probe the spin nature of the fields. In
section VI we summarize and also highlight some future
directions worth investigating.

II. MODELS

Our matter Lagrangian consists of the usual Standard
Model (SM) sector, along with some dark sector that
includes additional massive spin-0, spin-1, or even spin-2
fields. We take these fields to be real valued.

Explicitly, our general action has the form

S = SEH + Sdark + Svis , (1)

where SEH is the gravity sector, Sdark is some dark
sector (incluing dark integer spin fields), and Svis is
the visible sector (comprising of the SM). Our focus
is only on the gravity + dark sector in this paper.
We consider perturbations of di↵erent fields around
some background metric ḡµ⌫ which leads to the usual
massless spin-2 fluctuations: hµ⌫ (the graviton), along
with other perturbations in di↵erent fields. We will
focus on a given spin-s field + gravity, instead of
considering massive spin-0, 1 and 2 together, although
our formalism can accomodate the latter scenario as well.

For most part, we are interested in sub-horizon
physics where length scales associated with config-
urations of these dark fields are much smaller than
the Hubble horizon. As a result, we ignore Hub-
ble expansion, and take the background metric to be2

ḡµ⌫ = ⌘µ⌫ = diag(1, �1, �1, �1). We also take ~ = c = 1.

In the next three subsections, we provide the general
action up-to quadratic order in the fields of interest, along
with leading order gravitational interactions. For the
non-relativistic limit that we are interested in, the lead-
ing order actions provided here are su�cient. The full
nonlinear actions are discussed in the Appendix.

A. Spin-0

The quadratic (free) action for the spin-0 field �, and
metric fluctuations hµ⌫ , along with their leading interac-

2
We use ḡµ⌫ = diag(1,�a2(t),�a2(t),�a2(t)) for an expanding

universe when needed. Here, a(t) is the scale factor normalized

to unity today.

spin multiplicity � =

macroscopic spin  
N =  # of particles in soliton

Stot/~ = �Nẑscale separation  
- phenomenology/numerical simulations 

spin-s fields as dark matter 
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FIG. 1. Projected co-moving “densities” a
3
| |

2 (average along the line of sight) at several scale factors (a = 1 to a = 20) in
our 3+1 dimensional lattice simulations, with � ⌘ M/mpl = 0.03, and local gravitational interactions switched on (top panels)
and o↵ (bottom panels). The early instability due to self-interactions gives rise to the formation of solitons from an almost
homogeneous initial state. A statistical analysis of the locations of solitons at late times shows reveals evidence for clustering
only in the case where gravitational interactions are included. Note that inside solitons, | |2 = const. that is, their core density
does not redshift, whereas the background | ̄|

2
/ a

�3. Moreover, solitons maintain a fixed physical size, hence the illusion of
them shrinking in size in a co-moving volume. The initial size of the box is the size of the horizon at the beginning of the
simulation L ' H

�1
in . The solitons contain a dominant fraction (⇠ 80%) of the mass in the simulation volume. On a technical

aside, note that the projected co-moving density even in the densest (lightest in color) appearing regions in the above plot will
be smaller that the density inside the cores because of the small volume occupied by the solitons.

between relativistic/non-relativistic models and results
is discussed in the Appendix.

The rest of the paper is organized as follows in short
sections. In Section II we discuss the model for a non-
relativistic, self-interacting field in an expanding universe
with weak field gravity. In Section III, we briefly dis-
cuss the lattice simulation and our numerical algorithm.
The initial conditions for the simulations is provided
in Section IV. We analyze linear instabilities from self-
interactions and gravitational interactions in Section V.
The numerically calculated power spectrum for the field
perturbations is provided in Section VI. In Section VII we
discuss the formation of solitons, followed by a discussion
of their individual profiles and stability in Section VIII.
The gravitational clustering of solitons is discussed in
Section IX, and resulting strong soliton interactions are
explored in Section X. Finally, we present our conclusions
and future directions in Section XI. In the Appendix we
discuss connections to a related relativistic system.

II. THE MODEL

We use the following equations of motion (and con-
straint equations) to explore the dynamics of a non-
relativistic, self-interacting, self-gravitating scalar field in

an approximately homogeneous and isotropic universe:

i

✓
@t +

3

2
H

◆
+

1

2a2
r

2
� U

0
nl(| |

2) � �

�
 = 0 ,

r
2

a2
� =

�
2

2


| |

2 +
1

2a2
|r |

2 + Unl(| |
2)

�
�

3

2
H

2
,

H
2 =

�
2

3


| |2 +

1

2a2
|r |2 + Unl(| |2)

�
,

(1)

where [. . .] indicates a spatial average, a(t) is the scale-
factor, H(t) = ȧ(t)/a(t) is the Hubble rate,  (t,x) is
complex field amplitude, �(t,x) is the Newtonian po-
tential and Unl(| |

2) encodes the self-interactions of the
field.2

All variables and parameters appearing in the above
equation are dimensionless. We have expressed time t in
units of ⌧m = ~/mc

2, lengths in units of �m = ~/mc,
the Newtonian gravitational potential � in units of c

2

and | |
2 in units of m

2
M

2
c
3
/~3. Note that m

2
M

2
c
3
/~3

has dimensions of mass density. We assume that the
parameter

� ⌘
M

mpl
⌧ 1 . (2)

2
We have checked that qualitatively similar results are obtained

even if we set Unl ! 0 in the Poisson and Friedmann equations,

but keep U 0
n(| |2) ⌘ @| |2Un(| |2) in the nonlinear Schrödinger

equation.

formation mechanisms & interactions
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a different higher energy soliton: the “hedgehogs”

11

FIG. 5. The left panel shows collisions between vector solitons that can be replicated by solitons in a single scalar field. The
right panel shows examples of collisions which cannot be replicated by solitons in a single scalar field.

D. Beyond ground-state solitons

Spherically symmetric, single node solitons for the
spin-1 and spin-2 fields are the ‘hedgehog’-like configura-
tions, with Cartesian components [13, 14]11

Wj(x, t) = f(r)
x
j

r
cos!t ,

Hij(x, t) = g(r)

✓
3
x
i
x
j

r2
� �ij

◆
cos!t , (52)

where f(0) = g(0) = 0. That is, there is a node in the
profile at the origin. Both hedgehogs have higher ener-
gies (at a fixed particle number) compared to the ground
state solitons discussed earlier, and have zero spin and
orbital angular momentum. Explicitly, after fixing the
particle number to be the same as the polarized solitons
(Ns

hh
= N), we have E

s=1

hh
⇡ 0.33E and E

s=2

hh
⇡ 0.17E

where E < 0 and N are given in (40). Note that
�E = E

s

hh
� E > 0. A linear stability analysis was pro-

vided in [14] to argue that the hedgehogs in spin-2 case
are unstable and might transition to p-solitons. As with
scalar solitons, excited configurations with additional
nodes and orbital angular momentum might be pos-
sible with higher-spin fields, albeit with shorter lifetimes.

So far we have only allowed for spherically symmet-
ric energy densities. It is possible to construct non-
spherically symmetric configurations, such as domain
walls, strings/vortices etc. [13]; the possible space of ex-
tended field configurations with higher-spin fields is likely
to be quite rich. The full classification is beyond the
scope of the present paper, but it is worth pursuing since

11
For relativistic hedgehogs in complex-valued Proca-fields, see

[29].

it might provide new avenues to probe these higher-spin
fields.

V. DISTINGUISHABILITY & PROBES OF
POLARIZED SOLITONS

Having shown that we have quite a rich space of soliton
solutions, we briefly discuss some of the phenomenolog-
ical implications. Alongside these implications, we ad-
dress some conceptual questions: Can higher-spin soli-
tons be distinguished from scalar solitons? Can solitons
with di↵erent polarizations be distinguished using only
gravitational interactions?

A. Gravitational interactions

Let us consider collisions between solitons A and B

in a spin-s field. We show below that only if the two
solitons di↵er by just an overall phase, can the collision be
mimicked by two scalar solitons. Otherwise, in general,
the higher-spin nature of the fields will leave an imprint in
the observables related to the collision of the two solitons.

For simplicity, let us consider a collision between two
extremally polarized solitons, initially far away from each
other, such that the field admits the following ansatz
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FIG. 5. The left panel shows collisions between vector solitons that can be replicated by solitons in a single scalar field. The
right panel shows examples of collisions which cannot be replicated by solitons in a single scalar field.

D. Beyond ground-state solitons

Spherically symmetric, single node solitons for the
spin-1 and spin-2 fields are the ‘hedgehog’-like configura-
tions, with Cartesian components [13, 14]11
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where f(0) = g(0) = 0. That is, there is a node in the
profile at the origin. Both hedgehogs have higher ener-
gies (at a fixed particle number) compared to the ground
state solitons discussed earlier, and have zero spin and
orbital angular momentum. Explicitly, after fixing the
particle number to be the same as the polarized solitons
(Ns

hh
= N), we have E

s=1

hh
⇡ 0.33E and E

s=2

hh
⇡ 0.17E

where E < 0 and N are given in (40). Note that
�E = E

s

hh
� E > 0. A linear stability analysis was pro-

vided in [14] to argue that the hedgehogs in spin-2 case
are unstable and might transition to p-solitons. As with
scalar solitons, excited configurations with additional
nodes and orbital angular momentum might be pos-
sible with higher-spin fields, albeit with shorter lifetimes.

So far we have only allowed for spherically symmet-
ric energy densities. It is possible to construct non-
spherically symmetric configurations, such as domain
walls, strings/vortices etc. [13]; the possible space of ex-
tended field configurations with higher-spin fields is likely
to be quite rich. The full classification is beyond the
scope of the present paper, but it is worth pursuing since

11
For relativistic hedgehogs in complex-valued Proca-fields, see

[29].

it might provide new avenues to probe these higher-spin
fields.
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FIG. 5. The left panel shows collisions between vector solitons that can be replicated by solitons in a single scalar field. The
right panel shows examples of collisions which cannot be replicated by solitons in a single scalar field.
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the interaction term is
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III. EFFECTIVE NON-RELATIVISTIC THEORY

With the Lagrangian densities at hand from the previ-
ous section, we now decompose F (which represents the
physical d.o.f of di↵erent integer spin-fields and carries
one and two spatial indices for spin-1 and spin-2 cases
respectively) in the following fashion

F(x, t) =
1

p
2m

h
e
�imt

 ̃(x, t) + h.c.
i
. (15)

To obtain the non-relativistic limit, we work with the
slowly varying piece in  ̃ that we denote as  . Essen-
tially, we discard all the terms that carry the oscillating
factor e

±i2mt and two time derivative terms in the action
(which would be suppressed by factors of k/m, where k is
a characteristic wave-number). The projection operator
(8) simplifies to Pij |nr = �ij + O(k2

/m
2). Upon mak-

ing these approximations, we arrive at the following free
Schrödinger action for massive scalar, vector and tensor
fields:

S
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i
+ h.c.
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Tr[r †

· r ]
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. (16)

For the case of spin-0,  carries no spatial index, while
for the case of spin-1 and spin-2, it carries one and two
spatial indices respectively. We shall refer to their com-
ponents as

 = [ ] spin-0 ,

 i = [ ]i spin-1 , (17)

 ij = [ ]ij spin-2 .

Note that for the spin-1 and spin-2 cases, Tr[ †
 ] =

 
†
i
 i and Tr[ †

 ] =  
†
ij
 ij respectively, where summa-

tion over indices in implicit.5 Also for the massive spin-2
case, we have Tr[ ] = O(k2

 /m
2) and therefore can

be neglected in the non-relativistic limit. Furthermore,

5
Throughout the text, we implicitly assume summation over re-

peated indices, unless mentioned otherwise.

we obtain the following general structure for the non-
relativistic energy momentum tensor
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With this, we can see from (14) that there are no
gravitons (gravitational waves) produced in the non-
relativistic limit since the source term for hij is
O(k2

 
†
 /m) for all the three cases. From (13), it is

also clear that the vector constraint h0i is not sourced at
the leading order in either of the three cases. The only
constraint that survives is the Newtonian potential �,
which is determined by

r
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Note that the trace Tr[hij ] is equal to twice the Newto-
nian potential, Tr[hij ] = 2�. Putting it all together, us-
ing (16), (18), and (19), we get the following Schrödinger
Poisson action
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The corresponding equation of motion is the Schrödinger-
Poisson system
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Extension to an FLRW universe can be achieved via r !

r/a and @/@t ! @/@t + 3H/2 where H = ȧ/a.6

A. Conservation Laws

We now highlight various symmetries of the non-
relativistic e↵ective theory (20). These symmetries will
be helpful in understanding the space of soliton solutions.

First, the action in invariant under  (x) !

M(R) (x̃), where R is a rotation matrix and x̃ =
R

�1x. For scalars, M(R) (x̃) =  (x̃); for vectors
M(R) (x̃) = Rij j(x̃); and for tensors M(R) (x̃) =

6
For the spin-2 case, one needs to ensure that the choice of FLRW

background is consistent within the bi-gravity + matter theory.

While some aspects of this are discussed in the appendix, we

leave a detailed exploration to future work.
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Rik kl(x̃)Rlj . The conserved charge density associated
with this, namely the total angular momentum density
is the following
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as the intrinsic spin and orbital angular momentum den-
sity respectively.7 In the above expressions, s = {0, 1, 2}

for spin-0 (scalar), spin-1 (vector), and spin-2 (tensor)
cases respectively, and "a are the totally anti-symmetric
matrices (generators of rotations). Also, [..]ij means
the matrix obtained by taking a tensor product of the
elements within. For the vector case [  †]ij =  i 

†
j
,

while for the tensor case [  †]ij =  ik 
†
kj

. For the
scalar case this is zero.

The e↵ective non-relativistic action (20) has a global
U(1) symmetry ( !  e

i↵) leading to a conserved par-
ticle number

N =

Z
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3
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Along with rotational invariance, the usual time-
translation invariance8 of (20) yields a conserved energy:
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There are additional conserved charges, which become
apparent when we decompose our field  into a polar-
ization bases, which we turn to next.

B. Decomposition into polarization basis

A massive spin-s field admits 2s + 1 spin multiplic-
ity states in some particular direction n̂, labelled by
� 2 {�s, ..., s}. These states are characterized by the

set {✏(�)

s,n̂
}, such that upon substituting a plane wave
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Note that the total spin, and total orbital angular momentum

are independently conserved.
8
There will also be linear momentum associated with invariance

under spatial translations. This however will not be of any direct

use for us.

where V is a spatial volume. For explicit forms of ✏(�)
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,

see (44) and (46) ahead for spin-1 and spin-2 cases, where
we work with n̂ = ẑ without loss of generality. The set
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}, the field  admits the following de-
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where  (�)

s is the field with polarization � in the n̂ direc-
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action has the following form
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Correspondingly, the equation of motion is the
Schrödinger Poisson system where we have a set of

Schrödinger field equations for each  
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s , plus the New-
tonian Gauss’ law
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The orbital and spin angular momentum densities (22),

in terms of the  (�)
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Action (29), written in terms of the  (�)

s , is helpful
to identify another set of symmetries. We have global
U(1) invariance for each of the 2s+1 degrees of freedom,
giving 2s + 1 conserved particle numbers

N
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, (32)

where N =
P

�
N

(�). The fact that each of the polarized
fields has an associated conserved particle number, will
become important to physically understand superposi-
tions of extremally polarized solitons in order to form
fractionally polarized ones.
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A massive spin-s field admits 2s + 1 spin multiplic-
ity states in some particular direction n̂, labelled by
� 2 {�s, ..., s}. These states are characterized by the

set {✏(�)
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}, such that upon substituting a plane wave
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Note that the total spin, and total orbital angular momentum
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There will also be linear momentum associated with invariance

under spatial translations. This however will not be of any direct

use for us.
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s is the field with polarization � in the n̂ direc-
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Correspondingly, the equation of motion is the
Schrödinger Poisson system where we have a set of

Schrödinger field equations for each  
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Action (29), written in terms of the  (�)

s , is helpful
to identify another set of symmetries. We have global
U(1) invariance for each of the 2s+1 degrees of freedom,
giving 2s + 1 conserved particle numbers
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where N =
P

�
N

(�). The fact that each of the polarized
fields has an associated conserved particle number, will
become important to physically understand superposi-
tions of extremally polarized solitons in order to form
fractionally polarized ones.
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III. EFFECTIVE NON-RELATIVISTIC THEORY

With the Lagrangian densities at hand from the previ-
ous section, we now decompose F (which represents the
physical d.o.f of di↵erent integer spin-fields and carries
one and two spatial indices for spin-1 and spin-2 cases
respectively) in the following fashion

F(x, t) =
1

p
2m

h
e
�imt

 ̃(x, t) + h.c.
i
. (15)

To obtain the non-relativistic limit, we work with the
slowly varying piece in  ̃ that we denote as  . Essen-
tially, we discard all the terms that carry the oscillating
factor e

±i2mt and two time derivative terms in the action
(which would be suppressed by factors of k/m, where k is
a characteristic wave-number). The projection operator
(8) simplifies to Pij |nr = �ij + O(k2

/m
2). Upon mak-

ing these approximations, we arrive at the following free
Schrödinger action for massive scalar, vector and tensor
fields:
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For the case of spin-0,  carries no spatial index, while
for the case of spin-1 and spin-2, it carries one and two
spatial indices respectively. We shall refer to their com-
ponents as

 = [ ] spin-0 ,

 i = [ ]i spin-1 , (17)

 ij = [ ]ij spin-2 .

Note that for the spin-1 and spin-2 cases, Tr[ †
 ] =

 
†
i
 i and Tr[ †

 ] =  
†
ij
 ij respectively, where summa-

tion over indices in implicit.5 Also for the massive spin-2
case, we have Tr[ ] = O(k2

 /m
2) and therefore can

be neglected in the non-relativistic limit. Furthermore,

5
Throughout the text, we implicitly assume summation over re-

peated indices, unless mentioned otherwise.

we obtain the following general structure for the non-
relativistic energy momentum tensor
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With this, we can see from (14) that there are no
gravitons (gravitational waves) produced in the non-
relativistic limit since the source term for hij is
O(k2

 
†
 /m) for all the three cases. From (13), it is

also clear that the vector constraint h0i is not sourced at
the leading order in either of the three cases. The only
constraint that survives is the Newtonian potential �,
which is determined by
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Note that the trace Tr[hij ] is equal to twice the Newto-
nian potential, Tr[hij ] = 2�. Putting it all together, us-
ing (16), (18), and (19), we get the following Schrödinger
Poisson action
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The corresponding equation of motion is the Schrödinger-
Poisson system
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Extension to an FLRW universe can be achieved via r !

r/a and @/@t ! @/@t + 3H/2 where H = ȧ/a.6

A. Conservation Laws

We now highlight various symmetries of the non-
relativistic e↵ective theory (20). These symmetries will
be helpful in understanding the space of soliton solutions.

First, the action in invariant under  (x) !

M(R) (x̃), where R is a rotation matrix and x̃ =
R

�1x. For scalars, M(R) (x̃) =  (x̃); for vectors
M(R) (x̃) = Rij j(x̃); and for tensors M(R) (x̃) =

6
For the spin-2 case, one needs to ensure that the choice of FLRW

background is consistent within the bi-gravity + matter theory.

While some aspects of this are discussed in the appendix, we

leave a detailed exploration to future work.
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 ij = [ ]ij spin-2 .

Note that for the spin-1 and spin-2 cases, Tr[ †
 ] =

 
†
i
 i and Tr[ †

 ] =  
†
ij
 ij respectively, where summa-

tion over indices in implicit.5 Also for the massive spin-2
case, we have Tr[ ] = O(k2

 /m
2) and therefore can

be neglected in the non-relativistic limit. Furthermore,

5
Throughout the text, we implicitly assume summation over re-

peated indices, unless mentioned otherwise.

we obtain the following general structure for the non-
relativistic energy momentum tensor

T00 = m Tr
h
 

†
 

i
+ O

✓
k

2

m
 

†
 

◆
,

T0i = O

⇣
k 

†
 

⌘
,

Tij = O

✓
k

2

m
 

†
 

◆
. (18)

With this, we can see from (14) that there are no
gravitons (gravitational waves) produced in the non-
relativistic limit since the source term for hij is
O(k2

 
†
 /m) for all the three cases. From (13), it is

also clear that the vector constraint h0i is not sourced at
the leading order in either of the three cases. The only
constraint that survives is the Newtonian potential �,
which is determined by

r
2� =

m

2m
2

pl

Tr[ †
 ] + O

✓
k

2

m
 

†
 

◆
. (19)

Note that the trace Tr[hij ] is equal to twice the Newto-
nian potential, Tr[hij ] = 2�. Putting it all together, us-
ing (16), (18), and (19), we get the following Schrödinger
Poisson action

S
e↵

nr
=

Z
d4

x

h
i

2
Tr

h
 

†
 ̇

i
+ c.c. �

1

2m
Tr[r †

· r ]

+ m
2

pl
�r

2� � m � Tr[ †
 ]

i
. (20)

The corresponding equation of motion is the Schrödinger-
Poisson system

i
@

@t
 = �

1

2m
r

2
 + m � ,

r
2� =

m

2m
2

pl

Tr[ †
 ]. (21)

Extension to an FLRW universe can be achieved via r !

r/a and @/@t ! @/@t + 3H/2 where H = ȧ/a.6

A. Conservation Laws

We now highlight various symmetries of the non-
relativistic e↵ective theory (20). These symmetries will
be helpful in understanding the space of soliton solutions.

First, the action in invariant under  (x) !

M(R) (x̃), where R is a rotation matrix and x̃ =
R

�1x. For scalars, M(R) (x̃) =  (x̃); for vectors
M(R) (x̃) = Rij j(x̃); and for tensors M(R) (x̃) =

6
For the spin-2 case, one needs to ensure that the choice of FLRW

background is consistent within the bi-gravity + matter theory.

While some aspects of this are discussed in the appendix, we

leave a detailed exploration to future work.

Sk = s

Z
d3x<

⇣
i "ijk[  

†]ij
⌘
, spin & orbital angular momentum

 from spatial rotations (independently conserved)
Lk =

Z
d3x<

⇣
i "ijkTr[ 

†@i ]xj
⌘
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�̂1

�̂2

Figure 1: The polarization of CMB photons (indicated by the black bar) passing through axionic
cosmic string loops (shown in green) is rotated by an angle ��. The rotation accumulates
along the photon’s path (orange arrow) as �� = A↵em/(2⇡fa)

R
xf

xi
dx · @xa, where a is the

axion field, A = O(1) and ↵em ⇡ 1/137. Along the photon path passing through the loop,
|a(xf ) � a(xi)| = 2⇡fa when the points xi and xf are su�ciently far from the loop.

2.2 Axion-induced birefringence

Since the axion is an ultralight particle, it is easy to arrange systems where the occupation
number of the field is high, and the field admits a classical description. As a photon passes
through a classical axion field, it will experience a rotation of its polarization axis, a phenomenon
known as birefringence. The polarization rotation angle that results from this axion-induced
birefringence e↵ect is [59–62, 88]

�� =
ga��

2

Z

C

dXµ
@µa(x) . (2)

To evaluate �� one integrates the axion’s spacetime gradient @µa along the photon’s worldline
X

µ that connects the point of photon emission with the point of photon detection. We include
a derivation of Eq. (2) in Appendix A.

If the axion field has a trivial topology, with �⇡fa ⌧ a(x) ⌧ ⇡fa throughout spacetime,
then the integral in Eq. (2) gives simply �� = ga��(ad � ae)/2 where ae and ad are the values
of the axion field at the photon’s point of emission and detection, respectively. For example, in
models with a larger value of ma than what we are interested in this paper, it is possible for the
axion to make up some or all of the dark matter. Then the axion field value varies in space and
time with the local dark matter density as |a| ⇠

p
⇢dm/ma. The associated CMB birefringence

e↵ect is on the order of |��| ⇠ |ga��|
p
⇢dm/ma [88]. Generally |a| ⌧ fa for axion dark matter

implying a relatively small birefringence signal |��| ⌧ |ga��|fa ⇠ |A|↵em.

6

reasonable string network models, the largest contribution to the total birefringence comes from
nearly Hubble-scale loops (and also ‘long’ strings to the extent that they can be modelled as
Hubble-scale loops); (5) For string networks that collapse sometime between recombination and
today, there exists another scale `ma / 1/✓c in the birefringence power spectrum. The angle ✓c

corresponds to the angular extent of typical loops present at the time of collapse. For ` < `ma

the power spectrum increases like ⇠ `
2, while it has a similar behavior as in (2) for higher `.

The rest of the paper is organized as follows. We begin in Sec. 2 by discussing the model and
system of interest: an ultralight axion that couples to photons, forms a cosmological axion-string
network, and induces birefringence in the CMB radiation. Next in Sec. 3 we review the loop-
crossing model formalism for calculating the two-point correlation function of the birefringence
signal. In particular we identify a kernel function that appears in this calculation, and we derive
an analytic estimate to the kernel function, which is also validated against direct numerical
integration. Our analytic results for the kernel function are used in Sec. 4 to evaluate the
birefringence signal for several di↵erent models of the axion string network, compared against
the direct respective numerical results. We also compare the predicted signal against current
and projected constraints on CMB anisotropic birefringence. Finally in Sec. 5 we discuss and
summarize our key results. The article includes three appendices: Appendix A provides a
derivation of the axion-induced CMB birefringence e↵ect; Appendix B provides an estimate of
CMB birefringence due to axions particles produced by domain wall collapse; and Appendix C
provides a discussion of CMB birefringence in a model with stable domain walls.

2 Theoretical framework

In this section we discuss the axion model under consideration, the phenomenon of axion-induced
birefringence, and the cosmological network of axion strings.

2.1 An ultralight axion coupled to light

The axion’s interaction with electromagnetism is captured by a term in the Lagrangian

Lint = �
1

4
ga�� aFµ⌫F̃

µ⌫ (1)

where a(x) is the pseudoscalar axion field, Fµ⌫(x) is the electromagnetic field strength tensor,
and F̃

µ⌫(x) = 1/2 ✏µ⌫⇢�F⇢� is the dual tensor. In the simplest models, the axion’s interaction
with electromagnetism is induced by an anomaly, and for these models we can write the cou-
pling as ga�� = �A↵em/⇡fa where A = C�/2 is the anomaly coe�cient, ↵em ' 1/137 is the
electromagnetic fine structure constant, and fa is the Peccei-Quinn scale. Typically A is a O(1)
rational number. A variety of probes constrain the axion-photon coupling ga��. Most notable
are limits from the CAST helioscope which imposes |ga��| . 0.66⇥10�10 GeV�1 for axion masses
below roughly 10�2 eV [17].

5

The same theories that describe axion-like particles generally also have topological defects
in the spectrum of the theory. The existence of these defect solutions is a consequence of the
vacuum’s nontrivial topology, and our work focuses on the simplest theories that admit two
types of defects: one-dimensional strings and two-dimensional domain walls. In such cases,
the birefringence signal can be much larger. An axion string is a configuration of the axion
field that has a local cylindrical symmetry [44]. For a winding number w = ±1 string the
axion field changes by |�a| = 2⇡fa along a closed path that encircles the string. In particular,
consider a photon that passes through an axion string loop, as shown Fig. 1. If the points of
photon emission and detection are far away from the loop, then the photon experiences the full
|�a| = 2⇡fa change in the axion field (for a winding number w = ±1 loop, with a plus or a
minus sign depending on the orientation of the loop), and the birefringence angle is1 [73]

�� = ±ga��⇡fa = ±A↵em . (3)

Here we must make two important observations [73]. First the birefringence e↵ect induced
by axion strings is generally much larger than the e↵ect induced by axion dark matter, since
the field excursion is necessarily larger for the topological defect. Second the string-induced
birefringence is insensitive to the Peccei-Quinn scale for ga�� / 1/fa, which is the expected
scaling in the simplest and most compelling axion theories (but see also Ref. [89]). In this sense
�� is a direct probe of the anomaly coe�cient, A. Moreover, models with A = O(1) provide
natural targets!

2.3 A network of axion strings

The axion is the Goldstone boson of a U(1) complex Peccei-Quinn field with a symmetry break-
ing potential. At the PQ phase transition, the Universe is populated with a network of axion
strings [42, 42–44].2 The network’s evolution consists of long strings intersecting and reconnect-
ing to form loops, and loops oscillating and radiating axion particles. Axion radiation from the
network is e�cient, and a loop typically collapses in a time scale set by its light-crossing time;
i.e., less than O(1) Hubble time.3 The network soon converges to an attractor solution (i.e. inde-
pendent of the exact initial conditions). A property of this attractor solution is that the energy
density in the string network, to leading order, scales like the total dominant energy density in
the Universe and is said to be in scaling [46, 74–80]. With the string tension µ ' ⇡ f

2
a
log(fa/H),

under scaling the energy density of the string network is written as ⇢ = ⇠ µH
2 where ⇠ counts

the total string length (in units of inverse Hubble) in a Hubble volume and is a constant in time.

1
For a photon that traverses an axion domain wall, the change in the field amplitude is |�a| = 2⇡fa/Ndw where

the positive integer Ndw is called the domain wall number. The corresponding birefringence is |��| = A↵em/Ndw.
2
This must happen after inflation since otherwise the network would be ‘inflated out’. This imposes an upper

limit on the Peccei-Quinn scale, fa . fa,max ⌘
p

HinfMpl.
3
Rapid loop collapse is a general property of global string networks, such as axion strings. By contrast, gauge

string loops collapse slowly by gradual gravitational wave emission, and the network contains many small loops

with an abundance controlled by the string tension Gµ [49].

7

*see Agrawal,  Hook & Huang (2019)
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Figure 7: The two-point correlation functions (left) and angular power spectra (right) for the
string network model in Sec. 4.2. A fraction 1 � fsub of the loops have size ⇣max = 1, and
the remaining fraction fsub have logarithmically-distributed sizes between ⇣max and ⇣min = 10�1

(upper set of curves) or 10�2 (lower set). We only show ⇣min = 10�1 on the right panel. We take
A = 1, ⇠0 = 1, and the signal scales as h��(�̂1)��(�̂2)i, C��

`
/ ⇠0A

2.

The first term, corresponding to the population of Hubble-scale loops, is equivalent to the
integral we encountered in Sec. 4.1 and the result is simply Eq. (46) with the replacements
⇠0 ! (1 � fsub) ⇠0 and ⇣0 ! ⇣max. In the second term, evaluating the integrals analytically is
more complicated because of the ⇣-dependent upper limit of z integration. However, for ✓o = 0
we have z̃⇤(⇣, 0) = zcmb and the integrals simplify to

h��(�̂1)��(�̂2)i
���
✓o=0

' (1 � fsub) ⇠0
�
A↵em

�2 ⇣max

4
log (1 + zcmb)

+ fsub ⇠0

�
A↵em

�2 ⇣max + ⇣min

8
log (1 + zcmb) ,

(50)

where we have neglected additional terms that are O(⇣2max, ⇣
2
min). It is interesting to note that

the sub-Hubble scale loops contribute parametrically the same as the Hubble-scale loops modulo
the di↵erent fsub dependence.

Fig. 7 shows the two-point correlation function and the angular power spectrum for mixed-
length axion string networks. We fix the maximum dimensionless loop radius such that ⇣max = 1,
and we show the results for ⇣min = 10�1 and 10�2 as well as fsub = 0.2, 0.6, and 0.9. Raising fsub

reduces the number of Hubble-scale loops with ⇣ = ⇣max and increases the number of sub-Hubble
loops with ⇣min < ⇣ < ⇣max. Similarly, lowering ⇣min spreads the distribution of sub-Hubble loops
to smaller sizes while conserving the total amount of strings in this population. Both raising
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Figure 8: The two-point correlation functions (left) and angular power spectra (right) for the
string network model in Sec. 4.3. At any time, the network only contains loops of comoving
radius r = ⇣0/aH, and we take ⇣0 = 1. The network collapses (assumed instantaneous) at
redshift zc, which is controlled by the axion mass through Eq. (52), and we show ma/H0 =
10, 102, 103. We take A = 1, ⇠0 = 1, and the signal scales as h��(�̂1)��(�̂2)i, C��
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our heuristic approach above. The evaluation of the z integral is straightforward, and we find11

h��(�̂1)��(�̂2)i '
⇠0⇣0

4

�
A↵em

�2
log

 
1 + (z3/2c + z̃

3/2
⇤ )2/3

1 + zc

!
. (54)

Note that Eq. (46) for the model in Sec. 4.1 is just a special case of this formula with zc = 0.

We show the correlation function and angular power spectrum in Fig. 8. Allowing the
string network to collapse before today leads to a suppression of the correlation function at
large angular scales. This can be understood as follows. Correlation results from photons
passing through a common set of string loops. If the opening angle between the photons is
large, the loops must also be large to intersect them both. In this model the comoving loop
radius grows with time as r = ⇣0/aH, so the largest loops aren’t present until late times. If the
network collapses before these large loops have formed, the correlation function is suppressed
on large angular scales.

In terms of the angular power spectrum, this suppression corresponds to `(`+ 1)C��
`

⇠ `
2

at small `. This introduces a new scale `ma in the power spectrum, controlled by the mass of

11
This expression assumes ✓o and ✓c < ✓t ⇡ 1. For larger values of ✓o and ✓c we have instead, h��

2
i '

⇠0(A↵em)
2
[(⇣0/4) log(1 + (z

3/2
c + z̃

3/2
⇤ )

2/3
) � (1/3⇣0) log

3
(1 + zc) � ⇣

2
0/12] for ✓o < ✓t < ✓c, and we have h��

2
i '

(⇠0/3⇣0)(A↵em)
2
[log

3
(1 + (z

3/2
c + z̃

3/2
⇤ )

2/3
) � log

3
(1 + zc)] for ✓t < ✓o, ✓c.
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