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examples of nonlinear dynamics after inflation
Using a term like non-linear science is like referring to the bulk of zoology as the 
study of non-elephant animals — Stanislaw Ulam
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much of the above phenomenology is covered in the exciting looking parallel sessions



what we “know” about inflation (simplest case - scalar field driven inflation)

Planck Collaboration: Cosmological parameters
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Fig. 21. Left: Constraints on the tensor-to-scalar ratio r0.002 in the ⇤CDM model, using Planck TT+lowP and Planck
TT+lowP+lensing+BAO+JLA+H0 (red and blue, respectively) assuming negligible running and the inflationary consistency rela-
tion. The result is model-dependent; for example, the grey contours show how the results change if there were additional relativistic
degrees of freedom with �Ne↵ = 0.39 (disfavoured, but not excluded, by Planck). Dotted lines show loci of approximately con-
stant e-folding number N, assuming simple V / (�/mPl)p single-field inflation. Solid lines show the approximate ns–r relation for
quadratic and linear potentials to first order in slow roll; red lines show the approximate allowed range assuming 50 < N < 60 and
a power-law potential for the duration of inflation. The solid black line (corresponding to a linear potential) separates concave and
convex potentials. Right: Equivalent constraints in the ⇤CDM model when adding B-mode polarization results corresponding to the
default configuration of the BICEP2/Keck Array+Planck (BKP) likelihood. These exclude the quadratic potential at a higher level
of significance compared to the Planck-alone constraints.

limited by cosmic variance of the dominant scalar anisotropies,
and it is also model dependent. In polarization, in addition to B-
modes, the EE and T E spectra also contain a signal from tensor
modes coming from reionization and last scattering. However,
in this release the addition of Planck polarization constraints at
` � 30 do not significantly change the results from temperature
and low-` polarization (see Table 5).

Figure 21 shows the 2015 Planck constraint in the ns–r plane,
adding r as a one-parameter extension to base ⇤CDM. Note that
for base ⇤CDM (r = 0), the value of ns is

ns = 0.9655 ± 0.0062, Planck TT+lowP. (38)

We highlight this number here since ns, a key parameter for in-
flationary cosmology, shows one of the largest shifts of any pa-
rameter in base ⇤CDM between the Planck 2013 and Planck
2015 analyses (about 0.7�). As explained in Sect. 3.1, part of
this shift was caused by the ` ⇡ 1800 systematic in the nominal-
mission 217 ⇥ 217 spectrum used in PCP13.

The red contours in Fig. 21 show the constraints from Planck
TT+lowP. These are similar to the constraints shown in Fig. 23
of PCP13, but with ns shifted to slightly higher values. The ad-
dition of BAO or the Planck lensing data to Planck TT+lowP
lowers the value of ⌦ch2, which at fixed ✓⇤ increases the small-
scale CMB power. To maintain the fit to the Planck tempera-
ture power spectrum for models with r = 0, these parameter
shifts are compensated by a change in amplitude As and the tilt
ns (by about 0.4�). The increase in ns to match the observed
power on small scales leads to a decrease in the scalar power
on large scales, allowing room for a slightly larger contribution

from tensor modes. The constraints shown by the blue contours
in Fig. 21, which add Planck lensing, BAO, and other astrophys-
ical data, are therefore tighter in the ns direction and shifted to
slightly higher values, but marginally weaker in the r-direction.
The 95 % limits on r0.002 are

r0.002 < 0.10, Planck TT+lowP, (39a)
r0.002 < 0.11, Planck TT+lowP+lensing+ext, (39b)

consistent with the results reported in PCP13. Note that we as-
sume the second-order slow-roll consistency relation for the ten-
sor spectral index. The result in Eqs. (39a) and (39b) are mildly
scale dependent, with equivalent limits on r0.05 being weaker by
about 5 %.

PCP13 noted a mismatch between the best-fit base ⇤CDM
model and the temperature power spectrum at multipoles ` <

⇠
40,

partly driven by the dip in the multipole range 20 <⇠ ` <⇠ 30. If
this mismatch is simply a statistical fluctuation of the ⇤CDM
model (and there is no compelling evidence to think otherwise),
the strong Planck limit (compared to forecasts) is the result of
chance low levels of scalar mode confusion. On the other hand if
the dip represents a failure of the ⇤CDM model, the 95 % limits
of Eqs. (39a) and (39b) may be underestimates. These issues are
considered at greater length in Planck Collaboration XX (2015)
and will not be discussed further in this paper.

As mentioned above, the Planck temperature constraints on
r are model-dependent and extensions to ⇤CDM can give sig-
nificantly di↵erent results. For example, extra relativistic de-
grees of freedom increase the small-scale damping of the CMB
anisotropies at a fixed angular scale, which can be compensated

34

primordial tilt (ns)

te
n
so
r-
to
-s
ca
la
r
ra
ti
o

(r
) �4

p = 4

p = 2

p = 1

V (�) / �p

p < 2

S =

Z
d4x

p
�g

"
m2

pl

2
R� 1

2
(@�)2 � V (�)

#

for example:
Starobinsky(1979/80), Nanopolous et. al (1983), Silverstein & Westhpal (2008), Kallosh & Linde (2013), McAllister et. al (2014) … Cliff Burgess discussed some of this elegantly earlier today

— flattened potentials
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end of inflation (simplest)
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• couplings to other fields � , � Aµ

V (�) / |�|2n

|�| ⇠ M distance from minimum
where potential flattens

V (�) / �2

�� ⇠ M

flattened potential �p<2



oscillating “free” scalar field: matter-dominated expansion

⇤� ⇡ m2�

M ⇠ mpl

expansion

self-interactions

gravitational int.

�
(t
,x

)/
M

�
(t
,x

)/
M

w ! 0



oscillating “free” scalar field: matter-dominated expansion +“slow” gravitational instability
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*similar to a matter dominated universe

will be largest. These breakdowns are localized and do not
immediately “propagate” to the wider grid; running the
code past the point at which they become manifest shows
the further development of the web.
Consequently, this analysis confirms expectations

that a pure inflaton condensate will fragment gravitationally
if no other processes (such as resonance or prompt
reheating) disrupt it earlier. Moreover, it demonstrates that
Schrödinger-Poisson solvers can be used to investigate this
previously unexplored regime of nonlinear dynamics in the
postinflationary Universe.

Discussion.—This is the first exploration of nonlinear
gravitational dynamics in the primordial dark age following
inflation in scenarios without resonance [59]. We show that
this phase is well described by the Schrödinger-Poisson
equation, solving it numerically to demonstrate the non-
linear evolution and fragmentation of the inflaton field.
To calibrate the physical scales, if inflation ends at an

energy density of ð1016 GeVÞ4, a single postinflationary
horizon volume contains a mass of a few grams [60].
A long nonlinear phase could produce collapsed objects
with substantially larger masses, but at scales that are still
likely to be far too small for the resulting overdensities to
leave a direct imprint on the Universe after thermalization.
However, there are several ways in which this phase can
have observable consequences. In particular, for any infla-
tionary model, the “matching” between present-day and
primordial scales depends on the reheating history, and this
has a small but potentially detectable impact on the
observable perturbation spectrum [44–46,61]. Moreover,
in curvaton scenarios, the duration of the postinflationary
“matter dominated” phase is a key parameter [62,63].
If reheating occurs via simple couplings between the

inflaton and other species [21], particle production scales
with the square of the local density and is enhanced by
large inhomogeneities. In addition to thermalization, many
possible dark matter populations can be (over)produced
during the primordial dark age. In some cases, heavy relics
overclose the Universe if the thermalization temperature
is high (e.g., [64]); in others, dark matter production
directly involves the postinflationary dynamics [48–56]
and will be significantly affected by the fragmentation of
the condensate.
Collapsing overdensities generically source gravitational

waves [65–67] and nonlinear phases in the early Universe
can generate stochastic gravitational wave backgrounds
[59,68,69]. Typical accelerations and the resulting ampli-
tudes produced via gravitational collapse are naively
smaller than those from explosive resonance, but more
speculatively, this new phase of nonlinear dynamics pro-
vides another channel for the production of a primordial
gravitational wave background.
We performed simulations for a range of choices for

the initial spectrum, and the outcomes did not depend
strongly on the ansatz used. Higher resolution simula-
tions will be needed to explore the detailed dynamics
of the collapsed structures that form after the inflaton
condensate fragments, which may include solitons and
dynamical oscillonlike structures [11–15]. More sophis-
ticated numerical strategies will allow the nonlinear phase
to be investigated in detail.
Many lines of enquiry present themselves. Results for

specific inflationary scenarios can be considered, with the
initial conditions for the numerical solver propagated
forward from the inflationary phase via perturbation
theory [23,24], along with scenarios where the Compton

FIG. 3. Simulation results for an initial perturbation of ampli-
tude ∼10−2; comoving simulation box size of 10 times post-
inflationary Hubble radius; when the Universe has expanded by a
factor of a ¼ 200 since the end of inflation. Top: The density ρ
along a slice including the point of highest density. Bottom:
Volume rendering of a subset of the box; blue regions δ ∼ 1;
yellow and white regions δ ∼ 10–100.

PHYSICAL REVIEW LETTERS 124, 061301 (2020)

061301-4

Musoke, Hotchkiss & Easther (2021)



oscillating scalar field: self-interaction driven fast instability & “oscillon” formation

Amin & Mocz 2019
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self-interaction driven fast instability & “oscillon” formation + gravitational clustering

MA, Easther, Finkel, Flauger & Hertzberg (2011) 

0.25H�1
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MA & Mocz (2019)
* non-relativistic, Schrodinger-Poisson
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solitons : oscillons, scalar stars …
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self-interaction

oscillon

spatially localized, coherently oscillating, long-lived

*lifetimes can be much, much larger than the Hubble time scale at the end of inflation

scalar star

spatially localized

coherently oscillating

exceptionally long-lived

Bogolubsky & Makhankov (1976)
Seidel & Sun (1991)
Gleiser (1994)
Copeland et al. (1995)
… Zhang et. al (2020)



gravitational implications?
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FIG. 1. Projected co-moving “densities” a
3
| |

2 (average along the line of sight) at several scale factors (a = 1 to a = 20) in
our 3+1 dimensional lattice simulations, with � ⌘ M/mpl = 0.03, and local gravitational interactions switched on (top panels)
and o↵ (bottom panels). The early instability due to self-interactions gives rise to the formation of solitons from an almost
homogeneous initial state. A statistical analysis of the locations of solitons at late times shows reveals evidence for clustering
only in the case where gravitational interactions are included. Note that inside solitons, | |2 = const. that is, their core density
does not redshift, whereas the background | ̄|

2
/ a

�3. Moreover, solitons maintain a fixed physical size, hence the illusion of
them shrinking in size in a co-moving volume. The initial size of the box is the size of the horizon at the beginning of the
simulation L ' H

�1
in . The solitons contain a dominant fraction (⇠ 80%) of the mass in the simulation volume. On a technical

aside, note that the projected co-moving density even in the densest (lightest in color) appearing regions in the above plot will
be smaller that the density inside the cores because of the small volume occupied by the solitons.

between relativistic/non-relativistic models and results
is discussed in the Appendix.

The rest of the paper is organized as follows in short
sections. In Section II we discuss the model for a non-
relativistic, self-interacting field in an expanding universe
with weak field gravity. In Section III, we briefly dis-
cuss the lattice simulation and our numerical algorithm.
The initial conditions for the simulations is provided
in Section IV. We analyze linear instabilities from self-
interactions and gravitational interactions in Section V.
The numerically calculated power spectrum for the field
perturbations is provided in Section VI. In Section VII we
discuss the formation of solitons, followed by a discussion
of their individual profiles and stability in Section VIII.
The gravitational clustering of solitons is discussed in
Section IX, and resulting strong soliton interactions are
explored in Section X. Finally, we present our conclusions
and future directions in Section XI. In the Appendix we
discuss connections to a related relativistic system.

II. THE MODEL

We use the following equations of motion (and con-
straint equations) to explore the dynamics of a non-
relativistic, self-interacting, self-gravitating scalar field in

an approximately homogeneous and isotropic universe:

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where [. . .] indicates a spatial average, a(t) is the scale-
factor, H(t) = ȧ(t)/a(t) is the Hubble rate,  (t,x) is
complex field amplitude, �(t,x) is the Newtonian po-
tential and Unl(| |

2) encodes the self-interactions of the
field.2

All variables and parameters appearing in the above
equation are dimensionless. We have expressed time t in
units of ⌧m = ~/mc

2, lengths in units of �m = ~/mc,
the Newtonian gravitational potential � in units of c

2

and | |
2 in units of m

2
M

2
c
3
/~3. Note that m

2
M

2
c
3
/~3

has dimensions of mass density. We assume that the
parameter

� ⌘
M

mpl
⌧ 1 . (2)

2
We have checked that qualitatively similar results are obtained

even if we set Unl ! 0 in the Poisson and Friedmann equations,

but keep U 0
n(| |2) ⌘ @| |2Un(| |2) in the nonlinear Schrödinger

equation.
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FIG. 6. Gravitational clustering facilitates close encounters at late times between solitons. Such close encounters lead to
mergers, strong scattering and formation of soliton binaries. Non-gravitational interactions can play a dominant role in the
close-encounters, with the phase of the scalar field also playing an important role. This richness in the close-encounter dynamics
makes the soliton gas distinct from a gravitationally interacting gas of particles (CDM).

2. A few solitons merge to form more massive solitons
(typically when the relative phase is ⇠ 0), resulting
in a change in number density of solitons. Such in-
teractions are typically accompanied by generation
of a burst of scalar waves as the solitons settle into
new configurations.

3. A small fraction of solitons form orbiting binaries.

4. Only few � 10% of the number of solitons in our
simulations undergo strong encounters per Hubble
time.15 This is consistent with the rate of change
in the co-moving number density of solitons

d ln(a3
nsol)

d ln a
' 0.1 , (21)

as seen from Fig. 3.

We re-iterate that bouncing, binary formation and
merging of solitons is self-consistently obtained from our
cosmological initial conditions. Evidently, the dynamics
of these strong interactions are quite rich, and deviate
from the expectations of treating these solitons as just
point particles. The relative phase of the solitons plays
an important role in these close encounters. A more de-
tailed investigation of the rich dynamics of close encoun-
ters is left for future work.16

15
We inspected 6 numerical runs with di↵erent initial conditions

to get this number.
16

For an early, and detailed investigation of Q-ball interactions

(relativistic complex field valued analogs of our solitons), but

without gravity, see [55].

The repulsive and attractive behavior of such solitons
as a function of relative phase can be heuristically un-
derstood as follows. Consider a probe soliton moving
past another stationary soliton (in absence of gravity).
The nonlinearity in the Schrödinger equation (/ | |

2 for
| |

2
⌧ 1) can be thought of as a nonlinear refractive in-

dex.17 If the two solitons are in phase, we expect this
term to be larger in the region between the solitons than
the case when the stationary soliton is absent. It also in-
creases towards the stationary soliton. As a result, this
larger refractive index, and its gradient, will cause the
core of the probe soliton to bend towards the stationary
one, i.e. there will be attraction between the solitons. On
the other hand, when our two solitons are out of phase,
the | |

2 between the two solitons will be smaller, and
have to go to zero in the middle (from symmetry), caus-
ing the probe soliton to move away from the stationary
one (hence “repulsion”). A more detailed, e↵ective po-
tential based analysis at large separations is provided by
[37, 57].

XI. CONCLUSIONS & FUTURE DIRECTIONS

We investigated the dynamics of non-relativistic
scalar fields in an expanding background. By includ-
ing self-interactions and gravitational interactions, we

17
This is more than an analogy since nonlinear Schrödinger equa-

tions are used to model light pulse propagation in nonlinear me-

dia [56], we learned of the above heuristic explanation from the

same paper.

• stochastic gravitational wave-generation (example: Zhou et. al 2013, Kitajima et. al 2018)

• gravitational clustering — early structure formation (Erickcek & Sigurdson 2011)

• primordial black hole (PBH) formation ? (Cotner et. al 2019, full GR simulations: Giblin & Tishue 2019, Kou et. al 2021) 
7

IX. GRAVITATIONAL CLUSTERING

For � ⌧ 1, gravitational clustering is expected to be-
come important at late times (significantly after the soli-
tons have formed, see eq. (12)). At these late times,
this universe essentially behaves as a matter dominated
universe (a(t) / t

2/3), with solitons becoming our new
non-relativistic dust particles on scales much larger than
their size. As a result, our zeroth order expectation is
that the gravitational clustering of these solitons should
proceed in a manner similar to dust in an expanding uni-
verse. Moreover, we can ignore non-gravitational forces
between the solitons at separations much larger than 2re

because we expect them to be Yukawa-like, with the force
falling away exponentially with separation.13

We construct the two point correlation function of soli-
ton locations obtained from our simulations to quantita-
tively investigate the e↵ects of gravitational clustering.
In Fig. 5, we show the two-point correlation function of
the solitons, calculated with the Landy-Szalay estimator
[52, 53]:

⇠LS(r) =
DD

RR
�

N � 1

N

DR

RR
+ 1 , (19)

where there are N solitons (the data D), and N uniform
randomly chosen points R, and RR is the number of soli-
ton pairs in a given co-moving radial separation bin, RR

is the mean count for the random points over several re-
alization R, and DR is the cross-correlation statistic.

As seen in Fig. 5, the measured two point correlation
function is the same for the case with and without gravi-
tational interactions at early times soon after soliton for-
mation (a . 4). The distribution is close to Poissonian
on large scales: ⇠LS(r & 10) ⇡ 0. However, the co-moving
scale rnl ⇠ k

�1
nl which is the typical separation of solitons

when they first form manifests itself in a negative corre-
lation function on small scales (we find very few solitons
with separations less than k

�1
nl ).

If we allow for gravitational interactions, solitons begin
to cluster. This clustering can be quantified in our simu-
lations at late times as excess power in ⇠LS (for a & 10).
Consistent with clustering of point particles in a matter
dominated universe starting with uncorrelated positions
[54], we find

⇠LS(r) /
1

r2
, (20)

where r is a co-moving separation. Fitting the model
⇠LS / a

↵
r

� for our 6 simulations in the range of a = 10

self-interaction potential), which also showed that the above sta-

bility criterion correctly predicted the survival of large amplitude

oscillons in simulations. We further note that three dimensional

oscillons in Sine-Gordon potentials (for axions, but without grav-

ity) are not stable and have a relatively short lifetime, compared

to flattened potentials [49, 50]. Also see the Appendix.
13

This is also reminiscent of the force between solitons as analyzed

by [51].

[co-moving separation]

/ r
�2

FIG. 5. The two point correlation function of soliton loca-
tions with and without the inclusion of gravitational interac-
tions. At early times, the correlation function with and with-
out gravity agree with each other. However, at late times
gravitational clustering ⇠LS(r) / r

�2 is clearly visible for the
a = 16 and a = 20 cases in the above figure.

to a = 20, we find: ↵ = 1.7 ± 0.3, � = �2.1 ± 0.2. It
would be interesting to explore this clustering further in
detail, since it might reveal di↵erences from the point
particle case at late times.

X. STRONG SOLITON INTERACTIONS

Self-gravity plays the important role of bringing soli-
tons together at late times (i.e., significantly after their
formation), and allows them to interact.14 Fig. 6 shows
three di↵erent types of interactions that are achieved
from our cosmological initial conditions.

1. Solitons “repel/bounce o↵” each other when the
relative phase of the interacting solitons |✓1 �✓2| ⇡

⇡ where  a(t,x) =  a(x)e�i(⌫at+✓a) with a = 1, 2.
The repulsive interactions lead to some of the
largest post interaction kicks to our solitons. We
observe some solitons zooming across our simula-
tion volume.

2. A few solitons merge to form more massive solitons
(typically when the relative phase is ⇠ 0), resulting
in a change in number density of solitons. Such in-
teractions are typically accompanied by generation
of a burst of scalar waves as the solitons settle into
new configurations.

3. A small fraction of solitons form orbiting binaries.

14
There are interactions at early times when gravity is ignored as

well, but not so at late times in our simulations.
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FIG. 6. The gravitational waves generated between
�N = 0 to 1 (red to purple curves) for the oscillon model
from Fig. 2. The peak of the red curves is close to the
predicted values in eqs. (33) and (34).

the most unstable ��̃k. The rapid growth of the
peak height reflects the exponential amplification of
the inflaton perturbations. Even at this stage, the
source term in eq. (16) has to be evaluated beyond
linear order in perturbations.

The next 3 � 4 red curves show the onset of the
nonlinear regime. This stage is known as rescatter-
ing, since mode-mode couplings, including the back-
reaction of amplified ��̃k on the condensate, become
important. The broad peak, centered on the most
unstable frequency, becomes wider. Its height grows
more slowly than before and approaches the pre-
dicted value of ⇠ 10�10, see eq. (34), as the field
becomes completely inhomogeneous (with ⇠ 1/3 of
the total energy being stored in gradients).

The following thick band of red-green curves rep-
resents the third stage. There the oscillons form and
stabilize, with GWs power increasing slowly on all
scales.

The last and longest stage is given by the green-
purple curves. The oscillons have stabilized and
sphericalized, while being assembled in a fixed co-
moving grid-like configuration. Since there are al-
most no time-dependent quadrupole moments to
act as sources, there is very little and slow pro-
duction of GWs. On intermediate and low fre-
quencies, GW power propagates (almost freely) to-
wards lower frequencies and lower values as time
goes by and the universe expands. This makes
sense since the oscillon-dominated universe under-
goes a matter-like state of expansion, with ⇢̄ / a

�3.
Since HLattice uses a formula like eq. (21) to cal-
culate the GW frequency today (more specifically,

FIG. 7. The gravitational waves generated between
�N = 0 to 0.85 (red to purple curves) for the tran-
sients model from Fig. 3. The peak of the red curves is
close to the predicted values in eqs. (33) and (34), and
almost identical to the one in Fig. 6.

f0(k, ⌧) = k/(a(⌧)⇢̄1/4(⌧)) ⇥ 4 ⇥ 1010 Hz, where ⌧ is
the time of output, beyond which it is assumed that
the universe is thermal and radiation dominated),
it follows that f0(k, ⌧) will decrease with time in
a matter-dominated universe. The energy density
of GWs redshifts as radiation, which explains why
the GWs contribution to the energy budget of the
matter-dominated universe decreases with time. Al-
beit nearly-spherical, individual oscillons do gener-
ate small amounts of GWs. This is visible at the high
frequency end of the GW spectrum. Oscillons act as
objects of fixed physical size, sourcing GWs of fixed
physical wavenumber. For the HLattice conventions
this implies that f0(k, ⌧)⇢̄1/4(⌧) / k/a(⌧) = const,
i.e., the oscillons-sourced GWs are at increasingly
higher f0(k, ⌧). This small late-time e↵ect has an
intrinsic numerical component. The oscillons are in-
evitably less well resolved as the comoving lattice ex-
pands, sourcing weak late-time high-frequency GWs.
This does not a↵ect the spectrum on intermediate
and low frequencies. For more detailed studies of
GWs from oscillons see [55–61].

2. Transients

Transients decay away quickly, in a non-spherical
manner. Hence, unlike the cases when we have oscil-
lons in which gravitational waves are not generated
after oscillons are formed, the decay of the transients
potentially can act as an additional source of GWs.
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Figure 4. A summary for the asymptotic equation of
state without coupling to additional fields. The nu-
merical results from lattice simulations are shown as
green circles for M ⇡ 2.45mPl, and orange squares for
M ⇡ 7.75 ⇥ 10�3mPl. The dotted blue line is the ex-
pectation from a homogeneous, oscillating condensate.

the transients decay, the inflaton is completely
fragmented with almost no energy remaining in the
homogeneous condensate. The field configuration
now evolves freely in a turbulent manner (as
discussed for n = 2 in [29]). Numerically, we find
that the kinetic and gradient energies are approxi-
mately equal to each other and much greater than
the potential energy, implying w ! 1/3 (cf. Fig.
3), and that the field is virialized in the sense that
h�̇

2
/2is,t = h(r�)2/2a

2
is,t + nhV is,t holds. We

can then get an estimate of the deviation of w

from 1/3: w � 1/3 ! (2/3)(n � 2)⇥ the fraction
of energy density in the potential energy. For
ine�cient initial resonance M & 2.5⇥10�2

mPl and
n = 1, we observe initially some small excitations
of the modes near k = 0 due to the broad band
which is eventually shut o↵ by expansion. The
condensate energy is redshifted as a

�3, slower than
the gradient energy (a�4). Hence, the fluctuations
become ever smaller, and the oscillating condensate
determines the equation of state, yielding w = 0.
For n > 1, after initial particle production is shut
o↵ the condensate energy decays as a

�6n/(n+1),
whereas the gradient energy stored in field fluctu-
ations decays as a

�4 (i.e. like radiation) until the
first narrow resonance band becomes important
and particles are again produced. This second
phase of particle production in a narrow k band is
expected from our Floquet analysis and confirmed
by our lattice simulations. Subsequent evolution
includes a shifting of this peak towards higher

(n < 2) or lower (n > 2) co-moving momenta as
expected from the flow lines in the Floquet anal-
ysis. This is followed by the generation of a series
of secondary peaks from nonlinear scattering (for
n = 2, see [30]). Eventually the growth is shut o↵
by backreaction. All the peaks smear out, whereas
the remnant condensate continues to oscillate with
slowly decaying amplitude, continuing its particle
production. After su�ciently long times, we find
that the kinetic and gradient energies are approxi-
mately equal and much greater than the potential
energy with the field again virialized. This yields
an equation of state parameter w ⇡ 1/3. Note that
the n = 2 case would yield w = 1/3 for the homo-
geneous and inhomogeneous field. A summary of
the asymptotic equation of state is shown in Fig. 4.

e-folds to Radiation Domination — Our linear
analysis of the instabilities allows us to estimate
the number of e-folds after inflation required to
reach radiation domination, �Nrad ⌘

R arad

aend
d ln a,

by calculating the time of backreaction of the fluc-
tuations. First, note that for n = 2, �Nrad ⌧ 1
since in this case w ! 1/3 with and without
fragmentation. For all other n & 1, the universe
becomes radiation dominated within

�Nrad ⇠

8
<

:

1 M . 10�2
mPl ,

n + 1

3
ln

✓


�

10M

mPl

◆
M & 10�2

mPl .

(5)
Here, �/ ⇠ 10�2 is the fractional width of the

first k 6= 0 narrow resonance band (cf. Fig. 2).
Note that �/ becomes vanishingly small as n !

1 (and n � 2), leading to �Nrad � 1. These
estimates are confirmed by our lattice simulations
(see Fig. 3).

We emphasize that w ! 1/3 can be achieved
without coupling to other fields for all n & 1.
When coupling to other massless fields is included,
�Nrad is reduced further. Thus the above calcu-
lated �Nrad should be taken as an upper bound on
�Nrad. Using these results, we can calculate the
expected values of the tensor-to-scalar ratio r and
the spectral index ns for di↵erent values of M and
n, even including the uncertainty from couplings
to additional light fields (see Fig. 5, we use a pivot
scale k? = 0.002 Mpc�1). The solid black lines use
�Nrad calculated above, whereas the width of the

Lozanov & MA (2017)
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photons from oscillons

• no emission before merger

• explosive after merger

• a threshold & resonant effect 

MA & Mou (2020)

*might not be easy to achieve because the amplitude is highest at the end of inflation, so most photons produced then before (if) soliton formation. Also, likely not enough for reheating
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FIG. 1. Projected co-moving “densities” a
3
| |

2 (average along the line of sight) at several scale factors (a = 1 to a = 20) in
our 3+1 dimensional lattice simulations, with � ⌘ M/mpl = 0.03, and local gravitational interactions switched on (top panels)
and o↵ (bottom panels). The early instability due to self-interactions gives rise to the formation of solitons from an almost
homogeneous initial state. A statistical analysis of the locations of solitons at late times shows reveals evidence for clustering
only in the case where gravitational interactions are included. Note that inside solitons, | |2 = const. that is, their core density
does not redshift, whereas the background | ̄|

2
/ a

�3. Moreover, solitons maintain a fixed physical size, hence the illusion of
them shrinking in size in a co-moving volume. The initial size of the box is the size of the horizon at the beginning of the
simulation L ' H

�1
in . The solitons contain a dominant fraction (⇠ 80%) of the mass in the simulation volume. On a technical

aside, note that the projected co-moving density even in the densest (lightest in color) appearing regions in the above plot will
be smaller that the density inside the cores because of the small volume occupied by the solitons.

between relativistic/non-relativistic models and results
is discussed in the Appendix.

The rest of the paper is organized as follows in short
sections. In Section II we discuss the model for a non-
relativistic, self-interacting field in an expanding universe
with weak field gravity. In Section III, we briefly dis-
cuss the lattice simulation and our numerical algorithm.
The initial conditions for the simulations is provided
in Section IV. We analyze linear instabilities from self-
interactions and gravitational interactions in Section V.
The numerically calculated power spectrum for the field
perturbations is provided in Section VI. In Section VII we
discuss the formation of solitons, followed by a discussion
of their individual profiles and stability in Section VIII.
The gravitational clustering of solitons is discussed in
Section IX, and resulting strong soliton interactions are
explored in Section X. Finally, we present our conclusions
and future directions in Section XI. In the Appendix we
discuss connections to a related relativistic system.

II. THE MODEL

We use the following equations of motion (and con-
straint equations) to explore the dynamics of a non-
relativistic, self-interacting, self-gravitating scalar field in

an approximately homogeneous and isotropic universe:
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where [. . .] indicates a spatial average, a(t) is the scale-
factor, H(t) = ȧ(t)/a(t) is the Hubble rate,  (t,x) is
complex field amplitude, �(t,x) is the Newtonian po-
tential and Unl(| |

2) encodes the self-interactions of the
field.2

All variables and parameters appearing in the above
equation are dimensionless. We have expressed time t in
units of ⌧m = ~/mc

2, lengths in units of �m = ~/mc,
the Newtonian gravitational potential � in units of c
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has dimensions of mass density. We assume that the
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We have checked that qualitatively similar results are obtained

even if we set Unl ! 0 in the Poisson and Friedmann equations,

but keep U 0
n(| |2) ⌘ @| |2Un(| |2) in the nonlinear Schrödinger

equation.

8

FIG. 6. Gravitational clustering facilitates close encounters at late times between solitons. Such close encounters lead to
mergers, strong scattering and formation of soliton binaries. Non-gravitational interactions can play a dominant role in the
close-encounters, with the phase of the scalar field also playing an important role. This richness in the close-encounter dynamics
makes the soliton gas distinct from a gravitationally interacting gas of particles (CDM).

2. A few solitons merge to form more massive solitons
(typically when the relative phase is ⇠ 0), resulting
in a change in number density of solitons. Such in-
teractions are typically accompanied by generation
of a burst of scalar waves as the solitons settle into
new configurations.

3. A small fraction of solitons form orbiting binaries.

4. Only few � 10% of the number of solitons in our
simulations undergo strong encounters per Hubble
time.15 This is consistent with the rate of change
in the co-moving number density of solitons

d ln(a3
nsol)

d ln a
' 0.1 , (21)

as seen from Fig. 3.

We re-iterate that bouncing, binary formation and
merging of solitons is self-consistently obtained from our
cosmological initial conditions. Evidently, the dynamics
of these strong interactions are quite rich, and deviate
from the expectations of treating these solitons as just
point particles. The relative phase of the solitons plays
an important role in these close encounters. A more de-
tailed investigation of the rich dynamics of close encoun-
ters is left for future work.16

15
We inspected 6 numerical runs with di↵erent initial conditions

to get this number.
16

For an early, and detailed investigation of Q-ball interactions

(relativistic complex field valued analogs of our solitons), but

without gravity, see [55].

The repulsive and attractive behavior of such solitons
as a function of relative phase can be heuristically un-
derstood as follows. Consider a probe soliton moving
past another stationary soliton (in absence of gravity).
The nonlinearity in the Schrödinger equation (/ | |

2 for
| |

2
⌧ 1) can be thought of as a nonlinear refractive in-

dex.17 If the two solitons are in phase, we expect this
term to be larger in the region between the solitons than
the case when the stationary soliton is absent. It also in-
creases towards the stationary soliton. As a result, this
larger refractive index, and its gradient, will cause the
core of the probe soliton to bend towards the stationary
one, i.e. there will be attraction between the solitons. On
the other hand, when our two solitons are out of phase,
the | |

2 between the two solitons will be smaller, and
have to go to zero in the middle (from symmetry), caus-
ing the probe soliton to move away from the stationary
one (hence “repulsion”). A more detailed, e↵ective po-
tential based analysis at large separations is provided by
[37, 57].

XI. CONCLUSIONS & FUTURE DIRECTIONS

We investigated the dynamics of non-relativistic
scalar fields in an expanding background. By includ-
ing self-interactions and gravitational interactions, we

17
This is more than an analogy since nonlinear Schrödinger equa-

tions are used to model light pulse propagation in nonlinear me-

dia [56], we learned of the above heuristic explanation from the

same paper.

also: MA, Long, Mou & Saffin (2021)

with Mou
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*might not be easy to achieve because the amplitude is highest at the end of inflation, so most photons produced then before (if) soliton formation. Also, likely not enough for reheating
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homogeneous initial state. A statistical analysis of the locations of solitons at late times shows reveals evidence for clustering
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does not redshift, whereas the background | ̄|
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in . The solitons contain a dominant fraction (⇠ 80%) of the mass in the simulation volume. On a technical

aside, note that the projected co-moving density even in the densest (lightest in color) appearing regions in the above plot will
be smaller that the density inside the cores because of the small volume occupied by the solitons.

between relativistic/non-relativistic models and results
is discussed in the Appendix.

The rest of the paper is organized as follows in short
sections. In Section II we discuss the model for a non-
relativistic, self-interacting field in an expanding universe
with weak field gravity. In Section III, we briefly dis-
cuss the lattice simulation and our numerical algorithm.
The initial conditions for the simulations is provided
in Section IV. We analyze linear instabilities from self-
interactions and gravitational interactions in Section V.
The numerically calculated power spectrum for the field
perturbations is provided in Section VI. In Section VII we
discuss the formation of solitons, followed by a discussion
of their individual profiles and stability in Section VIII.
The gravitational clustering of solitons is discussed in
Section IX, and resulting strong soliton interactions are
explored in Section X. Finally, we present our conclusions
and future directions in Section XI. In the Appendix we
discuss connections to a related relativistic system.

II. THE MODEL
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straint equations) to explore the dynamics of a non-
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(typically when the relative phase is ⇠ 0), resulting
in a change in number density of solitons. Such in-
teractions are typically accompanied by generation
of a burst of scalar waves as the solitons settle into
new configurations.

3. A small fraction of solitons form orbiting binaries.

4. Only few � 10% of the number of solitons in our
simulations undergo strong encounters per Hubble
time.15 This is consistent with the rate of change
in the co-moving number density of solitons
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We re-iterate that bouncing, binary formation and
merging of solitons is self-consistently obtained from our
cosmological initial conditions. Evidently, the dynamics
of these strong interactions are quite rich, and deviate
from the expectations of treating these solitons as just
point particles. The relative phase of the solitons plays
an important role in these close encounters. A more de-
tailed investigation of the rich dynamics of close encoun-
ters is left for future work.16

15
We inspected 6 numerical runs with di↵erent initial conditions

to get this number.
16

For an early, and detailed investigation of Q-ball interactions

(relativistic complex field valued analogs of our solitons), but

without gravity, see [55].

The repulsive and attractive behavior of such solitons
as a function of relative phase can be heuristically un-
derstood as follows. Consider a probe soliton moving
past another stationary soliton (in absence of gravity).
The nonlinearity in the Schrödinger equation (/ | |

2 for
| |

2
⌧ 1) can be thought of as a nonlinear refractive in-

dex.17 If the two solitons are in phase, we expect this
term to be larger in the region between the solitons than
the case when the stationary soliton is absent. It also in-
creases towards the stationary soliton. As a result, this
larger refractive index, and its gradient, will cause the
core of the probe soliton to bend towards the stationary
one, i.e. there will be attraction between the solitons. On
the other hand, when our two solitons are out of phase,
the | |

2 between the two solitons will be smaller, and
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The rest of the paper is organized as follows in short
sections. In Section II we discuss the model for a non-
relativistic, self-interacting field in an expanding universe
with weak field gravity. In Section III, we briefly dis-
cuss the lattice simulation and our numerical algorithm.
The initial conditions for the simulations is provided
in Section IV. We analyze linear instabilities from self-
interactions and gravitational interactions in Section V.
The numerically calculated power spectrum for the field
perturbations is provided in Section VI. In Section VII we
discuss the formation of solitons, followed by a discussion
of their individual profiles and stability in Section VIII.
The gravitational clustering of solitons is discussed in
Section IX, and resulting strong soliton interactions are
explored in Section X. Finally, we present our conclusions
and future directions in Section XI. In the Appendix we
discuss connections to a related relativistic system.
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r
2

a2
� =

�
2

2


| |

2 +
1

2a2
|r |

2 + Unl(| |
2)

�
�
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2
H

2
,

H
2 =

�
2

3


| |2 +

1

2a2
|r |2 + Unl(| |2)

�
,

(1)

where [. . .] indicates a spatial average, a(t) is the scale-
factor, H(t) = ȧ(t)/a(t) is the Hubble rate,  (t,x) is
complex field amplitude, �(t,x) is the Newtonian po-
tential and Unl(| |

2) encodes the self-interactions of the
field.2

All variables and parameters appearing in the above
equation are dimensionless. We have expressed time t in
units of ⌧m = ~/mc

2, lengths in units of �m = ~/mc,
the Newtonian gravitational potential � in units of c

2

and | |
2 in units of m

2
M

2
c
3
/~3. Note that m

2
M

2
c
3
/~3

has dimensions of mass density. We assume that the
parameter

� ⌘
M

mpl
⌧ 1 . (2)

2
We have checked that qualitatively similar results are obtained

even if we set Unl ! 0 in the Poisson and Friedmann equations,

but keep U 0
n(| |2) ⌘ @| |2Un(| |2) in the nonlinear Schrödinger

equation.
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FIG. 6. Gravitational clustering facilitates close encounters at late times between solitons. Such close encounters lead to
mergers, strong scattering and formation of soliton binaries. Non-gravitational interactions can play a dominant role in the
close-encounters, with the phase of the scalar field also playing an important role. This richness in the close-encounter dynamics
makes the soliton gas distinct from a gravitationally interacting gas of particles (CDM).

2. A few solitons merge to form more massive solitons
(typically when the relative phase is ⇠ 0), resulting
in a change in number density of solitons. Such in-
teractions are typically accompanied by generation
of a burst of scalar waves as the solitons settle into
new configurations.

3. A small fraction of solitons form orbiting binaries.

4. Only few � 10% of the number of solitons in our
simulations undergo strong encounters per Hubble
time.15 This is consistent with the rate of change
in the co-moving number density of solitons

d ln(a3
nsol)

d ln a
' 0.1 , (21)

as seen from Fig. 3.

We re-iterate that bouncing, binary formation and
merging of solitons is self-consistently obtained from our
cosmological initial conditions. Evidently, the dynamics
of these strong interactions are quite rich, and deviate
from the expectations of treating these solitons as just
point particles. The relative phase of the solitons plays
an important role in these close encounters. A more de-
tailed investigation of the rich dynamics of close encoun-
ters is left for future work.16

15
We inspected 6 numerical runs with di↵erent initial conditions

to get this number.
16

For an early, and detailed investigation of Q-ball interactions

(relativistic complex field valued analogs of our solitons), but

without gravity, see [55].

The repulsive and attractive behavior of such solitons
as a function of relative phase can be heuristically un-
derstood as follows. Consider a probe soliton moving
past another stationary soliton (in absence of gravity).
The nonlinearity in the Schrödinger equation (/ | |

2 for
| |

2
⌧ 1) can be thought of as a nonlinear refractive in-

dex.17 If the two solitons are in phase, we expect this
term to be larger in the region between the solitons than
the case when the stationary soliton is absent. It also in-
creases towards the stationary soliton. As a result, this
larger refractive index, and its gradient, will cause the
core of the probe soliton to bend towards the stationary
one, i.e. there will be attraction between the solitons. On
the other hand, when our two solitons are out of phase,
the | |

2 between the two solitons will be smaller, and
have to go to zero in the middle (from symmetry), caus-
ing the probe soliton to move away from the stationary
one (hence “repulsion”). A more detailed, e↵ective po-
tential based analysis at large separations is provided by
[37, 57].

XI. CONCLUSIONS & FUTURE DIRECTIONS

We investigated the dynamics of non-relativistic
scalar fields in an expanding background. By includ-
ing self-interactions and gravitational interactions, we

17
This is more than an analogy since nonlinear Schrödinger equa-

tions are used to model light pulse propagation in nonlinear me-

dia [56], we learned of the above heuristic explanation from the

same paper.

also: MA, Long, Mou & Saffin (2021)
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coupling to massive “photons”
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* production could be via “misalignment” of inflaton, for example: Co et. al (2018),  Agrawal et. al (2018) in context of vector dark matter 
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s-solitons: oscillons/stars in higher spin fields
spatially localized, coherently oscillating, long-lived
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related phenomenology for moduli, axions, early dark energy etc. and BECs
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FIG. 1. Anatomy of a cosmic filament. We show, for CDM, WDM, and FDM cosmologies: (a) the projected dark matter
distribution in the simulation domain at redshift z = 5.5; (b) projections of dark matter, gas, and stars in a filament; and (c)
slices of the dark matter through a filament. In CDM the dark matter fragments into subhalos on all scales. WDM exhibits
rich caustic structures. FDM has interference patterns at the scales of the de Broglie wavelength, which regularize caustic
singularities. These di↵erences in small-scale structure will help constrain the elusive nature of dark matter.

(WDM), which is often associated with fermionic dark
matter

:::::::
fermions

:
of particle mass of a few keV (typi-

cally treated as collisionless), Peccei-Quinn axions [28]
which are bosons of mass ⇠ 10�5–10�3 eV, and the ul-
tralight FDM of mass m ⇠ 10�22 eV, which is described
by a classical scalar field and exhibits wave phenomena
on scales of the de Broglie wavelength �dB of a few kpc
[18–21, 29, 30]. FDM may be axions expected in string
theory, which suggests the existence of a plenitude of
particles with masses over a broad range 10�33–10�10 eV
[29].

::::::::::::::
�dB ⇠ few ⇥ kpc

::::::::::::::
[18–21, 29, 30].

:
WDM and FDM

both yield smoother structures than CDM on scales be-
low few kpc, due to either thermal motion (WDM) [23]
or quantum pressure (FDM)

:::
[18]. The existence of dwarf

galaxies in dark matter halos with masses of ⇠ 109 times
the mass of the sun (M�) in the local Universe, as well as
measurements of the ‘lumpiness’ of the dark matter dis-
tribution, constrain WDM and FDM theories, favoring

particle masses above mWDM ⇠ 3 keV and m ⇠ 10�22 eV
respectively [31]

:::::::
[31, 32]. However, for FDM these con-

straints can only be used as guidelines, being based on
simulations that ignore the impact of wave e↵ects on
baryons.
The first objects in the Universe o↵er a unique way

to tighten the observational constraints. Compared to
the local Universe, in which galaxies in

:::::::
1011 M�:

dark
matter halos of 1011 M� are typical, an early CDM uni-
verse (at redshift z ⇠ 30when the Universe is

:
,
::::
i.e.,

108 years old
::::
after

:::
the

::::
Big

:::::
Bang) is populated by much

smaller nearly-spherical halos of ⇠ 105�107 M� in which
proto-galaxies are born [33]. In contrast, the

:::::
WDM

:
first

star-forming structures in WDM form later and are fila-
mentary due to the initial suppression of the dark matter
power spectrum by particle free-streaming [34, 35]. Com-
pared to WDM, wavelike FDM additionally features in-
terference patterns and soliton coreson kpc scales, as is
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Gravitational Bose-Einstein condensation in the kinetic regime
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We study Bose-Einstein condensation and formation of Bose stars in the virialized dark matter
halos/miniclusters by universal gravitational interactions. We prove that this phenomenon does
occur and it is described by kinetic equation. We give expression for the condensation time. Our
results suggest that Bose stars may form kinetically in the mainstream dark matter models such as
invisible QCD axions and Fuzzy Dark Matter.

1. Introduction. Bose stars are lumps of Bose -
Einstein condensate bounded by self-gravity [1, 2]. They
can be made of condensed dark matter (DM) bosons —
say, invisible QCD axions [3] or Fuzzy DM [4]. That is
why their physics, phenomenology and observational sig-
natures remain in the focus of cosmological research for
decades [5], see recent papers [6, 7]. Unfortunately, for-
mation of Bose stars is still poorly understood and many
recent works have to assume their existence.

In this Letter we study Bose-Einstein condensation in
the virialized DM halos/miniclusters caused by univer-
sal gravitational interactions. We work at large occupa-
tion numbers which is correct if the DM bosons are light.
Notably, we consider kinetic regime where the initial co-
herence length and period of the DM particles are close
to the de Broglie values (mv)�1 and (mv

2)�1 and much
smaller than the halo size R and condensation time ⌧gr,

mvR � 1 , mv
2
⌧gr � 1 . (1)

We numerically solve microscopic equations for the en-
semble of gravitating bosons in this case and find that
the Bose stars indeed form. We derive expression for ⌧gr
and study kinetics of the process.

Up to our knowledge, gravitational Bose-Einstein con-
densation in kinetic regime has not been observed in
simulations before. Old works considered only con-
tact interactions between the DM bosons [8] which
are non-universal and suppressed by quartic constants
� ⇠ 10�50 [9] and 10�100 [10] in models of QCD axions
and string axions/Fuzzy DM. Our results show that in
these cases gravitational condensation is faster: although
the Newton’s constant Gm

2 is tiny, its e↵ect is enhanced
by collective interaction of large fluctuations in the boson
gas at large distances, cf. [11].

On the other hand, all previous numerical studies of
Bose star formation considered coherent initial configura-
tions of the bosonic field — a Gaussian wavepacket [12] or
the Bose stars themself [13, 14]. A spectacular simulation
of structure formation by wavelike/Fuzzy DM [13, 15]
started from (almost) homogeneous Bose-Einstein con-
densate. In all these cases the Bose stars form almost
immediately [12, 13] from the lowest-energy part of the
initial condensate.

We consider entirely di↵erent situation (1) when the
DM bosons are virialized in the initial state. The closest

t̃ = 0 | ̃|
ỹ

x̃ x̃

t̃ = 1.3 · 106

0

.02

.1

FIG. 1. Formation of Bose star from random field with initial
distribution | ̃p̃|2 / e�p̃2

and total mass Ñ = 50 in the box
0  x̃, ỹ, z̃ < 125. These values correspond to the center of
the axion minicluster with Mc ⇠ 10�13M� and � ⇠ 2.7 in
Sec. 8. (a), (b) Sections z̃ = const of the solution | ̃(t̃, x̃)|
at (a) t̃ = 0 and (b) t̃ > ⌧̃gr ⇡ 1.08 · 106. (c) Radial profile
| ̃(r̃)| of the object in Fig. 1b (points) compared to the Bose
star  ̃s(r̃) with !̃s ⇡ �0.7 (line). (d) Maximum of | ̃(x̃)|
over the box as a function of time. (e) Spectra (3) at times
of Figs. 1a, b and at the eve of Bose star nucleation, t̃ =
1.05 · 106 ⇠ ⌧̃gr. (f) The spectrum at t ⇠ ⌧gr (dashed line)
versus the solution of Eq. (5) (circles) and thermal law F̃ /
!̃�1/2 (dots).
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FIG. 3. The CMB anisotropies generated by the ISW contribution due to the EDE. Note that lres = kres(⌧0 � ⌧nl) is denoted
by the thin vertical line. The peak in the Cl’s is shifted to lower values due to the line-of sight integral in calculating the ISW
e↵ect.

generate 2D maps of the temperature fluctuations as a function of redshift. The maps receive significant contri-

MA, Lozanov & Smith (in progress)

Mocz et. al (2019)

Levkov et. al (2015)

Nguyen, Luo & Hulet (2017)
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FIG. S4. Snapshots of the values of the Modulus (first row) and Higgs (second row) fields on a two-dimensional slice through
the simulation box at four di↵erent times. Around the time of backreaction, t ⇡ 23m�1 (second column), the Higgs field forms
domains (‘bubbles’) with � = ±

p
2|�|f/q. They disappear within �t ⇠ 10m�1, due to collisions, as well as oscillations of the

remnant � condensate. The used parameters are b = 1, q = 102, M = 10�12
mpl, f = mpl.

S2 Gravitational Waves and Lattice Simulations

1. Equations of Motion

We calculate the gravitational waves generated by the nonlinear field dynamics using

ḧ
TT
ij + 3Hḣ

TT
ij �

r
2

a2
h

TT
ij =

2

m
2
pl

⇧TT
ij (S15)

where h
TT
ij is the spatial, transverse, traceless part of the metric perturbations (gµ⌫ = g

FRW
µ⌫ + hµ⌫), and ⇧TT

ij is the
transverse-traceless part of the energy momentum tensor of the fields which sources the gravitational waves. This is
a “passive calculation” where the (small) backreaction of the metric perturbations on the fields is ignored.

2. Characteristic Scales

Let us consider a gravitational wave generated at a = ag in the early universe with a co-moving wavenumber k.
By taking into account red-shifting due to expansion and conservation of entropy after thermalization, the frequency
today of this GW signal is

f0 =
1

2⇡

k

a0
=

1

2⇡

✓
k

agHg

◆p
HgH0

✓
ag

ath

◆(1�3wmod)/4 ✓
gth

g0

◆�1/12

⌦1/4
r,0 , (S16)

where Hg is the Hubble parameter of the universe at the time of generation of the gravitational waves, gth and g0

are the e↵ective number of relativistic degrees of freedom at the epoch of thermalization (ath) and today (a0), ⌦r,0 is
the fractional energy density in relativistic species today and wmod is the mean equation of state between generation
and thermalization (after which we assume a standard thermal history). We can parametrize the characteristic
wavenumber at which the gravitational waves are generated:

k

agHg
⌘ �

�1
⇠ q

1/2 mplp
f�g

, (S17)
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transverse-traceless part of the energy momentum tensor of the fields which sources the gravitational waves. This is
a “passive calculation” where the (small) backreaction of the metric perturbations on the fields is ignored.

2. Characteristic Scales

Let us consider a gravitational wave generated at a = ag in the early universe with a co-moving wavenumber k.
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where Hg is the Hubble parameter of the universe at the time of generation of the gravitational waves, gth and g0

are the e↵ective number of relativistic degrees of freedom at the epoch of thermalization (ath) and today (a0), ⌦r,0 is
the fractional energy density in relativistic species today and wmod is the mean equation of state between generation
and thermalization (after which we assume a standard thermal history). We can parametrize the characteristic
wavenumber at which the gravitational waves are generated:
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MA, Fan, Lozanov,  Reece (2018)

For a general moduli review, see Kane Watson and Sinha (2015)

also see: Kirkpatrick, Mirasola and Prescod-Weinstein
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FIG. 1. Mind map of gravitational wave probes of dark matter. See text for details.

produced non-perturbatively and discuss the de-
tectability of the stochastic gravitational wave
background that they would produce.

• Phase transitions. Finally, in Sec. VII, we review
the prospects for detecting a stochastic GW back-
ground induced by cosmological phase transitions,
and the implications that this detection would have
for DM.

For each of these areas, we identify the most urgent
challenges, open problems and the prospects for reso-
lution for these outstanding questions. We argue that
present and upcoming gravitational wave probes o↵er
unprecedented opportunities for DM studies, and we en-

courage a strong community e↵ort at the interface be-
tween these two exciting fields of research.

II. PRIMORDIAL BLACK HOLES

Primordial black holes (PBHs) have been of longstand-
ing theoretical interest [12, 13], particularly as a possible
component of DM [14]. Such interest has been reinvigo-
rated with the dawn of GW astrophysics, as PBHs have
the potential to produce signals for current and future
GW experiments [15–17]. The existence of non-baryonic
matter (i.e. matter that does not appreciably interact
with the electroweak or strong sectors of the Standard
Model) can be seen as early as Big Bang Nucleosynthe-

talk by D. Croon

Helfer et. al 2018



observations: 

what observations do we need to figure out self-couplings and couplings of the inflation to SM (or intermediaries)

[eg. high frequency gravitational waves? thermal and non-thermal relics ? (CMB/LSS)] 

simulations: 

numerical simulations with increasingly realistic field content including Abelian and non-Abelian fields, fermions etc. and 
non-trivial field configurations + thermalization 

theory : 

model dependent vs. relatively universal predictions from model-building perspective and those resulting from 
nonlinear phenomena

+ detailed history of the Standard Model + Dark Matter + …

LatticeEasy (2000), Defrost (2008), PSpectre (2010), HLattice (2011), GABE/Rel (2013/19), GFiRe (2019), CosmoLattice (2021)

summary & looking ahead

2011.12414 (Challenges & Opportunities …) 1610.02743 (CMB-S4 science book)
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Figure 9. Snapshots of the simulation box at four different times for the case where V (') has
a Sombrero-hat shape. The orange points have non-zero winding number, n, see Eq. (4.9). The
physical size of the simulation box, L, is given in units of the Hubble radius, H

�1. There is a copious
production of subhorizon Nielsen-Olesen string loops around the time of backreaction. The loops
eventually start to evaporate away. In the last panel the string core is resolved by O[10] points per
linear dimension.

amplitude of '̄1 oscillations, see Eq. (4.2), the initial parametric resonance phase is unaffected
by v. We still have significant �A resonant particle production. Again parametric resonance
does not develop in the Higgs due to our choice of e, as explained in Section 4.1. Only once
�A begins to backreact, there is significant amplification of a broad range of comoving Higgs
modes. After backreaction, the power spectra of the Higgs and the gauge fields again settle
into stable broad single-peaked configurations. Since the power spectra plot are qualitatively
similar to the v = 0 case, we have relegated them to an appendix.

Cosmic strings: Plotting the evolution of the fields in real space, reveals a phenomenon
that cannot be picked out from the evolution of the power spectra. Note that the v 6= 0
Higgs potential (right panel in Fig. 3), can support the non-trivial field configurations known
as topological strings [116]. They can be generated during thermal phase transitions via the
Kibble mechanism in the form of cosmic string networks (for reviews see, e.g., [14, 15, 117]).
Strings can be also produced after backreaction due to parametric resonance [27, 118–120],
just like in our case. Since strings are characterized by a non-zero integer topological number,
known as the winding number, n,

n ⌘ 1

2⇡

I
dl · r arg(') , (4.9)

we plot the lattice points with n 6= 0 at four different times in Fig. 9.
The first panel in Fig. 9 is at the start of the simulation. All lattice points have n = 0,

consistent with the inflationary initial conditions, see Eqs. (3.14) and (3.16). Towards the end
of the resonant particle production and the onset of backreaction we observe copious forma-
tion of strings and string loops with a sub-Hubble correlation length, as shown in the second
panel in Fig. 9. The strings then interact,13 reconnect into loops and gradually evaporate
via classical radiation. We see features developing on loops, which split from the larger loop
to form smaller loops, which then decay away. The last large loop in our simulation is seen

13The 2-dimensional counterparts to our strings are known as vortices. The long-range interaction force
between like-charged vortices is repulsive for e

2
< 2� [109], and hence for our parameter choice, Eq. (4.3).
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