

with Mudit Jain [2109.04892]

5-minute summary

spin-s field as dark matter

non-relativistic limit = multicomponent Schrödinger-Poisson

spin-s fields as light dark matter

2s+1 component

Schrödinger

- and their linear superpositions

macroscopic intrinsic spin!

spin-s fields as dark matter

formation mechanisms + astrophysical implications

formation mechanisms & interactions

observational implications

dark matter mass?

dark matter spin?

light, bosonic wave dark matter

$$\lambda_c \sim 10 \,\mathrm{cm} \,(m/10^{-6} \,\mathrm{eV})^{-1} \sim 10^{16} \,\mathrm{cm} \,(m/10^{-21} \,\mathrm{eV})^{-1}$$

massive spin-s bosonic field with weak-field gravity

quadratic action for gravitational and massive spin-s fields + leading gravitational interactions

$$S_{\rm EH} + S_{\rm dark} = \int d^4x \left[m_{\rm pl}^2 \mathcal{L}_{\rm GR}^{(2)}(h) + \mathcal{L}_{m,s}^{(2)} - \frac{1}{2} h^{\mu} \right]$$

 $^{\iota
u}T^s_{\mu
u}$

spin-s bosonic wave dark matter

$$S_{\rm EH} + S_{\rm dark} = \int d^4 x \left[m_{\rm pl}^2 \mathcal{L}_{\rm GR}^{(2)}(h) + \mathcal{L}_{m,s}^{(2)} - \frac{1}{2} h^{\mu} \right]$$

$$\mathcal{L}_{m,0}^{(2)}(\phi) = \frac{1}{2} \eta^{\mu\nu} \partial_{\mu} \phi \,\partial_{\mu} \phi - \frac{1}{2} m^2 \phi^2$$

$$\mathcal{L}_{m,1}^{(2)}(W) = -\frac{1}{4} \eta^{\mu\alpha} \eta^{\nu\beta} G_{\mu\nu} G_{\alpha\beta} + \frac{1}{2} m^2 \eta^{\mu\nu} W_{\mu} W_{\nu}$$
$$G_{\mu\nu} = \partial_{\mu} W_{\nu} - \partial_{\nu} W_{\mu}$$

$$\mathcal{L}_{m,2}^{(2)}(H) = \frac{1}{2} \eta^{\alpha\beta} \eta^{\lambda\sigma} \eta^{\kappa\rho} \partial_{\beta} H_{\sigma\rho} \partial_{\alpha} H_{\lambda\kappa} - \frac{1}{2} \eta^{\alpha\beta} \partial_{\beta} H$$
$$- \eta^{\kappa\rho} \eta^{\sigma\beta} \eta^{\lambda\alpha} \partial_{\beta} H_{\sigma\rho} \partial_{\alpha} H_{\lambda\kappa} + \eta^{\lambda\beta} \eta^{\kappa\alpha} \partial_{\beta} H$$
$$+ \frac{1}{2} m^{2} \left[\eta^{\mu\nu} \eta^{\alpha\beta} H_{\mu\nu} H_{\alpha\beta} - \eta^{\sigma\lambda} \eta^{\rho\kappa} H_{\sigma\rho} H_{\lambda} \right]$$

 $_{\lambda\kappa}];$

non-relativistic limit

non-relativistic limit, physical d.o.f

$$S_{\rm EH} + S_{\rm dark} = \int d^4x \left[m_{\rm pl}^2 \mathcal{L}_{\rm GR}^{(2)}(h) + \mathcal{L}_{m,s}^{(2)} - \frac{1}{2}h \right]$$
$$= \int d^4x \left[m_{\rm pl}^2 \mathcal{L}_{\rm GR}^{(2)}(h) + \mathcal{L}_{m,s}^{(2)}(\mathcal{F}) - \frac{1}{2}h \right]$$

$$\phi = [\mathcal{F}] \qquad \text{spin-0}$$
$$W_i = [\mathcal{F}]_i \qquad \text{spin-1}$$
$$H_{ij} = [\mathcal{F}]_{ij} \qquad \text{spin-2}$$

$$\left[h^{\mu\nu}T^s_{\mu\nu}\right]$$

$\left[\frac{1}{2} h_{\mu\nu} \mathcal{T}^{\mu\nu} (\mathcal{F}) + ... \right]$ only includes physical d.o.f (constraints eliminated)

1 component

- 3 components
- 5 components

2s+1 components

non-relativistic limit

$$S_{\rm EH} + S_{\rm dark} = \int d^4x \left[m_{\rm pl}^2 \mathcal{L}_{\rm GR}^{(2)}(h) + \mathcal{L}_{m,s}^{(2)} - \frac{1}{2}h \right]$$
$$= \int d^4x \left[m_{\rm pl}^2 \mathcal{L}_{\rm GR}^{(2)}(h) + \mathcal{L}_{m,s}^{(2)}(\mathcal{F}) - \frac{1}{2}h \right]$$

$$\boldsymbol{\mathcal{F}}(\mathbf{x},t) = \frac{1}{\sqrt{2m}} \left[e^{-imt} \tilde{\boldsymbol{\Psi}}(\mathbf{x},t) + \text{h.c.} \right]$$

 $h^{\mu\nu}T^s_{\mu\nu}$

$\frac{1}{2}h_{\mu\nu}\mathcal{T}^{\mu\nu}(\mathcal{F}) + ... ight]$ only includes physical d.o.f (constraints eliminated)

split in "fast" and "slow" parts

non-relativistic limit

$$S_{\rm EH} + S_{\rm dark} = \int d^4x \left[m_{\rm pl}^2 \mathcal{L}_{\rm GR}^{(2)}(h) + \mathcal{L}_{m,s}^{(2)} - \frac{1}{2} h^{\mu\nu} T_{\mu\nu}^s \right]$$
$$= \int d^4x \left[m_{\rm pl}^2 \mathcal{L}_{\rm GR}^{(2)}(h) + \mathcal{L}_{m,s}^{(2)}(\mathcal{F}) - \frac{1}{2} h_{\mu\nu} \mathcal{T}^{\mu\nu}(\mathcal{F}) + \ldots \right]$$
only includes physical d.o.f (constraints eliminated)

$$\mathcal{F}(\mathbf{x},t) = \frac{1}{\sqrt{2m}} \left[e^{-imt} \tilde{\mathbf{\Psi}}(\mathbf{x},t) + \text{h.c.} \right]$$

$$\mathcal{S}_{nr}^{\text{eff}} = \int \mathrm{d}^4 x \left[\frac{i}{2} \operatorname{Tr} \left[\mathbf{\Psi}^{\dagger} \dot{\mathbf{\Psi}} \right] + \text{c.c.} - \frac{1}{2m} \operatorname{Tr} [\nabla \mathbf{\Psi}^{\dagger} \cdot \nabla \mathbf{\Psi}] + m_{\text{pl}}^2 \Phi \nabla^2 \Phi - m \Phi \operatorname{Tr} [\mathbf{\Psi}^{\dagger} \mathbf{\Psi}] \right]$$

assume $\partial_t \Psi \ll m \Psi, \ \nabla^2 \Psi \ll m^2 \Psi$

 $\Phi =$ Newtoian gravitational potential

$$\psi = [\Psi]$$
 spin-
 $\psi_i = [\Psi]_i$ spin-
 $\psi_{ij} = [\Psi]_{ij}$ spin-

multi-component Schrodinger-Poisson system!

$$\begin{split} &i\frac{\partial}{\partial t} \mathbf{\Psi} = -\frac{1}{2m} \nabla^2 \mathbf{\Psi} + m \, \Phi \, \mathbf{\Psi} \\ &\nabla^2 \Phi = \frac{m}{2m_{\rm pl}^2} \, \mathrm{Tr}[\mathbf{\Psi}^{\dagger} \mathbf{\Psi}]. \end{split}$$

extension to FRW: $\partial_t \rightarrow \partial_t + 3H/2, \nabla \rightarrow \nabla/a$

$\psi = [\mathbf{\Psi}]$	spin-0	1 component
$\psi_i = [\mathbf{\Psi}]_i$	spin-1	3 components
$\psi_{ij} = [\mathbf{\Psi}]_{ij}$	spin-2	5 components

Recent work on non-relativistic case :

for scalar, see for example example: Guth, Kaiser, Namjoo (2017), Salehian et. al (2021), for vector case Adshead & Lozanov (2021)

Schive et. al (2015)

much easier to simulate than the relativistic equations

since fast time-scales are integrated out.

polarized solitons

non-topological solitons spatially localized, coherently oscillating, long-lived

spatially localized

coherently oscillating (components)

exceptionally long-lived

	St		
	19.00		
	-	100.00	
· · ·			- C
	·		
·			
	100		
		1.000	C
	20.0		
-		10.00	
	1		
		and a second	
			- C
-	1.4.5		
	1.00		
		11.14	
	1.0		
	1.00		
		·	
	10.00		
	1.0		
		11.	
			-
		-	-
	100	-	1.6
-	-	1790	100
		1.00	
80			
80			
80			
80			
80			

soliton solutions: scalar case

ground state solutions at fixed particle number

$$\Psi(t, \mathbf{x}) = \psi(\mathbf{x})e^{i\mu t}$$
$$\mu = \text{chemical potential}$$

$$-\mu \psi = -\frac{1}{2m} \nabla^2 \psi + m \Phi \psi$$
$$\nabla^2 \Phi = \frac{m}{2m_{\rm pl}^2} |\psi(\mathbf{x})|^2,$$

$$\phi = \sqrt{\frac{2}{m}} \Re[\Psi e^{-imt}]$$

same "universal" profile

soliton solutions: scalar case

size, particle number, energy and spin

$$L \sim (m/\mu)^{1/2} m^{-1}$$
 $\gg m^{-1}$

$$N = \frac{M}{m} \approx 60.7 \frac{m_{\rm pl}^2}{m^2} \left(\frac{\mu}{m}\right)^{1/2} \qquad \gg 1$$
$$E \approx -19.2 \frac{m_{\rm pl}^2}{m} \left(\frac{\mu}{m}\right)^{3/2}, \qquad \gg m$$

 $\boldsymbol{S}^{\mathrm{tot}} = 0$

 $\mu/m \ll 1$ non-relativistic

solitons in a spin-s field

spin-s field, 2s+1 multiplicity states

$$\Psi_{s}^{(\lambda)}(\mathbf{x},t) = \psi(\mathbf{x})e^{i\mu t}\boldsymbol{\epsilon}_{s,\hat{n}}^{(\lambda)}$$

polarization tensors

s = 1

$$\boldsymbol{\epsilon}_{1,\hat{z}}^{(0)} = \begin{pmatrix} 0\\0\\1 \end{pmatrix} \qquad \qquad \boldsymbol{\epsilon}_{1,\hat{z}}^{(\pm 1)} = \frac{1}{\sqrt{2}} \begin{pmatrix} 1\\\pm i\\0 \end{pmatrix}$$

 $\lambda \in \{-s, ..., s\}$

s = 2

$$\boldsymbol{\epsilon}_{2,\hat{z}}^{(0)} = \frac{1}{\sqrt{6}} \begin{pmatrix} -1 & 0 & 0\\ 0 & -1 & 0\\ 0 & 0 & 2 \end{pmatrix} \quad \boldsymbol{\epsilon}_{2,\hat{z}}^{(\pm 1)} = \frac{1}{2} \begin{pmatrix} 0 & 0 & 1\\ 0 & 0 & \pm i\\ 1 & \pm i & 0 \end{pmatrix}$$

$$\boldsymbol{\epsilon}_{2,\hat{z}}^{(\pm 2)} = \frac{1}{2} \begin{pmatrix} 1 & \pm i & 0 \\ \pm i & -1 & 0 \\ 0 & 0 & 0 \end{pmatrix}$$

solitons in a spin-s field

size, particle number, energy and spin

$$L \sim (m/\mu)^{1/2} m^{-1}$$
 $\gg m^{-1}$

$$N = \frac{M}{m} \approx 60.7 \frac{m_{\rm pl}^2}{m^2} \left(\frac{\mu}{m}\right)^{1/2} \qquad \gg 1$$
$$E \approx -19.2 \frac{m_{\rm pl}^2}{m} \left(\frac{\mu}{m}\right)^{3/2}, \qquad \gg m$$

 $S^{\text{tot}} = ?$

 $\mu/m \ll 1$ non-relativistic

extremally polarized solitons

$$\Psi_{s}^{(\lambda)}(\mathbf{x},t) = \psi(\mathbf{x})e^{i\mu t}\boldsymbol{\epsilon}_{s,\hat{n}}^{(\lambda)} \qquad \lambda \in \{-s,...,s\}$$

orbital angular momentum is zero

extremally polarized solitons

Spin $\boldsymbol{S}_{\mathrm{tot}} = \lambda \frac{M}{m} \ \hat{n}$ BHs $S_{\rm tot}/J_{\rm bh} = 8\pi\lambda m_{\rm pl}^2/(aMm)$ DM halos

 $\langle \Lambda \rangle_{\rm sol} / \langle \Lambda \rangle_{\rm DM \ halo} \approx 3s > 1$

orbital angular momentum is zero

extremal soliton solutions (spin-1)

$$\boldsymbol{W}^{(0)}(\mathbf{x},t) = \frac{\sqrt{2}\,\psi(\mathbf{x})}{\sqrt{m}} \begin{pmatrix} 0\\ 0\\ \cos\,\omega t \end{pmatrix}$$

$$S_{
m tot}$$
 =

 $\lambda = \pm 1$

$$\boldsymbol{W}^{(\pm 1)}(\mathbf{x},t) = \frac{\psi(\mathbf{x})}{\sqrt{m}} \begin{pmatrix} \cos \omega t \\ \pm \sin \omega t \\ 0 \end{pmatrix}$$

extremally polarized soliton solutions (spin-2)

$$\mathbf{H}^{(0)}(\mathbf{x},t) = \frac{\psi(\mathbf{x})}{\sqrt{3m}} \begin{pmatrix} -1 & 0 & 0\\ 0 & -1 & 0\\ 0 & 0 & 2 \end{pmatrix} \cos \omega t$$

$$\mathbf{H}^{(\pm 1)}(\mathbf{x},t) = \frac{\psi(\mathbf{x})}{\sqrt{2m}}$$

 $\lambda = \pm 2$

fractionally polarized solitons

$$S_k^{\text{tot}} = s \int d^3 x |\psi(\mathbf{x})|^2 \sum_{\lambda \lambda'} \Re \left[i c_\lambda c_{\lambda'} e^{i(\varphi_\lambda - \varphi_\lambda)} \right]$$

constructed from a superposition of extremal solitons

same energy and particle number

 $(\lambda') \epsilon_{ijk} [\epsilon_{s,\hat{n}}^{(\lambda')} \epsilon_{s,\hat{n}}^{(\lambda)\dagger}]_{ij}]$

total spin

distinguishability?

same density profile and energy,

and hence gravitational properties (in NR limit)

+ superpositions (at fixed particle number)

+ superpositions (at fixed particle number)

$$\lambda = 2$$

distinguishability?

distinguishable via collisions!

 $\boldsymbol{S}_{ ext{tot}}
eq 0$

can be replicated by single scalar field

cannot be replicated by single scalar field

distinguishability via collisions

"scalar"

vector

Rohith Karur

distinguishability via collisions

"scalar"

vector

Rohith Karur

more interference in scalars compared to vector case

scalar

vector

more interference in scalars compared to vector case

scalar

vector

less interference

central soliton spin:

 $\boldsymbol{S}^{\mathrm{tot}} \sim (0.1 - 0.5) \times N\hbar$

distinguishability?

same density profile and energy

degeneracy lifted by self-interaction or relativistic corrections

+ superpositions (at fixed particle number)

+ superpositions (at fixed particle number)

$$\lambda = 2$$

Vector oscillons

 $\mathcal{L} = -\frac{1}{4} F_{\mu\nu} F^{\mu\nu} - \frac{m^2}{2} W_{\mu} W^{\mu} + \frac{\lambda}{4} (W_{\mu} W^{\mu})^2 - \frac{h}{6} (W_{\mu} W^{\mu})^3$

 $\boldsymbol{S}_{\mathrm{tot}}
eq 0$

									-		
						•					
				-	-	-		-		-	
				-	-	-	-	-			
	.			-	-	+	•	-			
				-	-	-	+	-			
				*		-	-	+			
			_		-	-	+				
					~		-	-			
										_	
	•						•	•		•	•
-		-				2					

$$S_{\rm tot} = 0$$

•	•	•	•	•	•	•	•	•	•	•
•	•	•	•	•	•	•	•	•	•	•
•	•			•	•		•	•	•	•
•	•		•	•	•		•	•	•	•
	•			-					•	-
	•				÷			•		
							•		•	
							•	•	•	
-						•				
				•			•		•	

self-interaction supported NOT degenerate in energy spin-spin interaction matters!

with Zhang and Jain

different for higher spin solitons?

above for compact scalar solitons using full numerical GR Helfer, Lim, Garcia, MA (2016)

electromagnetic coupling and radiation (axion + photons)

see for example: Buckley, Dev, Ferrer, Huang (2021)

 $\mathcal{L}_{int} \sim g_{\phi\gamma} \phi F_{\mu\nu} \tilde{F}^{\mu\nu}$

MA & Mou (2020)

spin-s + photons: spin of soliton & polarization of photons

see for example: Buckley, Dev, Ferrer, Huang (2021)

 $\mathcal{L}_{int} \sim \begin{cases} g_{W\gamma}^2 W_{\mu} W^{\mu} F_{\alpha\beta} \tilde{F}^{\alpha\beta} \\ g_{H\gamma}^2 (H_{\mu\nu} H^{\mu\nu} - H^2) F_{\alpha\beta} \tilde{F}^{\alpha\beta} \end{cases}$ spin-1 spin-2

 $\sim g_{\mathcal{F}\gamma}^2 \operatorname{Tr}[\mathcal{F}\mathcal{F}] F_{\alpha\beta} \tilde{F}^{\alpha\beta}$ NR limit

formation mechanisms (vector case in progress)

self-interaction driven

MA & Mocz (2019)

gravitational formation Mocz et. al (2019)

future possibilities ...

- formation mechanisms for higher spin dark matter (misalighnment?, gravitational?)
- BH superradiance with higher spin fields
- dynamical friction
- vortices
- pulsar timing measurements
- direct detection
- condensation time scales
- lifetimes of higher spin solitons

- relativistic effects (for scalar with gravitation, see Salehian, Kaiser, Guth, Namjoo and more recent +Zhang, MA...)

summary

$$\lambda_c \sim 10 \,\mathrm{cm} \,(m/10^{-6} \,\mathrm{eV})^{-1} \sim 10^{16} \,\mathrm{cm} \,(m/10^{-21} \,\mathrm{eV})^{-1}$$

spin-s fields as dark matter

scale separation

macroscopic spin $S_{tot}/\hbar = \lambda N \hat{z}$ N = # of particles in soliton

- phenomenology/numerical simulations

macroscopic spin $S_{tot}/\hbar = \lambda N \hat{z}$ N = # of particles in soliton

- all lowest energy for fixed N- bases for partially-polarized solitons

distinguishable via collisions, non-gravitational couplings, g-waves etc.

summary

formation mechanisms & interactions

observational implications

$$W_{j}(\mathbf{x}, t) = f(r) \frac{x^{j}}{r} \cos \omega t ,$$
$$H_{ij}(\mathbf{x}, t) = g(r) \left(3 \frac{x^{i} x^{j}}{r^{2}} - \delta_{ij} \right) \cos \omega t$$

$$S_{\rm tot} = \vec{0}$$

hedgehogs not ground states

number of solitons

conserved quantities

$$\mathcal{S}_{nr}^{\text{eff}} = \int \mathrm{d}^4 x \left[\frac{i}{2} \operatorname{Tr} \left[\mathbf{\Psi}^{\dagger} \dot{\mathbf{\Psi}} \right] + \text{c.c.} - \frac{1}{2m} \operatorname{Tr} \left[\nabla \mathbf{\Psi}^{\dagger} \right] \right]$$

$$N = \int d^3 x \mathrm{Tr}[\mathbf{\Psi}^{\dagger} \mathbf{\Psi}]$$

$$E = \int \mathrm{d}^3 x \Big[\frac{1}{2m} \operatorname{Tr}[\nabla \Psi^{\dagger} \cdot \nabla \Psi] + \frac{m^2}{4m_{\rm pl}^2} \operatorname{Tr}[\Psi^{\dagger} \Psi] \int dt \nabla \Psi \Big] + \frac{m^2}{4m_{\rm pl}^2} \operatorname{Tr}[\Psi^{\dagger} \Psi] \int dt \nabla \Psi \Big] = \int \mathrm{d}^3 x \Big[\frac{1}{2m} \operatorname{Tr}[\nabla \Psi^{\dagger} \cdot \nabla \Psi] + \frac{m^2}{4m_{\rm pl}^2} \operatorname{Tr}[\Psi^{\dagger} \Psi] \int \mathrm{d}^3 x \Big[\frac{1}{2m} \operatorname{Tr}[\nabla \Psi^{\dagger} \cdot \nabla \Psi] \Big] + \frac{m^2}{4m_{\rm pl}^2} \operatorname{Tr}[\Psi^{\dagger} \Psi] \int \mathrm{d}^3 x \Big[\frac{1}{2m} \operatorname{Tr}[\nabla \Psi^{\dagger} \cdot \nabla \Psi] \Big] + \frac{m^2}{4m_{\rm pl}^2} \operatorname{Tr}[\Psi^{\dagger} \Psi] \int \mathrm{d}^3 x \Big[\frac{1}{2m} \operatorname{Tr}[\nabla \Psi^{\dagger} \cdot \nabla \Psi] \Big] + \frac{m^2}{4m_{\rm pl}^2} \operatorname{Tr}[\Psi^{\dagger} \Psi] \int \mathrm{d}^3 x \Big[\frac{1}{2m} \operatorname{Tr}[\nabla \Psi^{\dagger} \cdot \nabla \Psi] \Big] + \frac{m^2}{4m_{\rm pl}^2} \operatorname{Tr}[\Psi^{\dagger} \Psi] \int \mathrm{d}^3 x \Big[\frac{1}{2m} \operatorname{Tr}[\nabla \Psi^{\dagger} \cdot \nabla \Psi] \Big] + \frac{m^2}{4m_{\rm pl}^2} \operatorname{Tr}[\Psi^{\dagger} \Psi] \Big] \int \mathrm{d}^3 x \Big[\frac{1}{2m} \operatorname{Tr}[\nabla \Psi^{\dagger} \cdot \nabla \Psi] \Big] + \frac{m^2}{4m_{\rm pl}^2} \operatorname{Tr}[\Psi^{\dagger} \Psi] \Big] \int \mathrm{d}^3 x \Big[\frac{1}{2m} \operatorname{Tr}[\nabla \Psi^{\dagger} \cdot \nabla \Psi] \Big] + \frac{m^2}{4m_{\rm pl}^2} \operatorname{Tr}[\Psi^{\dagger} \Psi] \Big] \int \mathrm{d}^3 x \Big[\frac{1}{2m} \operatorname{Tr}[\nabla \Psi^{\dagger} \cdot \nabla \Psi] \Big] + \frac{m^2}{4m_{\rm pl}^2} \operatorname{Tr}[\Psi^{\dagger} \Psi] \Big] \int \mathrm{d}^3 x \Big[\frac{1}{2m} \operatorname{Tr}[\nabla \Psi^{\dagger} \cdot \nabla \Psi] \Big] + \frac{m^2}{4m_{\rm pl}^2} \operatorname{Tr}[\Psi^{\dagger} \Psi] \Big] \int \mathrm{d}^3 x \Big[\frac{1}{2m} \operatorname{Tr}[\nabla \Psi^{\dagger} \cdot \nabla \Psi] \Big] + \frac{m^2}{4m_{\rm pl}^2} \operatorname{Tr}[\Psi^{\dagger} \Psi] \Big] \int \mathrm{d}^3 x \Big] \Big] \frac{1}{2m} \Big[\frac{1}{2m} \operatorname{Tr}[\nabla \Psi^{\dagger} \cdot \nabla \Psi] \Big] + \frac{1}{2m} \Big] \frac{1}{$$

$$S_{k} = s \int d^{3}x \Re \left(i \varepsilon_{ijk} [\mathbf{\Psi} \mathbf{\Psi}^{\dagger}]_{ij} \right),$$
$$L_{k} = \int d^{3}x \Re \left(i \varepsilon_{ijk} \operatorname{Tr} [\mathbf{\Psi}^{\dagger} \partial_{i} \mathbf{\Psi}] x^{j} \right)$$

$$\psi = [\mathbf{\Psi}]$$

 $\psi_i = [\mathbf{\Psi}]_i$
 $\psi_{ij} = [\mathbf{\Psi}]_{ij}$

$^{\dagger} \cdot \nabla \Psi] + m_{\mathrm{pl}}^2 \Phi \nabla^2 \Phi - m \Phi \operatorname{Tr}[\Psi^{\dagger} \Psi]$

particle number from "emergent" U(1)

 $\int \frac{\mathrm{d}^3 y}{4\pi |\mathbf{x} - \mathbf{y}|} \operatorname{Tr}[\mathbf{\Psi}^{\dagger}(\mathbf{y})\mathbf{\Psi}(\mathbf{y})]$ energy from time translations

spin & orbital

from spatial rotations

conserved quantities

$$\mathcal{S}_{nr}^{\text{eff}} = \int \mathrm{d}^4 x \left[\frac{i}{2} \operatorname{Tr} \left[\mathbf{\Psi}^{\dagger} \dot{\mathbf{\Psi}} \right] + \text{c.c.} - \frac{1}{2m} \operatorname{Tr} [\nabla \mathbf{\Psi}^{\dagger}] \right]$$

$$S_{k} = s \int d^{3}x \Re \left(i \varepsilon_{ijk} [\mathbf{\Psi} \mathbf{\Psi}^{\dagger}]_{ij} \right),$$
$$L_{k} = \int d^{3}x \Re \left(i \varepsilon_{ijk} \operatorname{Tr} [\mathbf{\Psi}^{\dagger} \partial_{i} \mathbf{\Psi}] x^{j} \right)$$

$\left[\cdot \nabla \mathbf{\Psi} \right] + m_{\rm pl}^2 \Phi \nabla^2 \Phi - m \Phi \operatorname{Tr}[\mathbf{\Psi}^{\dagger} \mathbf{\Psi}]$

spin & orbital angular momentum

from spatial rotations (independently conserved)

$$\mathscr{L}_{\text{int}} = -\frac{1}{4} g_{a\gamma\gamma} a F_{\mu\nu} \tilde{F}^{\mu\nu}$$
$$\Delta \Phi = \frac{g_{a\gamma\gamma}}{2} \int_C dX^{\mu} \partial_{\mu} a(x) = \pm g_{a\gamma\gamma} \pi f_a = \pm g_{a\gamma\gamma} \pi f_a$$

*see Agrawal, Hook & Huang (2019)

[arXiv:2103.10962] with Andrew Long and Mudit Jain CMB birefringence from ultralight-axion string networks

