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soliton ?

•  discovered in nonlinear waves in water in canals (John Scott Russell, 1834)
• optics, hydrodynamics, BECs, high energy physics, and cosmology

water

Image Credit: Heriot-Watt University

very-long lived, dynamical excitation in a field, with nonlinearities 
balancing dispersion



solitons in axion-like fields
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Figure 2 | A slice of the density field of the  DM simulation on various
scales at z=0.1. This scaled sequence (each of thickness 60 pc) shows
how quantum interference patterns can be clearly seen everywhere from
the large-scale filaments, tangential fringes near the virial boundaries, to
the granular structure inside the haloes. Distinct solitonic cores with radii
⇠0.3–1.6kpc are found within collapsed haloes (which have virial masses
Mvir ⇠ 109˘1011 M�). The density shown here spans over nine orders of
magnitude, from 10�1 to 108 (normalized to the cosmic mean density). The
colour map scales logarithmically, with cyan corresponding to density .10.

giving rise to a co-moving Jeans length, �J / (1+z)1/4m�1/2
B , during

the matter-dominated epoch17. The insensitivity of �J to redshift, z ,
generates a sharp cuto�mass belowwhich structures are suppressed.
Cosmological simulations in this context turn out to be much
more challenging than standard N-body simulations, as the highest
frequency oscillations, !, given approximately by the matter wave
dispersion relation, ! /m�1

B �
�2, where � is the wavelength, occur

on the smallest scales, requiring very fine temporal resolution even
formoderate spatial resolution (Supplementary Fig. 1). In this work,
we optimize an adaptive-mesh-refinement (AMR) scheme, with
graphic processing unit acceleration, improving performance by
almost two orders of magnitude22 (see Supplementary Section 1
for details).

Figure 1 demonstrates that despite the completely di�erent
calculations employed, the pattern of filaments and voids generated
by a conventional N-body particle3CDM simulation is remarkably
indistinguishable from the wavelike 3 DM for the same linear
power spectrum (Supplementary Fig. 3). Here 3 represents the
cosmological constant. This agreement is desirable given the
success of standard 3CDM in describing the statistics of large-scale
structure. To examine the wave nature that distinguishes DM from
CDM on small scales, we re-simulate with a very high maximum
resolution of 60 pc for a 2 Mpc co-moving box, so that the densest
objects formed of &300 pc size are well resolved with ⇠103 grids. A
slice through this box is shown in Fig. 2, revealing fine interference
fringes defining long filaments, with tangential fringes near the
boundaries of virialized objects, where the de Broglie wavelengths
depend on the local velocity of matter. An unexpected feature of
our DMsimulations is the generation of prominent dense coherent
standing waves of dark matter in the centre of every gravitational
bound object, forming a flat core with a sharp boundary (Figs 2
and 3). These dark matter cores grow as material is accreted and
are surrounded by virialized haloes of material with fine-scale,
large-amplitude cellular interference, which continuously fluctuate
in density and velocity, generating quantum and turbulent pressure
support against gravity.

The central density profiles of all our collapsed cores fit well
the stable soliton solution of the Schrödinger–Poisson equation, as
shown in Fig. 3 (see also Supplementary Section 2 and Figs 2 and 4).
On the other hand, except for the lightest halo, which has just formed
and is not yet virialized, the outer profiles of other haloes possess a
steepening logarithmic slope, similar to the Navarro–Frenk–White
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Figure 3 | Radial density profiles of haloes formed in the  DMmodel.
Dashed lines with various symbols show six examples of the halo profiles
normalized to the cosmic mean density. All haloes are found to possess a
distinct inner core fitted extremely well by the soliton solution (solid lines).
A detailed soliton fit for the largest halo is inset, where the error is the root-
mean-square scatter of density in each radial bin. A Navarro–Frenk–White
(NFW) profile representing standard CDM is also shown for comparison
(black dot-dashed line, with a very large scale radius of 10kpc), which fits
well the profiles outside the cores. The yellow hatched area indicates the
⇢300 of the dSph satellites around the Milky Way3,24, which is consistent
with the majority of galaxy haloes formed in the  DM simulations.

(NFW) profile23 of standard CDM. These solitonic cores, which are
gravitationally self-bound and appear as additional mass clumps
superposed on the NFW profile, are clearly distinct from the cores
formed by WDM and collisional CDM, which truncate the NFW
cuspy inner profile at lower values and require an external halo for
confinement. The radius of the soliton scales inversely with mass,
such that the widest cores are the least massive and are hosted by the
least massive galaxies. Eighty percent of the haloes in the simulation
have an average density within 300 pc (defined as ⇢300) in the range
5.3⇥ 10�3–6.1⇥ 10�1 M�/pc3, consistent with the dSph satellites
around the Milky Way3,24, and objects like these are resilient to
close interaction with massive galaxies. By contrast, the very lowest
mass objects in our simulation have ⇢300 ⇠ 4.0⇥ 10�4 M�/pc3 and
Mvir ⇠108 M�, but exist only briefly as they are vulnerable to tidal
disruption by large galaxies in our simulations. Together with the
cuto� in the power spectrum at the Jeans scale (Supplementary
Fig. 3), this leads to a marked suppression of substructure below
a few times 108 M� relative to the prediction of standard CDM
(refs 8,9). A quantitative evaluation of the mass function of satellite
galaxies predicted by  DM with larger simulations is thus another
crucial test to be addressed.

The prominent solitonic cores uncovered in our simulations
provide an opportunity to estimate the boson mass, mB, by
comparison with observations, particularly for dSph galaxies where
dark matter dominates. The local Fornax dSph galaxy is the best
studied case, with thousands of stellar velocity measurements,
allowing a detailed comparison with our soliton mass profile.
We perform a Jeans analysis for the dominant intermediate
metallicity stellar population, which exhibits a nearly uniform
projected velocity dispersion (�k; ref. 25). We simultaneously
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We study Bose-Einstein condensation and formation of Bose stars in the virialized dark matter
halos/miniclusters by universal gravitational interactions. We prove that this phenomenon does
occur and it is described by kinetic equation. We give expression for the condensation time. Our
results suggest that Bose stars may form kinetically in the mainstream dark matter models such as
invisible QCD axions and Fuzzy Dark Matter.

1. Introduction. Bose stars are lumps of Bose -
Einstein condensate bounded by self-gravity [1, 2]. They
can be made of condensed dark matter (DM) bosons —
say, invisible QCD axions [3] or Fuzzy DM [4]. That is
why their physics, phenomenology and observational sig-
natures remain in the focus of cosmological research for
decades [5], see recent papers [6, 7]. Unfortunately, for-
mation of Bose stars is still poorly understood and many
recent works have to assume their existence.

In this Letter we study Bose-Einstein condensation in
the virialized DM halos/miniclusters caused by univer-
sal gravitational interactions. We work at large occupa-
tion numbers which is correct if the DM bosons are light.
Notably, we consider kinetic regime where the initial co-
herence length and period of the DM particles are close
to the de Broglie values (mv)�1 and (mv

2)�1 and much
smaller than the halo size R and condensation time ⌧gr,

mvR � 1 , mv
2
⌧gr � 1 . (1)

We numerically solve microscopic equations for the en-
semble of gravitating bosons in this case and find that
the Bose stars indeed form. We derive expression for ⌧gr
and study kinetics of the process.

Up to our knowledge, gravitational Bose-Einstein con-
densation in kinetic regime has not been observed in
simulations before. Old works considered only con-
tact interactions between the DM bosons [8] which
are non-universal and suppressed by quartic constants
� ⇠ 10�50 [9] and 10�100 [10] in models of QCD axions
and string axions/Fuzzy DM. Our results show that in
these cases gravitational condensation is faster: although
the Newton’s constant Gm

2 is tiny, its e↵ect is enhanced
by collective interaction of large fluctuations in the boson
gas at large distances, cf. [11].

On the other hand, all previous numerical studies of
Bose star formation considered coherent initial configura-
tions of the bosonic field — a Gaussian wavepacket [12] or
the Bose stars themself [13, 14]. A spectacular simulation
of structure formation by wavelike/Fuzzy DM [13, 15]
started from (almost) homogeneous Bose-Einstein con-
densate. In all these cases the Bose stars form almost
immediately [12, 13] from the lowest-energy part of the
initial condensate.

We consider entirely di↵erent situation (1) when the
DM bosons are virialized in the initial state. The closest
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FIG. 1. Formation of Bose star from random field with initial
distribution | ̃p̃|2 / e�p̃2

and total mass Ñ = 50 in the box
0  x̃, ỹ, z̃ < 125. These values correspond to the center of
the axion minicluster with Mc ⇠ 10�13M� and � ⇠ 2.7 in
Sec. 8. (a), (b) Sections z̃ = const of the solution | ̃(t̃, x̃)|
at (a) t̃ = 0 and (b) t̃ > ⌧̃gr ⇡ 1.08 · 106. (c) Radial profile
| ̃(r̃)| of the object in Fig. 1b (points) compared to the Bose
star  ̃s(r̃) with !̃s ⇡ �0.7 (line). (d) Maximum of | ̃(x̃)|
over the box as a function of time. (e) Spectra (3) at times
of Figs. 1a, b and at the eve of Bose star nucleation, t̃ =
1.05 · 106 ⇠ ⌧̃gr. (f) The spectrum at t ⇠ ⌧gr (dashed line)
versus the solution of Eq. (5) (circles) and thermal law F̃ /
!̃�1/2 (dots).
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“solitons” in axion-like fields can form naturally in the inflaton and in dark matter

also phase transitions, nucleation around BHs, etc.

Schive et. al (2015)

Levkov et. al (2018)

MA & Mocz (2019)

- can have gravitational and non-gravitational effects



radiation from collisions of solitons

main takeaways

radiation from solitons in external electromagnetic fields 
(with or without plasma)

!p 6= 0

+ early universe effects ?

+ Fast Radio Bursts (maybe)

*gravitational and electromagnetic possible

axion stars/oscillons/solitons can radiate energy in electromagnetic fields ga��E ·B



main takeaways

axion stars/oscillons/solitons can radiate energy in electromagnetic fields

radiated power depends on axion-photon coupling and characteristics of soliton configuration
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lots of excitement: constrain axion photon coupling

image credit: Ciaran O’hare
ga��E ·B
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why EM radiation from solitons ?

solitons with coherence & large (non-redshifting) 

central amplitudes — can significantly change 

expectations of axion-photon conversion

ga��E ·B

*global picture in terms of the soliton properties, 

coupling strengths etc.



synopsis of talk

• orientation

• *physics of soliton formation, stability and clustering (later)

• light (and gravitational waves) from dark solitons



our cosmic story

inflation

dark matter

lots of fun high energy physics
 + phase transitions here

lots of fun astrophysics here



after inflation

dark matter

lots of fun high energy physics
 + phase transitions here

lots of fun astrophysics here

our cosmic story



length scales ?

microscopic length scales
end of inflation

macroscopic length scales 
but (usually) smaller than galactic scales

dark matter

sizes scales with inverse mass of the scalar field
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clustering and gravitational wave 
production

relevant for photon production

cosmological scalar fields + gravity + photons

* scalar field is real valued
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*if coupling to photons is very large, it can significantly influence formation as well, particularly relevant for (p)reheating applications

cosmological scalar fields + gravity
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Figure 1. Left: The scalar field potentials that support solitons. For the quadratic potential and
cosine potential, gravity is essential for supporting long-lived, whereas the “flattened” potentials
can support solitons without gravity, but typically require amplitude ⇠ f . For any potential where
solitons have a small amplitude compared to f , gravity is essential for long-lived stable solitons.
Right: A schematic representation of a solitons. Dilute solitons have '0 ⌧ f and R � m

�1. Dense
solitons have '0 ⇠ f and R ⇠ few ⇥ m

�1. The frequency is always ⇡ m.

gravity supported scalar field configurations to exist, but ignores gravitational e↵ects (such

as redshifts) in the dynamics of electromagnetic fields and also ignores the contribution of

electromagnetic fields in determining the gravitational potential.1

3 Compact axion stars in constant electromagnetic fields

We are interested in electromagnetic radiation generated by a spatially localized, coherently

oscillating axion field configuration of the approximate form

�(t, r) ⇡ '(r) cos(!t) . (3.1)

Such solutions of the nonlinear Klein-Gordon equation (with and without gravity), which

we generically refer to as solitons, are a result of gradients competing against (i) attractive

self-interactions in the potential V (�) and/or (ii) gravitational interactions.

The detailed form of ' depends on the potential V (�) as well as !. For most of our

purposes, we use an ansatz of the form '(r) = '0 sech (r/R) so that

�(t, r) = '0 sech (r/R) cos !t . (3.2)

The above form is motivated by the fact that it has the correct large distance behavior for

such solutions []: ⇠ e
�r/R, with R ⇠ 1/

p
m2 � !2 where m > !. Typically, ! is not too

di↵erent from m, however, '0 and R can vary significantly for small changes in ! close to

1We are also assuming ga� is su�ciently small here, and the electromagnetic fields are the subdominant

contribution to the total energy density of the system.

– 4 –

“opening up” of the potential means there is an 
attractive interaction in addition to gravity

opening up potentials common for inflation and 
axion-like fields



solitons : oscillons, axion stars …

spatially localized

coherently oscillating

exceptionally long-lived

*ask me about lifetimes, see Zhang et. al (2020a, b)

For example:

Bogolubsky & Makhankov (1976)
Segur & Kruskal (1987)
Seidel and Sun (1990)
Gleiser (1994)
Copeland et al. (1995) 
MA & Shirokoff (2010)
Hertzberg (2011)
MA (2013)
Mukaida et. al (2016)
Zhang, MA, et. al (2020)
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cosine potential, gravity is essential for supporting long-lived, whereas the “flattened” potentials
can support solitons without gravity, but typically require amplitude ⇠ f . For any potential where
solitons have a small amplitude compared to f , gravity is essential for long-lived stable solitons.
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�1. Dense
solitons have '0 ⇠ f and R ⇠ few ⇥ m

�1. The frequency is always ⇡ m.

gravity supported scalar field configurations to exist, but ignores gravitational e↵ects (such

as redshifts) in the dynamics of electromagnetic fields and also ignores the contribution of

electromagnetic fields in determining the gravitational potential.1

3 Compact axion stars in constant electromagnetic fields

We are interested in electromagnetic radiation generated by a spatially localized, coherently

oscillating axion field configuration of the approximate form

�(t, r) ⇡ '(r) cos(!t) . (3.1)

Such solutions of the nonlinear Klein-Gordon equation (with and without gravity), which

we generically refer to as solitons, are a result of gradients competing against (i) attractive

self-interactions in the potential V (�) and/or (ii) gravitational interactions.

The detailed form of ' depends on the potential V (�) as well as !. For most of our

purposes, we use an ansatz of the form '(r) = '0 sech (r/R) so that

�(t, r) = '0 sech (r/R) cos !t . (3.2)

The above form is motivated by the fact that it has the correct large distance behavior for

such solutions []: ⇠ e
�r/R, with R ⇠ 1/

p
m2 � !2 where m > !. Typically, ! is not too

di↵erent from m, however, '0 and R can vary significantly for small changes in ! close to

1We are also assuming ga� is su�ciently small here, and the electromagnetic fields are the subdominant

contribution to the total energy density of the system.
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gravity supported scalar field configurations to exist, but ignores gravitational e↵ects (such

as redshifts) in the dynamics of electromagnetic fields and also ignores the contribution of

electromagnetic fields in determining the gravitational potential.1

3 Compact axion stars in constant electromagnetic fields

We are interested in electromagnetic radiation generated by a spatially localized, coherently

oscillating axion field configuration of the approximate form

�(t, r) ⇡ '(r) cos(!t) . (3.1)

Such solutions of the nonlinear Klein-Gordon equation (with and without gravity), which

we generically refer to as solitons, are a result of gradients competing against (i) attractive

self-interactions in the potential V (�) and/or (ii) gravitational interactions.

The detailed form of ' depends on the potential V (�) as well as !. For most of our

purposes, we use an ansatz of the form '(r) = '0 sech (r/R) so that

�(t, r) = '0 sech (r/R) cos !t . (3.2)

The above form is motivated by the fact that it has the correct large distance behavior for

such solutions []: ⇠ e
�r/R, with R ⇠ 1/

p
m2 � !2 where m > !. Typically, ! is not too

di↵erent from m, however, '0 and R can vary significantly for small changes in ! close to

1We are also assuming ga� is su�ciently small here, and the electromagnetic fields are the subdominant

contribution to the total energy density of the system.
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*lifetimes can be much shorter than age of universe for very dense objects, see Zhang et. al (2020a, b)
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gravity supported scalar field configurations to exist, but ignores gravitational e↵ects (such

as redshifts) in the dynamics of electromagnetic fields and also ignores the contribution of

electromagnetic fields in determining the gravitational potential.1

3 Compact axion stars in constant electromagnetic fields

We are interested in electromagnetic radiation generated by a spatially localized, coherently

oscillating axion field configuration of the approximate form

�(t, r) ⇡ '(r) cos(!t) . (3.1)

Such solutions of the nonlinear Klein-Gordon equation (with and without gravity), which

we generically refer to as solitons, are a result of gradients competing against (i) attractive

self-interactions in the potential V (�) and/or (ii) gravitational interactions.

The detailed form of ' depends on the potential V (�) as well as !. For most of our

purposes, we use an ansatz of the form '(r) = '0 sech (r/R) so that

�(t, r) = '0 sech (r/R) cos !t . (3.2)

The above form is motivated by the fact that it has the correct large distance behavior for

such solutions []: ⇠ e
�r/R, with R ⇠ 1/

p
m2 � !2 where m > !. Typically, ! is not too

di↵erent from m, however, '0 and R can vary significantly for small changes in ! close to

1We are also assuming ga� is su�ciently small here, and the electromagnetic fields are the subdominant

contribution to the total energy density of the system.
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axion electrodynamics

and 5, we study the axion-photon analytically and numerically. In Sec. 6, we discuss the

observation. Our conclusions are presented in Sec. 7.

2 Axion electrodynamics
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Note that @µj
µ = 0. Note that we have assumed that there are no free currents or charges

in our system. The above four-current arises from axion-electromagnetic interactions.

We define electric and magnetic fields in the usual way

Ei = Fi0 and Bi = (1/2)✏ijkF
jk

, (2.5)

with ✏ijk = ✏
ijk. Then, the coupled Klein-Gordon and Maxwell’s equations are then given

by
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Ḃ = �r ⇥ E ,

r · E = �ga�r� · B ,

r · B = 0 .

(2.6)
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. (2.7)

In the above equations, we have ignored gravitational interactions. If one wishes to included

weak field gravity (gravitational potential | | ⌧ 1), the substitution @�V ! (1 + 2 )@�V

in the equation of motion for the scalar field captures the most relevant contributions due

to gravity. Moreover, we will need to include a Poisson equation r
2 = (1/2m

2
pl)⇢� where

⇢� is the density of the axion field to close the system. This prescription allows certain
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Ḃ = �r ⇥ E ,

r · E = �ga�r� · B ,

r · B = 0 .

(2.6)

Note that the e↵ective charge and current densities are

⇢ = �ga�r� · B and J = ga�

⇣
�̇B + r� ⇥ E

⌘
. (2.7)

In the above equations, we have ignored gravitational interactions. If one wishes to included

weak field gravity (gravitational potential | | ⌧ 1), the substitution @�V ! (1 + 2 )@�V

in the equation of motion for the scalar field captures the most relevant contributions due

to gravity. Moreover, we will need to include a Poisson equation r
2 = (1/2m

2
pl)⇢� where

⇢� is the density of the axion field to close the system. This prescription allows certain

– 3 –

and 5, we study the axion-photon analytically and numerically. In Sec. 6, we discuss the

observation. Our conclusions are presented in Sec. 7.

2 Axion electrodynamics

Our system consists of a real valued, pseudo-scalar field � coupled to the electromagnetic

field. The action for our system is given by

S =

Z
d
4
x


�

1

2
@µ�@

µ
� � V (�) �

1

4
Fµ⌫F

µ⌫
�

ga�

4
�Fµ⌫F̃

µ⌫

�
, (2.1)

where we adopt �+++ signature of the metric. The electromagnetic field-strength tensor,

and its dual are:

Fµ⌫ = @µA⌫ � @⌫Aµ , F̃
µ⌫ =

1

2
✏
µ⌫⇢�

F⇢�, (2.2)

where ✏
0123 = 1. The equations of motion for the axion and the gauge fields are given by

@µ@
µ
� � @�V =

ga�

4
Fµ⌫F̃

µ⌫
,

@µF
µ⌫ = �j

⌫
, @µF̃

µ⌫ = 0 ,

(2.3)

where

j
⌫

⌘ ga�@µ�F̃
µ⌫

. (2.4)

Note that @µj
µ = 0. Note that we have assumed that there are no free currents or charges

in our system. The above four-current arises from axion-electromagnetic interactions.

We define electric and magnetic fields in the usual way

Ei = Fi0 and Bi = (1/2)✏ijkF
jk

, (2.5)

with ✏ijk = ✏
ijk. Then, the coupled Klein-Gordon and Maxwell’s equations are then given

by
�̈ � r

2
� + @�V = ga�E · B ,
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electromagnetic radiation from solitons

is heavily suppressed. As a result, most of our focus will be on the dense, smaller radius

solitons.

4 Analytic calculation of electromagnetic radiation

In this section, we calculate the electromagnetic radiation generated by spatially localized,

coherently oscillating axion configurations (solitons) discussed in the previous section. In

presence of external electromagnetic fields, such configurations can be e↵ectively thought of

as time-dependent charge densities and currents which produce electromagnetic radiation.

We provide analytic results for the produced radiation at leading order in the coupling ga� ,

and discuss di�culties with going beyond the leading order analytically. We also discuss

the expected non-perturbative (in the coupling) results in general terms.

The first-order Maxwell’s equations (2.6) can be rearranged into following second-order

equations:

Ë � r2E = �r⇢ � J̇ , B̈ � r2B = r ⇥ J . (4.1)

The 4-current (⇢,J) defined in (2.7) is spatially localized because the axion field configu-

ration � given by eq. (3.1) is spatially localized. Note that (⇢,J) depend on � as well as

the E and B via eq. (2.7). Beyond the spatial extent of the axion stars, both E and B

propagate like free waves.

4.1 Floquet analysis

Because the system is linear in E and B fields, and we assume � to be periodic in time,

we expect the solutions to obey Floquet’s Theorem [? ? ]. That is, the solutions are either

bounded and periodic, or have exponential growth in time. However calculating Floquet

exponents (µ), or explicit solutions is a tall order because of the large number of coupled

degrees of freedom associated with each spatial point (formally infinite, and usually a rather

large number in discretized three dimensions). Equivalently, the modes in Fourier space

are coupled because of the spatial variation in �.2

While the explicit calculation of the Floquet exponents is non-trivial, we can get a

physical understanding of their scaling with parameters and the parametric boundary be-

tween bounded and unbounded solutions as follows [? ]. For the homogeneous axion field

with amplitude '0, the electromagnetic fields are always unstable, with the k ⇠ m/2 EM

field modes growing as e
µhomt where µhom ⇠ ga�'0/m (at least when ga�'0 is not too large,

see Appendix ?? for details). In contrast, for the localized soliton configuration, we expect

a threshold value of the coupling ga�'0 for which we get exponentially growing solutions.

'0 should now also be thought of as the central amplitude of the oscillon. The threshold

2The number of Floquet exponents is equal to the dimensionality of phase space for the system. For a

system with N3 Fourier modes, there would be 2N3 Floquet exponents. For a coupled system of Fourier

modes (ie. inhomogeneous background), each Floquet exponent does not correspond to a single Fourier

mode, but a linear combination of modes. Note that Floquet exponents are complex in general. When they

have a non-zero real part, we can get exponential solutions in time. When we refer to Floquet exponents

from here onwards, we are referring to the real part.
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where
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Note that @µj
µ = 0. Note that we have assumed that there are no free currents or charges

in our system. The above four-current arises from axion-electromagnetic interactions.

We define electric and magnetic fields in the usual way

Ei = Fi0 and Bi = (1/2)✏ijkF
jk

, (2.5)

with ✏ijk = ✏
ijk. Then, the coupled Klein-Gordon and Maxwell’s equations are then given

by
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2
� + @�V = ga�E · B ,

Ė = r ⇥ B � ga�

⇣
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,

Ḃ = �r ⇥ E ,

r · E = �ga�r� · B ,

r · B = 0 .

(2.6)

Note that the e↵ective charge and current densities are

⇢ = �ga�r� · B and J = ga�

⇣
�̇B + r� ⇥ E

⌘
. (2.7)

In the above equations, we have ignored gravitational interactions. If one wishes to included

weak field gravity (gravitational potential | | ⌧ 1), the substitution @�V ! (1 + 2 )@�V

in the equation of motion for the scalar field captures the most relevant contributions due

to gravity. Moreover, we will need to include a Poisson equation r
2 = (1/2m

2
pl)⇢� where

⇢� is the density of the axion field to close the system. This prescription allows certain

– 3 –

and 5, we study the axion-photon analytically and numerically. In Sec. 6, we discuss the

observation. Our conclusions are presented in Sec. 7.

2 Axion electrodynamics

Our system consists of a real valued, pseudo-scalar field � coupled to the electromagnetic

field. The action for our system is given by

S =

Z
d
4
x


�

1

2
@µ�@

µ
� � V (�) �

1

4
Fµ⌫F

µ⌫
�

ga�

4
�Fµ⌫F̃

µ⌫

�
, (2.1)

where we adopt �+++ signature of the metric. The electromagnetic field-strength tensor,

and its dual are:

Fµ⌫ = @µA⌫ � @⌫Aµ , F̃
µ⌫ =

1

2
✏
µ⌫⇢�

F⇢�, (2.2)

where ✏
0123 = 1. The equations of motion for the axion and the gauge fields are given by

@µ@
µ
� � @�V =

ga�

4
Fµ⌫F̃

µ⌫
,

@µF
µ⌫ = �j

⌫
, @µF̃

µ⌫ = 0 ,

(2.3)

where

j
⌫

⌘ ga�@µ�F̃
µ⌫

. (2.4)

Note that @µj
µ = 0. Note that we have assumed that there are no free currents or charges

in our system. The above four-current arises from axion-electromagnetic interactions.

We define electric and magnetic fields in the usual way

Ei = Fi0 and Bi = (1/2)✏ijkF
jk

, (2.5)

with ✏ijk = ✏
ijk. Then, the coupled Klein-Gordon and Maxwell’s equations are then given

by
�̈ � r

2
� + @�V = ga�E · B ,
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Ḃ = �r ⇥ E ,

r · E = �ga�r� · B ,

r · B = 0 .

(2.6)

Note that the e↵ective charge and current densities are

⇢ = �ga�r� · B and J = ga�

⇣
�̇B + r� ⇥ E

⌘
. (2.7)

In the above equations, we have ignored gravitational interactions. If one wishes to included

weak field gravity (gravitational potential | | ⌧ 1), the substitution @�V ! (1 + 2 )@�V

in the equation of motion for the scalar field captures the most relevant contributions due

to gravity. Moreover, we will need to include a Poisson equation r
2 = (1/2m
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pl)⇢� where

⇢� is the density of the axion field to close the system. This prescription allows certain
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is heavily suppressed. As a result, most of our focus will be on the dense, smaller radius

solitons.

4 Analytic calculation of electromagnetic radiation

In this section, we calculate the electromagnetic radiation generated by spatially localized,

coherently oscillating axion configurations (solitons) discussed in the previous section. In

presence of external electromagnetic fields, such configurations can be e↵ectively thought of

as time-dependent charge densities and currents which produce electromagnetic radiation.

We provide analytic results for the produced radiation at leading order in the coupling ga� ,

and discuss di�culties with going beyond the leading order analytically. We also discuss

the expected non-perturbative (in the coupling) results in general terms.

The first-order Maxwell’s equations (2.6) can be rearranged into following second-order

equations:

Ë � r2E = �r⇢ � J̇ , B̈ � r2B = r ⇥ J . (4.1)

The 4-current (⇢,J) defined in (2.7) is spatially localized because the axion field configu-

ration � given by eq. (3.1) is spatially localized. Note that (⇢,J) depend on � as well as

the E and B via eq. (2.7). Beyond the spatial extent of the axion stars, both E and B

propagate like free waves.

4.1 Floquet analysis

Because the system is linear in E and B fields, and we assume � to be periodic in time,

we expect the solutions to obey Floquet’s Theorem [? ? ]. That is, the solutions are either

bounded and periodic, or have exponential growth in time. However calculating Floquet

exponents (µ), or explicit solutions is a tall order because of the large number of coupled

degrees of freedom associated with each spatial point (formally infinite, and usually a rather

large number in discretized three dimensions). Equivalently, the modes in Fourier space

are coupled because of the spatial variation in �.2

While the explicit calculation of the Floquet exponents is non-trivial, we can get a

physical understanding of their scaling with parameters and the parametric boundary be-

tween bounded and unbounded solutions as follows [? ]. For the homogeneous axion field

with amplitude '0, the electromagnetic fields are always unstable, with the k ⇠ m/2 EM

field modes growing as e
µhomt where µhom ⇠ ga�'0/m (at least when ga�'0 is not too large,

see Appendix ?? for details). In contrast, for the localized soliton configuration, we expect

a threshold value of the coupling ga�'0 for which we get exponentially growing solutions.

'0 should now also be thought of as the central amplitude of the oscillon. The threshold

2The number of Floquet exponents is equal to the dimensionality of phase space for the system. For a

system with N3 Fourier modes, there would be 2N3 Floquet exponents. For a coupled system of Fourier

modes (ie. inhomogeneous background), each Floquet exponent does not correspond to a single Fourier

mode, but a linear combination of modes. Note that Floquet exponents are complex in general. When they

have a non-zero real part, we can get exponential solutions in time. When we refer to Floquet exponents

from here onwards, we are referring to the real part.
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and 5, we study the axion-photon analytically and numerically. In Sec. 6, we discuss the

observation. Our conclusions are presented in Sec. 7.

2 Axion electrodynamics

Our system consists of a real valued, pseudo-scalar field � coupled to the electromagnetic

field. The action for our system is given by

S =

Z
d
4
x


�

1

2
@µ�@

µ
� � V (�) �

1

4
Fµ⌫F

µ⌫
�

ga�

4
�Fµ⌫F̃

µ⌫

�
, (2.1)

where we adopt �+++ signature of the metric. The electromagnetic field-strength tensor,

and its dual are:

Fµ⌫ = @µA⌫ � @⌫Aµ , F̃
µ⌫ =

1

2
✏
µ⌫⇢�

F⇢�, (2.2)

where ✏
0123 = 1. The equations of motion for the axion and the gauge fields are given by

@µ@
µ
� � @�V =

ga�

4
Fµ⌫F̃

µ⌫
,

@µF
µ⌫ = �j

⌫
, @µF̃

µ⌫ = 0 ,

(2.3)

where

j
⌫

⌘ ga�@µ�F̃
µ⌫

. (2.4)

Note that @µj
µ = 0. Note that we have assumed that there are no free currents or charges

in our system. The above four-current arises from axion-electromagnetic interactions.

We define electric and magnetic fields in the usual way

Ei = Fi0 and Bi = (1/2)✏ijkF
jk

, (2.5)

with ✏ijk = ✏
ijk. Then, the coupled Klein-Gordon and Maxwell’s equations are then given

by
�̈ � r

2
� + @�V = ga�E · B ,

Ė = r ⇥ B � ga�

⇣
�̇B + r� ⇥ E

⌘
,

Ḃ = �r ⇥ E ,

r · E = �ga�r� · B ,

r · B = 0 .

(2.6)

Note that the e↵ective charge and current densities are

⇢ = �ga�r� · B and J = ga�

⇣
�̇B + r� ⇥ E

⌘
. (2.7)

In the above equations, we have ignored gravitational interactions. If one wishes to included

weak field gravity (gravitational potential | | ⌧ 1), the substitution @�V ! (1 + 2 )@�V

in the equation of motion for the scalar field captures the most relevant contributions due

to gravity. Moreover, we will need to include a Poisson equation r
2 = (1/2m

2
pl)⇢� where

⇢� is the density of the axion field to close the system. This prescription allows certain
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is heavily suppressed. As a result, most of our focus will be on the dense, smaller radius

solitons.

4 Analytic calculation of electromagnetic radiation

In this section, we calculate the electromagnetic radiation generated by spatially localized,

coherently oscillating axion configurations (solitons) discussed in the previous section. In

presence of external electromagnetic fields, such configurations can be e↵ectively thought of

as time-dependent charge densities and currents which produce electromagnetic radiation.

We provide analytic results for the produced radiation at leading order in the coupling ga� ,

and discuss di�culties with going beyond the leading order analytically. We also discuss

the expected non-perturbative (in the coupling) results in general terms.

The first-order Maxwell’s equations (2.6) can be rearranged into following second-order

equations:

Ë � r2E = �r⇢ � J̇ , B̈ � r2B = r ⇥ J . (4.1)

The 4-current (⇢,J) defined in (2.7) is spatially localized because the axion field configu-

ration � given by eq. (3.1) is spatially localized. Note that (⇢,J) depend on � as well as

the E and B via eq. (2.7). Beyond the spatial extent of the axion stars, both E and B

propagate like free waves.

4.1 Floquet analysis

Because the system is linear in E and B fields, and we assume � to be periodic in time,

we expect the solutions to obey Floquet’s Theorem [? ? ]. That is, the solutions are either

bounded and periodic, or have exponential growth in time. However calculating Floquet

exponents (µ), or explicit solutions is a tall order because of the large number of coupled

degrees of freedom associated with each spatial point (formally infinite, and usually a rather

large number in discretized three dimensions). Equivalently, the modes in Fourier space

are coupled because of the spatial variation in �.2

While the explicit calculation of the Floquet exponents is non-trivial, we can get a

physical understanding of their scaling with parameters and the parametric boundary be-

tween bounded and unbounded solutions as follows [? ]. For the homogeneous axion field

with amplitude '0, the electromagnetic fields are always unstable, with the k ⇠ m/2 EM

field modes growing as e
µhomt where µhom ⇠ ga�'0/m (at least when ga�'0 is not too large,

see Appendix ?? for details). In contrast, for the localized soliton configuration, we expect

a threshold value of the coupling ga�'0 for which we get exponentially growing solutions.

'0 should now also be thought of as the central amplitude of the oscillon. The threshold

2The number of Floquet exponents is equal to the dimensionality of phase space for the system. For a

system with N3 Fourier modes, there would be 2N3 Floquet exponents. For a coupled system of Fourier

modes (ie. inhomogeneous background), each Floquet exponent does not correspond to a single Fourier

mode, but a linear combination of modes. Note that Floquet exponents are complex in general. When they

have a non-zero real part, we can get exponential solutions in time. When we refer to Floquet exponents

from here onwards, we are referring to the real part.
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and 5, we study the axion-photon analytically and numerically. In Sec. 6, we discuss the

observation. Our conclusions are presented in Sec. 7.

2 Axion electrodynamics

Our system consists of a real valued, pseudo-scalar field � coupled to the electromagnetic

field. The action for our system is given by

S =

Z
d
4
x
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µ
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where we adopt �+++ signature of the metric. The electromagnetic field-strength tensor,

and its dual are:

Fµ⌫ = @µA⌫ � @⌫Aµ , F̃
µ⌫ =

1

2
✏
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F⇢�, (2.2)

where ✏
0123 = 1. The equations of motion for the axion and the gauge fields are given by
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(2.3)

where

j
⌫

⌘ ga�@µ�F̃
µ⌫

. (2.4)

Note that @µj
µ = 0. Note that we have assumed that there are no free currents or charges

in our system. The above four-current arises from axion-electromagnetic interactions.

We define electric and magnetic fields in the usual way

Ei = Fi0 and Bi = (1/2)✏ijkF
jk

, (2.5)

with ✏ijk = ✏
ijk. Then, the coupled Klein-Gordon and Maxwell’s equations are then given

by
�̈ � r

2
� + @�V = ga�E · B ,

Ė = r ⇥ B � ga�

⇣
�̇B + r� ⇥ E

⌘
,

Ḃ = �r ⇥ E ,

r · E = �ga�r� · B ,

r · B = 0 .

(2.6)

Note that the e↵ective charge and current densities are

⇢ = �ga�r� · B and J = ga�

⇣
�̇B + r� ⇥ E

⌘
. (2.7)

In the above equations, we have ignored gravitational interactions. If one wishes to included

weak field gravity (gravitational potential | | ⌧ 1), the substitution @�V ! (1 + 2 )@�V

in the equation of motion for the scalar field captures the most relevant contributions due

to gravity. Moreover, we will need to include a Poisson equation r
2 = (1/2m

2
pl)⇢� where

⇢� is the density of the axion field to close the system. This prescription allows certain
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Ḃ = �r ⇥ E ,

r · E = �ga�r� · B ,

r · B = 0 .

(2.6)

Note that the e↵ective charge and current densities are

⇢ = �ga�r� · B and J = ga�

⇣
�̇B + r� ⇥ E

⌘
. (2.7)

In the above equations, we have ignored gravitational interactions. If one wishes to included

weak field gravity (gravitational potential | | ⌧ 1), the substitution @�V ! (1 + 2 )@�V

in the equation of motion for the scalar field captures the most relevant contributions due

to gravity. Moreover, we will need to include a Poisson equation r
2 = (1/2m

2
pl)⇢� where

⇢� is the density of the axion field to close the system. This prescription allows certain

– 3 –



electromagnetic radiation from solitons

is heavily suppressed. As a result, most of our focus will be on the dense, smaller radius

solitons.

4 Analytic calculation of electromagnetic radiation

In this section, we calculate the electromagnetic radiation generated by spatially localized,

coherently oscillating axion configurations (solitons) discussed in the previous section. In

presence of external electromagnetic fields, such configurations can be e↵ectively thought of
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2The number of Floquet exponents is equal to the dimensionality of phase space for the system. For a

system with N3 Fourier modes, there would be 2N3 Floquet exponents. For a coupled system of Fourier

modes (ie. inhomogeneous background), each Floquet exponent does not correspond to a single Fourier

mode, but a linear combination of modes. Note that Floquet exponents are complex in general. When they

have a non-zero real part, we can get exponential solutions in time. When we refer to Floquet exponents

from here onwards, we are referring to the real part.
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and 5, we study the axion-photon analytically and numerically. In Sec. 6, we discuss the

observation. Our conclusions are presented in Sec. 7.

2 Axion electrodynamics

Our system consists of a real valued, pseudo-scalar field � coupled to the electromagnetic

field. The action for our system is given by

S =

Z
d
4
x


�

1

2
@µ�@

µ
� � V (�) �

1

4
Fµ⌫F

µ⌫
�

ga�

4
�Fµ⌫F̃

µ⌫

�
, (2.1)

where we adopt �+++ signature of the metric. The electromagnetic field-strength tensor,

and its dual are:

Fµ⌫ = @µA⌫ � @⌫Aµ , F̃
µ⌫ =

1

2
✏
µ⌫⇢�

F⇢�, (2.2)

where ✏
0123 = 1. The equations of motion for the axion and the gauge fields are given by

@µ@
µ
� � @�V =

ga�

4
Fµ⌫F̃

µ⌫
,

@µF
µ⌫ = �j

⌫
, @µF̃

µ⌫ = 0 ,

(2.3)

where

j
⌫

⌘ ga�@µ�F̃
µ⌫

. (2.4)

Note that @µj
µ = 0. Note that we have assumed that there are no free currents or charges

in our system. The above four-current arises from axion-electromagnetic interactions.

We define electric and magnetic fields in the usual way

Ei = Fi0 and Bi = (1/2)✏ijkF
jk

, (2.5)

with ✏ijk = ✏
ijk. Then, the coupled Klein-Gordon and Maxwell’s equations are then given

by
�̈ � r

2
� + @�V = ga�E · B ,

Ė = r ⇥ B � ga�

⇣
�̇B + r� ⇥ E

⌘
,

Ḃ = �r ⇥ E ,

r · E = �ga�r� · B ,

r · B = 0 .

(2.6)

Note that the e↵ective charge and current densities are

⇢ = �ga�r� · B and J = ga�

⇣
�̇B + r� ⇥ E

⌘
. (2.7)

In the above equations, we have ignored gravitational interactions. If one wishes to included

weak field gravity (gravitational potential | | ⌧ 1), the substitution @�V ! (1 + 2 )@�V

in the equation of motion for the scalar field captures the most relevant contributions due

to gravity. Moreover, we will need to include a Poisson equation r
2 = (1/2m

2
pl)⇢� where

⇢� is the density of the axion field to close the system. This prescription allows certain
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axion field oscillations = periodic coefficients — Floquet theory applies: 
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1 Introduction

The axion field [? ? ? ] extends Maxwell’s equations in a manner that other matter fields

can not. On the one hand, the axion field couples to the gauge field in the action via the

Chern-Simons term. This is interesting because, as this is topological, such a term does not

a↵ect the energy-momentum tensor, even though it is the term that is responsible for axion
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amplitude '0 and oscillating harmonically with a frequency !, the electromagnetic fields
are always unstable, with the k ⇡ !/2 electromagnetic field modes growing as e

µhomt where
µhom ⇡ ga�'0!/4 at least when ga�'0 is not too large [113] (for larger amplitudes, it is model
dependent [41]). In contrast, for the localized soliton configuration, we expect a threshold
value of the coupling ga�'0 for which we get exponentially growing solutions. The parameter
'0 should now also be thought of as the central amplitude of the soliton. The threshold can be
determined by comparing µ

�1
hom to the width of the soliton R [41, 113, 114]. Essentially, if the

produced photons can escape the system quickly enough (ie. R is small enough), they do not
lead to exponential growth due to parametric resonance (equivalently, Bose-enhancement).
This motivates the definition of a dimensionless e↵ective coupling

C ⌘
R

µ
�1
hom

⇡
1

4
ga�'0!R. (4.2)

In terms of this e↵ective coupling:

C ⌧ 1 �! bounded periodic solutions, steady radiated power ,

C & 1 �! unbounded exponential solutions and radiated power .
(4.3)

We remind the reader that C is independent of background electromagnetic fields. Note that
for C > Ccrit ⇠ 1, the power in radiated electromagnetic fields

P� / e
2µe↵ t where µe↵ / ga�'0! , (4.4)

In Sec. 5, we will confirm this behaviour, and provide the numerical coe�cient in front of
this expression for µe↵ based on a specific soliton profile.

We remind the reader that soliton configurations do not allow us to specify '0, ! and
R independently. For example, dilute and gravitationally supported solitons have '0 / R

�2.
For dense, self-interaction supported axion stars/oscillons, '0 ⇠ f . For the dilute case, we
have !R � 1, so we can get C ⇠ 1 for ga�'0 ⌧ 1. For the dense case, we typically have
R ⇠ few ⇥ m

�1, so we can get C ⇠ 1 with ga�'0 ⇠ 1. The C ⌧ 1 can be achieved, for
example, by simply making ga� smaller in each case.

Before moving on to a quantitative analytical analysis, we briefly discuss the connection
of C ⌧ 1 and C & 1 regimes with e↵ective field theory (EFT) considerations. The action in
Eq. (2.1) represents the leading operators in an EFT with cuto↵ ⇤ ⇠ g

�1
a� describing axion-

photon interactions.4 The EFT also contains sub-leading operators that are suppressed by
additional powers of the cuto↵, e.g. Lsub � csub g

2
a��

2
F

2 or csub g
3
a�⇤�FF̃ . Validity of the

EFT requires the sub-leading operators to be negligible. As discussed above, it is possible to
have ga�'0 ⌧ 1 to get C ⌧ 1. For dilute axion stars, C ⇠ 1 can be obtained for ga�'0 ⌧ 1
also. However, for C ⇠ 1 in the dense case, we need ga�'0 ⇠ 1, which threatens to break the
EFT if higher-order operators are only suppressed by additional powers of ga�'0. Even in
this case, the EFT can remain reliable even for ga�'0 ⇠ 1 if the numerical coe�cient of the
higher-order operators is small, e.g. csub ⌧ 1. For some theoretical work on models with a
large axion-photon coupling, see [115–121].

4
If the axion-photon interaction is loop-induced, such as for models of the QCD axion, then one expects

ga� ⇡ ↵/2⇡f ⇠ 10
�3/f . However in this work we take a more general approach by treating ga� and f as

independent parameters where f enters as a scale in the axion potential.
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C ⌘ escape time-scale

Bose-enhancement time-scale

numerator and denominator are calculable “by hand”
depends on axion-photon coupling and soliton parameters 
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bounded periodic solutions
'0 should now also be thought of as the central amplitude of the oscillon. The threshold

can be determined by comparing µhom ⇠ ga�'0/m to the inverse width of the oscillon R
�1.

Essentially, if the produced photons can escape the system quickly enough (ie. R is small

enough), they do not lead to exponential growth due to parametric resonance (equivalently,

Bose-enhancement). That is,

ga�'0 ⌧ mR �! bounded periodic solutions ,

ga�'0 & mR �! unbounded exponentially growing solutions .
(4.2)

We re-mind the reader that that soliton configurations do not allow us to specify '0 and R

independently. For example, dilute and gravitationally supported solitons have '0 / R
�2.

For a dense axion star/oscillon we typically have '0 ⇠ f and R ⇠ few ⇥m
�1. In the dense

case, we can determine a critical value of a combination of parameters at the transition

between bounded and unbounded solutions as

(ga�f)crit = O(1) . (4.3)

Note that in the unbounded regime, the power in radiated electromagnetic fields

P� / e
2µe↵ t where µe↵ / ga�'0/m , (4.4)

In the next section, we will confirm this behaviour, and provide the numerical coe�cient

in front of this expression for µe↵ based on a specific oscillon profile. In our earlier work

[? ] (and in [? ]), these heuristic results have been confirmed in explicit scenarios.

4.2 Perturbative analysis

With the expectation of bounded solutions for small ga�'0, we pursue an analytic treatment

in the limit of small coupling ga� . With this small parameter in mind, we expand the fields,

densities and currents as follows:

E = E(0) + E(1) + E(2) + · · · , B = B(0) + B(1) + B(2) + · · · , (4.5)

⇢ = ⇢(0) + ⇢(1) + ⇢(2) + · · · , J = J(0) + J(1) + J(2) + · · · . (4.6)

Here we use the subscript (n) to denote the terms containing n-th power of ga�'0.

At the lowest order, the E(0) and B(0) stand for the electric and magnetic backgrounds

and are sourced by (⇢(0),J (0)) which are independent of the axion field configuration. For

example such background fields could be the fields in the magnetosphere of a neutron star or

in the intergalactic medium.To make the physics more transparent, we will consider spatio-

temporally constant background electromagnetic fields which we denote by E(0) = Ē and

B(0) = B̄. We are essentially assuming that the spatial extent of the axion star is much

smaller than the coherence length of the background fields, and that the time variation of

the background fields is slow compared to the time that configuration spends in the given

volume of the fields.
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The axion field [? ? ? ] extends Maxwell’s equations in a manner that other matter fields

can not. On the one hand, the axion field couples to the gauge field in the action via the

Chern-Simons term. This is interesting because, as this is topological, such a term does not

a↵ect the energy-momentum tensor, even though it is the term that is responsible for axion

and the photon fields transfer energy. On the other hand, charged matter fields couple to

the gauge field via their covariant derivatives, so they contribute to Maxwell’s equations
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Figure 2. The e↵ective charge and current density (dipoles) induced by the presence of a soliton in
an external electromagnetic field background. The left image shows a charge dipole aligned with the
external magnetic field, and the right image shows a current dipole in a plane normal to the external
electric field. The charge density and current density oscillate in time, generating dipole radiation.

4.2.1 Leading order in ga�: dipole radiation

At leading order in the coupling ga� , we have

Ë(1) � r2E(1) = �r⇢(1) � J̇(1), (4.8)

B̈(1) � r2B(1) = r ⇥ J(1). (4.9)

At this order in ga� , the background electromagnetic fields along with the axion configuration
�(t,x) = '(r) cos !t induce an e↵ective charge and current density:

⇢(1)(t,x) = Re
⇥
%(1)(x)e�i!t

⇤
, J(1)(t,x) = Re

⇥
j(1)(x)e�i!t

⇤
, (4.10)

with %(1)(x) = �ga�r'(r) · B̄, j(1)(x) = �i!ga�'(r)B̄ + ga�r'(r) ⇥ Ē. (4.11)

Due to the spatial derivative acting on ' along the direction of B̄ field, the positive and the
negative charges are distributed separately along the B̄ field axis like a dipole (see left panel
in Fig. 2). And with its oscillating nature of the axion configuration, such an oscillating dipole
will lead to dipolar electromagnetic radiation. A constant Ē field results in an oscillating
azimuthal current, which also results in dipolar radiation (see right panel in Fig. 2).

It is a standard textbook problem to compute the excited electric and magnetic fields
caused by the harmonic, spatially localized sources of the form (4.10), as well as the associated
Poynting flux S(2) ⌘ E(1) ⇥ B(1) and power emitted per unit solid angle. See for example
[111, 112]. We review some of the relevant details of the derivation in Appendix A. Here, we
directly write down the solution for the flux below. At a position x far from the source, and
at su�ciently late times, the power per unit solid angle dP

�

(2)/d⌦ = |x|
2x̂ · S(2), is given by

dP
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d⌦
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32⇡2
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(1)(k) + j̃2(1)(k)

⌘ i!
,

where k = !x̂ , (4.12)

where f̃(k) is the spatial Fourier transform of f(x). Using the specific forms of the charge and
current densities in (4.11), we have %̃(1)(k) = �iga�!'̃(!)x̂·B̄ and j̃(1)(k) = �i!ga�'̃(!)B̄+
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Figure 2. The e↵ective charge and current density (dipoles) induced by the presence of a soliton in
an external electromagnetic field background. The left image shows a charge dipole aligned with the
external magnetic field, and the right image shows a current dipole in a plane normal to the external
electric field. The charge density and current density oscillate in time, generating dipole radiation.

4.2.1 Leading order in ga�: dipole radiation
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Ë(1) � r2E(1) = �r⇢(1) � J̇(1), (4.8)

B̈(1) � r2B(1) = r ⇥ J(1). (4.9)

At this order in ga� , the background electromagnetic fields along with the axion configuration
�(t,x) = '(r) cos !t induce an e↵ective charge and current density:
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⇤
, (4.10)

with %(1)(x) = �ga�r'(r) · B̄, j(1)(x) = �i!ga�'(r)B̄ + ga�r'(r) ⇥ Ē. (4.11)

Due to the spatial derivative acting on ' along the direction of B̄ field, the positive and the
negative charges are distributed separately along the B̄ field axis like a dipole (see left panel
in Fig. 2). And with its oscillating nature of the axion configuration, such an oscillating dipole
will lead to dipolar electromagnetic radiation. A constant Ē field results in an oscillating
azimuthal current, which also results in dipolar radiation (see right panel in Fig. 2).

It is a standard textbook problem to compute the excited electric and magnetic fields
caused by the harmonic, spatially localized sources of the form (4.10), as well as the associated
Poynting flux S(2) ⌘ E(1) ⇥ B(1) and power emitted per unit solid angle. See for example
[111, 112]. We review some of the relevant details of the derivation in Appendix A. Here, we
directly write down the solution for the flux below. At a position x far from the source, and
at su�ciently late times, the power per unit solid angle dP
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where f̃(k) is the spatial Fourier transform of f(x). Using the specific forms of the charge and
current densities in (4.11), we have %̃(1)(k) = �iga�!'̃(!)x̂·B̄ and j̃(1)(k) = �i!ga�'̃(!)B̄+
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bounded periodic solutions

and f̃(k) is the spatial Fourier transform of f(x). Using the specific forms of the charge and

current densities in (4.10), we have %̃(1)(k) = �iga�!'̃(!)x̂·B̄ and j̃(1)(k) = �i!ga�'̃(!)B̄+

iga�!'̃(!)ix̂ ⇥ Ē, which yields

dP
�
(2)

d⌦
=

g
2
a�!

4
'̃
2(!)

32⇡2

h �
x̂ ⇥ B̄

�2
+
�
x̂ ⇥ Ē

�2
� 2x̂ ·

�
Ē ⇥ B̄

� i
(1 + cos (2!t � 2!|x|)) .

(4.12)

Figure 3. Left panels: Dipole radiation from oscillating electric dipole created by a axion star in
a background magnetic field. Right panels: Dipole radiation from oscillating an magnetic dipole
created by a axion star in a background electric field. The magnetic and electric fields point in the
z direction. The colors represent electromagnetic energy density. MA:units? I will rearrange and
label later
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'0 should now also be thought of as the central amplitude of the oscillon. The threshold

can be determined by comparing µhom ⇠ ga�'0/m to the inverse width of the oscillon R
�1.

Essentially, if the produced photons can escape the system quickly enough (ie. R is small

enough), they do not lead to exponential growth due to parametric resonance (equivalently,

Bose-enhancement). That is,

ga�'0 ⌧ mR �! bounded periodic solutions ,

ga�'0 & mR �! unbounded exponentially growing solutions .
(4.2)

We re-mind the reader that that soliton configurations do not allow us to specify '0 and R

independently. For example, dilute and gravitationally supported solitons have '0 / R
�2.

For a dense axion star/oscillon we typically have '0 ⇠ f and R ⇠ few ⇥m
�1. In the dense

case, we can determine a critical value of a combination of parameters at the transition

between bounded and unbounded solutions as

(ga�f)crit = O(1) . (4.3)

Note that in the unbounded regime, the power in radiated electromagnetic fields

P� / e
2µe↵ t where µe↵ / ga�'0/m , (4.4)

In the next section, we will confirm this behaviour, and provide the numerical coe�cient

in front of this expression for µe↵ based on a specific oscillon profile. In our earlier work

[? ] (and in [? ]), these heuristic results have been confirmed in explicit scenarios.

4.2 Perturbative analysis

With the expectation of bounded solutions for small ga�'0, we pursue an analytic treatment

in the limit of small coupling ga� . With this small parameter in mind, we expand the fields,

densities and currents as follows:

E = E(0) + E(1) + E(2) + · · · , B = B(0) + B(1) + B(2) + · · · , (4.5)

⇢ = ⇢(0) + ⇢(1) + ⇢(2) + · · · , J = J(0) + J(1) + J(2) + · · · . (4.6)

Here we use the subscript (n) to denote the terms containing n-th power of ga�'0.

At the lowest order, the E(0) and B(0) stand for the electric and magnetic backgrounds

and are sourced by (⇢(0),J (0)) which are independent of the axion field configuration. For

example such background fields could be the fields in the magnetosphere of a neutron star or

in the intergalactic medium.To make the physics more transparent, we will consider spatio-

temporally constant background electromagnetic fields which we denote by E(0) = Ē and

B(0) = B̄. We are essentially assuming that the spatial extent of the axion star is much

smaller than the coherence length of the background fields, and that the time variation of

the background fields is slow compared to the time that configuration spends in the given

volume of the fields.
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1 Introduction

The axion field [? ? ? ] extends Maxwell’s equations in a manner that other matter fields

can not. On the one hand, the axion field couples to the gauge field in the action via the

Chern-Simons term. This is interesting because, as this is topological, such a term does not

a↵ect the energy-momentum tensor, even though it is the term that is responsible for axion

and the photon fields transfer energy. On the other hand, charged matter fields couple to

the gauge field via their covariant derivatives, so they contribute to Maxwell’s equations
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Figure 2. The e↵ective charge and current density (dipoles) induced by the presence of a soliton in
an external electromagnetic field background. The left image shows a charge dipole aligned with the
external magnetic field, and the right image shows a current dipole in a plane normal to the external
electric field. The charge density and current density oscillate in time, generating dipole radiation.

4.2.1 Leading order in ga�: dipole radiation

At leading order in the coupling ga� , we have

Ë(1) � r2E(1) = �r⇢(1) � J̇(1), (4.8)

B̈(1) � r2B(1) = r ⇥ J(1). (4.9)

At this order in ga� , the background electromagnetic fields along with the axion configuration
�(t,x) = '(r) cos !t induce an e↵ective charge and current density:

⇢(1)(t,x) = Re
⇥
%(1)(x)e�i!t

⇤
, J(1)(t,x) = Re

⇥
j(1)(x)e�i!t

⇤
, (4.10)

with %(1)(x) = �ga�r'(r) · B̄, j(1)(x) = �i!ga�'(r)B̄ + ga�r'(r) ⇥ Ē. (4.11)

Due to the spatial derivative acting on ' along the direction of B̄ field, the positive and the
negative charges are distributed separately along the B̄ field axis like a dipole (see left panel
in Fig. 2). And with its oscillating nature of the axion configuration, such an oscillating dipole
will lead to dipolar electromagnetic radiation. A constant Ē field results in an oscillating
azimuthal current, which also results in dipolar radiation (see right panel in Fig. 2).

It is a standard textbook problem to compute the excited electric and magnetic fields
caused by the harmonic, spatially localized sources of the form (4.10), as well as the associated
Poynting flux S(2) ⌘ E(1) ⇥ B(1) and power emitted per unit solid angle. See for example
[111, 112]. We review some of the relevant details of the derivation in Appendix A. Here, we
directly write down the solution for the flux below. At a position x far from the source, and
at su�ciently late times, the power per unit solid angle dP

�

(2)/d⌦ = |x|
2x̂ · S(2), is given by

dP
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2
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(1)(k) + j̃2(1)(k)

⌘ i!
,

where k = !x̂ , (4.12)

where f̃(k) is the spatial Fourier transform of f(x). Using the specific forms of the charge and
current densities in (4.11), we have %̃(1)(k) = �iga�!'̃(!)x̂·B̄ and j̃(1)(k) = �i!ga�'̃(!)B̄+
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Figure 2. The e↵ective charge and current density (dipoles) induced by the presence of a soliton in
an external electromagnetic field background. The left image shows a charge dipole aligned with the
external magnetic field, and the right image shows a current dipole in a plane normal to the external
electric field. The charge density and current density oscillate in time, generating dipole radiation.

4.2.1 Leading order in ga�: dipole radiation

At leading order in the coupling ga� , we have

Ë(1) � r2E(1) = �r⇢(1) � J̇(1), (4.8)

B̈(1) � r2B(1) = r ⇥ J(1). (4.9)

At this order in ga� , the background electromagnetic fields along with the axion configuration
�(t,x) = '(r) cos !t induce an e↵ective charge and current density:

⇢(1)(t,x) = Re
⇥
%(1)(x)e�i!t

⇤
, J(1)(t,x) = Re

⇥
j(1)(x)e�i!t

⇤
, (4.10)

with %(1)(x) = �ga�r'(r) · B̄, j(1)(x) = �i!ga�'(r)B̄ + ga�r'(r) ⇥ Ē. (4.11)

Due to the spatial derivative acting on ' along the direction of B̄ field, the positive and the
negative charges are distributed separately along the B̄ field axis like a dipole (see left panel
in Fig. 2). And with its oscillating nature of the axion configuration, such an oscillating dipole
will lead to dipolar electromagnetic radiation. A constant Ē field results in an oscillating
azimuthal current, which also results in dipolar radiation (see right panel in Fig. 2).

It is a standard textbook problem to compute the excited electric and magnetic fields
caused by the harmonic, spatially localized sources of the form (4.10), as well as the associated
Poynting flux S(2) ⌘ E(1) ⇥ B(1) and power emitted per unit solid angle. See for example
[111, 112]. We review some of the relevant details of the derivation in Appendix A. Here, we
directly write down the solution for the flux below. At a position x far from the source, and
at su�ciently late times, the power per unit solid angle dP

�
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where k = !x̂ , (4.12)

where f̃(k) is the spatial Fourier transform of f(x). Using the specific forms of the charge and
current densities in (4.11), we have %̃(1)(k) = �iga�!'̃(!)x̂·B̄ and j̃(1)(k) = �i!ga�'̃(!)B̄+
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EM radiation & soliton profile

where k = !x̂, we have assumed that N is large, V is the volume in which the %(1)(x) is

non-zero, and we defined

Q0 ⌘

s

V

Z
d3x

��%(1)(x)
��2 . (4.21)

Since the power radiated is proportional to |%
N
(1)(k)|2, we can compare now compare them

in coherent and incoherent case

hP
�
(2)N it

hP
�
(2)it

=
|%̃

N
(1)(k)|2

|%̃(1)(k)|2
⇠

Q
2
0

N |%̃(1)(k)|2
. (4.22)

That is, if N > Q
2
0|%̃(1)(k)|�2, the radiated power will be larger from a coherent configura-

tion. For the special case where %(1)(x) ⇠ Q0/R
3 for r < R and zero otherwise, we find that

N & (!R)6 will lead to the coherent configuration radiating more than the incoherent one.

For our more realistic sech profile and a constant background B field in the z-direction, we

have |%̃(1)(k)|2 ⇡ (⇡2
B̄

2
/4!

4)(ga�'0)2(⇡!R)4e�⇡!R and Q
2
0 ⇠ (!R)4(ga�'0)2B̄2

/!
4, which

tells us that we need N & e
⇡!R for coherence to win.5

For some localized configuration of radius R with a characeteristic density %0 ⇠ Q0/R
3,

we can define a coherence length:

�C ⌘ R

✓
|%̃(1)(k)|

%0R
3

◆2/3

. (4.23)

If we subdivide the volume of our coherent configuration into N incoherent regions, each

with a volume smaller than �
3
C , then the power radiated from the coherent configura-

tion will be larger. For our specific case of interest related to our soliton profile, we get

�C ⇠ e
�⇡!R/3

R. Hence for large radius configurations, incoherent emission will typically

dominate over the coherent one.

Probability Calculation

AL:fill in

Summary of Dipole Radiation

Finally, to make the dipole nature of the radiation apparent, let us either set the background

electric field to zero. In this case
*

dP
�
(2)

d⌦

+

t

=
g
2
a�!

4
'̃
2(!)

32⇡2
B̄2 sin2

✓ ⇡
(ga�'0)2

8!2
(⇡!R)4e�⇡!RB̄2 sin2

✓, (4.24)

where ✓ is the angle with respect to the B̄ direction. The same formula holds for the

electric field also. The above is a good approximation for !R & 2 for the sech profile. To

get significant emitted power, it is essential to have R! not be too large, and ga�'0 not be

too small, which provides motivation for considering considering dense axion stars. At the

5There can be purely numerical co-e�cients in front which depend on choice of V and the details of the

profile. The exponential scaling with !R, is the main result we want to focus on.
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spatial Fourier transform of soliton profile at 
radiating frequency wavenumber 

'0 should now also be thought of as the central amplitude of the oscillon. The threshold

can be determined by comparing µhom ⇠ ga�'0/m to the inverse width of the oscillon R
�1.

Essentially, if the produced photons can escape the system quickly enough (ie. R is small

enough), they do not lead to exponential growth due to parametric resonance (equivalently,

Bose-enhancement). That is,

ga�'0 ⌧ mR �! bounded periodic solutions ,

ga�'0 & mR �! unbounded exponentially growing solutions .
(4.2)

We re-mind the reader that that soliton configurations do not allow us to specify '0 and R

independently. For example, dilute and gravitationally supported solitons have '0 / R
�2.

For a dense axion star/oscillon we typically have '0 ⇠ f and R ⇠ few ⇥m
�1. In the dense

case, we can determine a critical value of a combination of parameters at the transition

between bounded and unbounded solutions as

(ga�f)crit = O(1) . (4.3)

Note that in the unbounded regime, the power in radiated electromagnetic fields

P� / e
2µe↵ t where µe↵ / ga�'0/m , (4.4)

In the next section, we will confirm this behaviour, and provide the numerical coe�cient

in front of this expression for µe↵ based on a specific oscillon profile. In our earlier work

[? ] (and in [? ]), these heuristic results have been confirmed in explicit scenarios.

4.2 Perturbative analysis

With the expectation of bounded solutions for small ga�'0, we pursue an analytic treatment

in the limit of small coupling ga� . With this small parameter in mind, we expand the fields,

densities and currents as follows:

E = E(0) + E(1) + E(2) + · · · , B = B(0) + B(1) + B(2) + · · · , (4.5)

⇢ = ⇢(0) + ⇢(1) + ⇢(2) + · · · , J = J(0) + J(1) + J(2) + · · · . (4.6)

Here we use the subscript (n) to denote the terms containing n-th power of ga�'0.

At the lowest order, the E(0) and B(0) stand for the electric and magnetic backgrounds

and are sourced by (⇢(0),J (0)) which are independent of the axion field configuration. For

example such background fields could be the fields in the magnetosphere of a neutron star or

in the intergalactic medium.To make the physics more transparent, we will consider spatio-

temporally constant background electromagnetic fields which we denote by E(0) = Ē and

B(0) = B̄. We are essentially assuming that the spatial extent of the axion star is much

smaller than the coherence length of the background fields, and that the time variation of

the background fields is slow compared to the time that configuration spends in the given

volume of the fields.
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EM radiation & soliton profile

where k = !x̂, we have assumed that N is large, V is the volume in which the %(1)(x) is

non-zero, and we defined

Q0 ⌘
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V

Z
d3x

��%(1)(x)
��2 . (4.21)

Since the power radiated is proportional to |%
N
(1)(k)|2, we can compare now compare them

in coherent and incoherent case
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That is, if N > Q
2
0|%̃(1)(k)|�2, the radiated power will be larger from a coherent configura-

tion. For the special case where %(1)(x) ⇠ Q0/R
3 for r < R and zero otherwise, we find that

N & (!R)6 will lead to the coherent configuration radiating more than the incoherent one.

For our more realistic sech profile and a constant background B field in the z-direction, we

have |%̃(1)(k)|2 ⇡ (⇡2
B̄

2
/4!

4)(ga�'0)2(⇡!R)4e�⇡!R and Q
2
0 ⇠ (!R)4(ga�'0)2B̄2
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4, which

tells us that we need N & e
⇡!R for coherence to win.5

For some localized configuration of radius R with a characeteristic density %0 ⇠ Q0/R
3,

we can define a coherence length:

�C ⌘ R

✓
|%̃(1)(k)|

%0R
3

◆2/3

. (4.23)

If we subdivide the volume of our coherent configuration into N incoherent regions, each

with a volume smaller than �
3
C , then the power radiated from the coherent configura-

tion will be larger. For our specific case of interest related to our soliton profile, we get

�C ⇠ e
�⇡!R/3

R. Hence for large radius configurations, incoherent emission will typically

dominate over the coherent one.

Probability Calculation

AL:fill in

Summary of Dipole Radiation

Finally, to make the dipole nature of the radiation apparent, let us either set the background

electric field to zero. In this case
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where ✓ is the angle with respect to the B̄ direction. The same formula holds for the

electric field also. The above is a good approximation for !R & 2 for the sech profile. To

get significant emitted power, it is essential to have R! not be too large, and ga�'0 not be

too small, which provides motivation for considering considering dense axion stars. At the

5There can be purely numerical co-e�cients in front which depend on choice of V and the details of the

profile. The exponential scaling with !R, is the main result we want to focus on.
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'0 should now also be thought of as the central amplitude of the oscillon. The threshold

can be determined by comparing µhom ⇠ ga�'0/m to the inverse width of the oscillon R
�1.

Essentially, if the produced photons can escape the system quickly enough (ie. R is small

enough), they do not lead to exponential growth due to parametric resonance (equivalently,

Bose-enhancement). That is,

ga�'0 ⌧ mR �! bounded periodic solutions ,

ga�'0 & mR �! unbounded exponentially growing solutions .
(4.2)

We re-mind the reader that that soliton configurations do not allow us to specify '0 and R

independently. For example, dilute and gravitationally supported solitons have '0 / R
�2.

For a dense axion star/oscillon we typically have '0 ⇠ f and R ⇠ few ⇥m
�1. In the dense

case, we can determine a critical value of a combination of parameters at the transition

between bounded and unbounded solutions as

(ga�f)crit = O(1) . (4.3)

Note that in the unbounded regime, the power in radiated electromagnetic fields

P� / e
2µe↵ t where µe↵ / ga�'0/m , (4.4)

In the next section, we will confirm this behaviour, and provide the numerical coe�cient

in front of this expression for µe↵ based on a specific oscillon profile. In our earlier work

[? ] (and in [? ]), these heuristic results have been confirmed in explicit scenarios.

4.2 Perturbative analysis

With the expectation of bounded solutions for small ga�'0, we pursue an analytic treatment

in the limit of small coupling ga� . With this small parameter in mind, we expand the fields,

densities and currents as follows:

E = E(0) + E(1) + E(2) + · · · , B = B(0) + B(1) + B(2) + · · · , (4.5)

⇢ = ⇢(0) + ⇢(1) + ⇢(2) + · · · , J = J(0) + J(1) + J(2) + · · · . (4.6)

Here we use the subscript (n) to denote the terms containing n-th power of ga�'0.

At the lowest order, the E(0) and B(0) stand for the electric and magnetic backgrounds

and are sourced by (⇢(0),J (0)) which are independent of the axion field configuration. For

example such background fields could be the fields in the magnetosphere of a neutron star or

in the intergalactic medium.To make the physics more transparent, we will consider spatio-

temporally constant background electromagnetic fields which we denote by E(0) = Ē and

B(0) = B̄. We are essentially assuming that the spatial extent of the axion star is much

smaller than the coherence length of the background fields, and that the time variation of

the background fields is slow compared to the time that configuration spends in the given

volume of the fields.
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The detailed form of ' depends on the potential V (�) as well as !. For most of our

purposes, we use an ansatz of the form '(r) = '0 sech (r/R) so that

�(t, r) = '0 sech (r/R) cos !t . (3.2)

The above form is motivated by the fact that it has the correct large distance behavior for

such solutions []: ⇠ e
�r/R, with R ⇠ 1/

p
m2 � !2 where m > !. Typically, ! is not too

di↵erent from m, however, '0 and R can vary significantly for small changes in ! close to

m. In a typical scenario, '0, R and ! are not independent. Usually we are free to chose

only one, and even that has constraints from stability analyses.

To understand what to expect for '0 and R, we consider two relevant cases below.

3.1 Self-interaction supported solitons

For potentials V (�) ⇡ (1/2)m2
�
2 for � ⌧ f (see Fig. 1), but are flatter than quadratic

V (�) / �
↵<2 for � � f , exceptionally long lived spatially localized configurations of the

above form exist, and are called oscillons (setting ga� ! 0 for the moment). Typically,

for very long-lived oscillons, we have '0 ⇠ f , a width R ⇠ few ⇥ m
�1 and the frequency

! . m [? ]. In detail, there is a one parameter family of long lived configurations for a

given potential V (�). Moreover, typically the solution also includes higher frequencies and

a very small radiating tail (scalar radiation).

Because of the scalar radiation, oscillons are not perfectly stable. Depending on the

potential V (�), there are oscillon configurations that have been shown to last for & 1012m�1

[? ? ], with some claims of even longer lifetimes [? ]. However, even with such exceptionally

long times in units of m
�1, their lifetimes might very short compared to the present age of

the universe H
�1
0 ⇠ 1033eV�1 (unless m . 10�21eV). This is an important concern when

using oscillon configurations for observable implications in the present day universe.

The formation of such oscillons from cosmological initial conditions (especially in the

early universe) has been explored in detail before [? ? ? ? ? ? ], and typically

happens when H ⇠ m. An almost homogeneous, oscillating condensate naturally fragments

into oscillons []. As a result, compared to the H
�1 at the time of formation, oscillons

can be exceptionally long lived, and have important cosmological implications []. Using

similar arguments, oscillons in ultra-light axions might potentially survive till today [].

Furthermore, since oscillons appear to be attractors in the space of solutions [], oscillons

might also nucleate inside dark matter halos [? ], or even near black-holes [? ], although

most of these analysis are done in the context of gravitationally supported solitons so far.

The detailed investigation of oscillon production and existing population today is not

considered in this paper, we simply take these objects to exist in today’s universe.

3.2 Gravitationally supported non-relativistic solitons

It is also possible to obtain solutions of the form in eq. (3.1) for V (�) = (1/2)m2
�
2 (ie.

without nonlinearities in the potential) as long as we now allow for gravitational interactions

[? ? ]. Such configurations are sometimes referred to as oscillatons [? ]. Such oscillatons

can be compact, with R ⇠ 10m
�1, with an amplitude '0 ⇠ 0.1mpl [? ? ]. For some

formation mechanisms, see [].
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EM radiation at moderate coupling

*keep soliton fixed, change axion-photon coupling

'0 should now also be thought of as the central amplitude of the oscillon. The threshold

can be determined by comparing µhom ⇠ ga�'0/m to the inverse width of the oscillon R
�1.

Essentially, if the produced photons can escape the system quickly enough (ie. R is small

enough), they do not lead to exponential growth due to parametric resonance (equivalently,

Bose-enhancement). That is,

ga�'0 ⌧ mR �! bounded periodic solutions ,

ga�'0 & mR �! unbounded exponentially growing solutions .
(4.2)

We re-mind the reader that that soliton configurations do not allow us to specify '0 and R

independently. For example, dilute and gravitationally supported solitons have '0 / R
�2.

For a dense axion star/oscillon we typically have '0 ⇠ f and R ⇠ few ⇥m
�1. In the dense

case, we can determine a critical value of a combination of parameters at the transition

between bounded and unbounded solutions as

(ga�f)crit = O(1) . (4.3)

Note that in the unbounded regime, the power in radiated electromagnetic fields

P� / e
2µe↵ t where µe↵ / ga�'0/m , (4.4)

In the next section, we will confirm this behaviour, and provide the numerical coe�cient

in front of this expression for µe↵ based on a specific oscillon profile. In our earlier work

[? ] (and in [? ]), these heuristic results have been confirmed in explicit scenarios.

4.2 Perturbative analysis

With the expectation of bounded solutions for small ga�'0, we pursue an analytic treatment

in the limit of small coupling ga� . With this small parameter in mind, we expand the fields,

densities and currents as follows:

E = E(0) + E(1) + E(2) + · · · , B = B(0) + B(1) + B(2) + · · · , (4.5)

⇢ = ⇢(0) + ⇢(1) + ⇢(2) + · · · , J = J(0) + J(1) + J(2) + · · · . (4.6)

Here we use the subscript (n) to denote the terms containing n-th power of ga�'0.

At the lowest order, the E(0) and B(0) stand for the electric and magnetic backgrounds

and are sourced by (⇢(0),J (0)) which are independent of the axion field configuration. For

example such background fields could be the fields in the magnetosphere of a neutron star or

in the intergalactic medium.To make the physics more transparent, we will consider spatio-

temporally constant background electromagnetic fields which we denote by E(0) = Ē and

B(0) = B̄. We are essentially assuming that the spatial extent of the axion star is much

smaller than the coherence length of the background fields, and that the time variation of

the background fields is slow compared to the time that configuration spends in the given

volume of the fields.
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Figure 2. The e↵ective charge and current density (dipoles) induced by the presence of a soliton in
an external electromagnetic field background. The left image shows a charge dipole aligned with the
external magnetic field, and the right image shows a current dipole in a plane normal to the external
electric field. The charge density and current density oscillate in time, generating dipole radiation.

4.2.1 Leading order in ga�: dipole radiation

At leading order in the coupling ga� , we have

Ë(1) � r2E(1) = �r⇢(1) � J̇(1), (4.8)

B̈(1) � r2B(1) = r ⇥ J(1). (4.9)

At this order in ga� , the background electromagnetic fields along with the axion configuration
�(t,x) = '(r) cos !t induce an e↵ective charge and current density:

⇢(1)(t,x) = Re
⇥
%(1)(x)e�i!t

⇤
, J(1)(t,x) = Re

⇥
j(1)(x)e�i!t

⇤
, (4.10)

with %(1)(x) = �ga�r'(r) · B̄, j(1)(x) = �i!ga�'(r)B̄ + ga�r'(r) ⇥ Ē. (4.11)

Due to the spatial derivative acting on ' along the direction of B̄ field, the positive and the
negative charges are distributed separately along the B̄ field axis like a dipole (see left panel
in Fig. 2). And with its oscillating nature of the axion configuration, such an oscillating dipole
will lead to dipolar electromagnetic radiation. A constant Ē field results in an oscillating
azimuthal current, which also results in dipolar radiation (see right panel in Fig. 2).

It is a standard textbook problem to compute the excited electric and magnetic fields
caused by the harmonic, spatially localized sources of the form (4.10), as well as the associated
Poynting flux S(2) ⌘ E(1) ⇥ B(1) and power emitted per unit solid angle. See for example
[111, 112]. We review some of the relevant details of the derivation in Appendix A. Here, we
directly write down the solution for the flux below. At a position x far from the source, and
at su�ciently late times, the power per unit solid angle dP

�

(2)/d⌦ = |x|
2x̂ · S(2), is given by

dP
�

(2)

d⌦
=

!
2

32⇡2

 
� |%̃(1)(k)|2 + | ˜j(1)(k)|2 � Re

h
e
�i2!t

e
i2!|x|

⇣
�%̃

2
(1)(k) + j̃2(1)(k)

⌘ i!
,

where k = !x̂ , (4.12)

where f̃(k) is the spatial Fourier transform of f(x). Using the specific forms of the charge and
current densities in (4.11), we have %̃(1)(k) = �iga�!'̃(!)x̂·B̄ and j̃(1)(k) = �i!ga�'̃(!)B̄+
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Figure 2. The e↵ective charge and current density (dipoles) induced by the presence of a soliton in
an external electromagnetic field background. The left image shows a charge dipole aligned with the
external magnetic field, and the right image shows a current dipole in a plane normal to the external
electric field. The charge density and current density oscillate in time, generating dipole radiation.

4.2.1 Leading order in ga�: dipole radiation

At leading order in the coupling ga� , we have

Ë(1) � r2E(1) = �r⇢(1) � J̇(1), (4.8)

B̈(1) � r2B(1) = r ⇥ J(1). (4.9)

At this order in ga� , the background electromagnetic fields along with the axion configuration
�(t,x) = '(r) cos !t induce an e↵ective charge and current density:

⇢(1)(t,x) = Re
⇥
%(1)(x)e�i!t

⇤
, J(1)(t,x) = Re

⇥
j(1)(x)e�i!t

⇤
, (4.10)

with %(1)(x) = �ga�r'(r) · B̄, j(1)(x) = �i!ga�'(r)B̄ + ga�r'(r) ⇥ Ē. (4.11)

Due to the spatial derivative acting on ' along the direction of B̄ field, the positive and the
negative charges are distributed separately along the B̄ field axis like a dipole (see left panel
in Fig. 2). And with its oscillating nature of the axion configuration, such an oscillating dipole
will lead to dipolar electromagnetic radiation. A constant Ē field results in an oscillating
azimuthal current, which also results in dipolar radiation (see right panel in Fig. 2).

It is a standard textbook problem to compute the excited electric and magnetic fields
caused by the harmonic, spatially localized sources of the form (4.10), as well as the associated
Poynting flux S(2) ⌘ E(1) ⇥ B(1) and power emitted per unit solid angle. See for example
[111, 112]. We review some of the relevant details of the derivation in Appendix A. Here, we
directly write down the solution for the flux below. At a position x far from the source, and
at su�ciently late times, the power per unit solid angle dP

�

(2)/d⌦ = |x|
2x̂ · S(2), is given by
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where k = !x̂ , (4.12)

where f̃(k) is the spatial Fourier transform of f(x). Using the specific forms of the charge and
current densities in (4.11), we have %̃(1)(k) = �iga�!'̃(!)x̂·B̄ and j̃(1)(k) = �i!ga�'̃(!)B̄+
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EM radiation at moderate coupling

*keep soliton fixed, change axion-photon coupling

'0 should now also be thought of as the central amplitude of the oscillon. The threshold

can be determined by comparing µhom ⇠ ga�'0/m to the inverse width of the oscillon R
�1.

Essentially, if the produced photons can escape the system quickly enough (ie. R is small

enough), they do not lead to exponential growth due to parametric resonance (equivalently,

Bose-enhancement). That is,

ga�'0 ⌧ mR �! bounded periodic solutions ,

ga�'0 & mR �! unbounded exponentially growing solutions .
(4.2)

We re-mind the reader that that soliton configurations do not allow us to specify '0 and R

independently. For example, dilute and gravitationally supported solitons have '0 / R
�2.

For a dense axion star/oscillon we typically have '0 ⇠ f and R ⇠ few ⇥m
�1. In the dense

case, we can determine a critical value of a combination of parameters at the transition

between bounded and unbounded solutions as

(ga�f)crit = O(1) . (4.3)

Note that in the unbounded regime, the power in radiated electromagnetic fields

P� / e
2µe↵ t where µe↵ / ga�'0/m , (4.4)

In the next section, we will confirm this behaviour, and provide the numerical coe�cient

in front of this expression for µe↵ based on a specific oscillon profile. In our earlier work

[? ] (and in [? ]), these heuristic results have been confirmed in explicit scenarios.

4.2 Perturbative analysis

With the expectation of bounded solutions for small ga�'0, we pursue an analytic treatment

in the limit of small coupling ga� . With this small parameter in mind, we expand the fields,

densities and currents as follows:

E = E(0) + E(1) + E(2) + · · · , B = B(0) + B(1) + B(2) + · · · , (4.5)

⇢ = ⇢(0) + ⇢(1) + ⇢(2) + · · · , J = J(0) + J(1) + J(2) + · · · . (4.6)

Here we use the subscript (n) to denote the terms containing n-th power of ga�'0.

At the lowest order, the E(0) and B(0) stand for the electric and magnetic backgrounds

and are sourced by (⇢(0),J (0)) which are independent of the axion field configuration. For

example such background fields could be the fields in the magnetosphere of a neutron star or

in the intergalactic medium.To make the physics more transparent, we will consider spatio-

temporally constant background electromagnetic fields which we denote by E(0) = Ē and

B(0) = B̄. We are essentially assuming that the spatial extent of the axion star is much

smaller than the coherence length of the background fields, and that the time variation of

the background fields is slow compared to the time that configuration spends in the given

volume of the fields.
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Figure 2. The e↵ective charge and current density (dipoles) induced by the presence of a soliton in
an external electromagnetic field background. The left image shows a charge dipole aligned with the
external magnetic field, and the right image shows a current dipole in a plane normal to the external
electric field. The charge density and current density oscillate in time, generating dipole radiation.

4.2.1 Leading order in ga�: dipole radiation

At leading order in the coupling ga� , we have

Ë(1) � r2E(1) = �r⇢(1) � J̇(1), (4.8)

B̈(1) � r2B(1) = r ⇥ J(1). (4.9)

At this order in ga� , the background electromagnetic fields along with the axion configuration
�(t,x) = '(r) cos !t induce an e↵ective charge and current density:

⇢(1)(t,x) = Re
⇥
%(1)(x)e�i!t

⇤
, J(1)(t,x) = Re

⇥
j(1)(x)e�i!t

⇤
, (4.10)

with %(1)(x) = �ga�r'(r) · B̄, j(1)(x) = �i!ga�'(r)B̄ + ga�r'(r) ⇥ Ē. (4.11)

Due to the spatial derivative acting on ' along the direction of B̄ field, the positive and the
negative charges are distributed separately along the B̄ field axis like a dipole (see left panel
in Fig. 2). And with its oscillating nature of the axion configuration, such an oscillating dipole
will lead to dipolar electromagnetic radiation. A constant Ē field results in an oscillating
azimuthal current, which also results in dipolar radiation (see right panel in Fig. 2).

It is a standard textbook problem to compute the excited electric and magnetic fields
caused by the harmonic, spatially localized sources of the form (4.10), as well as the associated
Poynting flux S(2) ⌘ E(1) ⇥ B(1) and power emitted per unit solid angle. See for example
[111, 112]. We review some of the relevant details of the derivation in Appendix A. Here, we
directly write down the solution for the flux below. At a position x far from the source, and
at su�ciently late times, the power per unit solid angle dP
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current densities in (4.11), we have %̃(1)(k) = �iga�!'̃(!)x̂·B̄ and j̃(1)(k) = �i!ga�'̃(!)B̄+
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EM radiation at moderate coupling

*keep soliton fixed, change axion-photon coupling

'0 should now also be thought of as the central amplitude of the oscillon. The threshold

can be determined by comparing µhom ⇠ ga�'0/m to the inverse width of the oscillon R
�1.

Essentially, if the produced photons can escape the system quickly enough (ie. R is small

enough), they do not lead to exponential growth due to parametric resonance (equivalently,

Bose-enhancement). That is,

ga�'0 ⌧ mR �! bounded periodic solutions ,

ga�'0 & mR �! unbounded exponentially growing solutions .
(4.2)

We re-mind the reader that that soliton configurations do not allow us to specify '0 and R

independently. For example, dilute and gravitationally supported solitons have '0 / R
�2.

For a dense axion star/oscillon we typically have '0 ⇠ f and R ⇠ few ⇥m
�1. In the dense

case, we can determine a critical value of a combination of parameters at the transition

between bounded and unbounded solutions as

(ga�f)crit = O(1) . (4.3)

Note that in the unbounded regime, the power in radiated electromagnetic fields

P� / e
2µe↵ t where µe↵ / ga�'0/m , (4.4)

In the next section, we will confirm this behaviour, and provide the numerical coe�cient

in front of this expression for µe↵ based on a specific oscillon profile. In our earlier work

[? ] (and in [? ]), these heuristic results have been confirmed in explicit scenarios.

4.2 Perturbative analysis

With the expectation of bounded solutions for small ga�'0, we pursue an analytic treatment

in the limit of small coupling ga� . With this small parameter in mind, we expand the fields,

densities and currents as follows:

E = E(0) + E(1) + E(2) + · · · , B = B(0) + B(1) + B(2) + · · · , (4.5)

⇢ = ⇢(0) + ⇢(1) + ⇢(2) + · · · , J = J(0) + J(1) + J(2) + · · · . (4.6)

Here we use the subscript (n) to denote the terms containing n-th power of ga�'0.

At the lowest order, the E(0) and B(0) stand for the electric and magnetic backgrounds

and are sourced by (⇢(0),J (0)) which are independent of the axion field configuration. For

example such background fields could be the fields in the magnetosphere of a neutron star or

in the intergalactic medium.To make the physics more transparent, we will consider spatio-

temporally constant background electromagnetic fields which we denote by E(0) = Ē and

B(0) = B̄. We are essentially assuming that the spatial extent of the axion star is much

smaller than the coherence length of the background fields, and that the time variation of

the background fields is slow compared to the time that configuration spends in the given

volume of the fields.
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steady EM radiation at moderate coupling

*keep soliton fixed, change axion-photon coupling

'0 should now also be thought of as the central amplitude of the oscillon. The threshold

can be determined by comparing µhom ⇠ ga�'0/m to the inverse width of the oscillon R
�1.

Essentially, if the produced photons can escape the system quickly enough (ie. R is small

enough), they do not lead to exponential growth due to parametric resonance (equivalently,

Bose-enhancement). That is,

ga�'0 ⌧ mR �! bounded periodic solutions ,

ga�'0 & mR �! unbounded exponentially growing solutions .
(4.2)

We re-mind the reader that that soliton configurations do not allow us to specify '0 and R

independently. For example, dilute and gravitationally supported solitons have '0 / R
�2.

For a dense axion star/oscillon we typically have '0 ⇠ f and R ⇠ few ⇥m
�1. In the dense

case, we can determine a critical value of a combination of parameters at the transition

between bounded and unbounded solutions as

(ga�f)crit = O(1) . (4.3)

Note that in the unbounded regime, the power in radiated electromagnetic fields

P� / e
2µe↵ t where µe↵ / ga�'0/m , (4.4)

In the next section, we will confirm this behaviour, and provide the numerical coe�cient

in front of this expression for µe↵ based on a specific oscillon profile. In our earlier work

[? ] (and in [? ]), these heuristic results have been confirmed in explicit scenarios.

4.2 Perturbative analysis

With the expectation of bounded solutions for small ga�'0, we pursue an analytic treatment

in the limit of small coupling ga� . With this small parameter in mind, we expand the fields,

densities and currents as follows:

E = E(0) + E(1) + E(2) + · · · , B = B(0) + B(1) + B(2) + · · · , (4.5)

⇢ = ⇢(0) + ⇢(1) + ⇢(2) + · · · , J = J(0) + J(1) + J(2) + · · · . (4.6)

Here we use the subscript (n) to denote the terms containing n-th power of ga�'0.

At the lowest order, the E(0) and B(0) stand for the electric and magnetic backgrounds

and are sourced by (⇢(0),J (0)) which are independent of the axion field configuration. For

example such background fields could be the fields in the magnetosphere of a neutron star or

in the intergalactic medium.To make the physics more transparent, we will consider spatio-

temporally constant background electromagnetic fields which we denote by E(0) = Ē and

B(0) = B̄. We are essentially assuming that the spatial extent of the axion star is much

smaller than the coherence length of the background fields, and that the time variation of

the background fields is slow compared to the time that configuration spends in the given

volume of the fields.
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Ē
-b
ac
kg
ro
un

d

B̄
-b
ac
kg

ro
u
n
d

st
ea
d
y

ex
p
on

en
ti
al

P
�
⇥
m

2
/B̄

2

C = ga�'0!R/4ra
di

at
ed

 p
ow

er

dimensionless coupling

dip
ole

 es
tim

ate

• dipole est. works well for small coupling (as expected)

• suppression for B background at intermediate 
coupling !

• difference between E and B begins to show

ĒB̄

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
0

10

20

30

40

50

su
pp

re
ss

io
n

B̄ Ē

Figure 2. The e↵ective charge and current density (dipoles) induced by the presence of a soliton in
an external electromagnetic field background. The left image shows a charge dipole aligned with the
external magnetic field, and the right image shows a current dipole in a plane normal to the external
electric field. The charge density and current density oscillate in time, generating dipole radiation.

4.2.1 Leading order in ga�: dipole radiation

At leading order in the coupling ga� , we have

Ë(1) � r2E(1) = �r⇢(1) � J̇(1), (4.8)

B̈(1) � r2B(1) = r ⇥ J(1). (4.9)

At this order in ga� , the background electromagnetic fields along with the axion configuration
�(t,x) = '(r) cos !t induce an e↵ective charge and current density:

⇢(1)(t,x) = Re
⇥
%(1)(x)e�i!t

⇤
, J(1)(t,x) = Re

⇥
j(1)(x)e�i!t

⇤
, (4.10)

with %(1)(x) = �ga�r'(r) · B̄, j(1)(x) = �i!ga�'(r)B̄ + ga�r'(r) ⇥ Ē. (4.11)

Due to the spatial derivative acting on ' along the direction of B̄ field, the positive and the
negative charges are distributed separately along the B̄ field axis like a dipole (see left panel
in Fig. 2). And with its oscillating nature of the axion configuration, such an oscillating dipole
will lead to dipolar electromagnetic radiation. A constant Ē field results in an oscillating
azimuthal current, which also results in dipolar radiation (see right panel in Fig. 2).

It is a standard textbook problem to compute the excited electric and magnetic fields
caused by the harmonic, spatially localized sources of the form (4.10), as well as the associated
Poynting flux S(2) ⌘ E(1) ⇥ B(1) and power emitted per unit solid angle. See for example
[111, 112]. We review some of the relevant details of the derivation in Appendix A. Here, we
directly write down the solution for the flux below. At a position x far from the source, and
at su�ciently late times, the power per unit solid angle dP

�

(2)/d⌦ = |x|
2x̂ · S(2), is given by

dP
�

(2)

d⌦
=

!
2

32⇡2

 
� |%̃(1)(k)|2 + | ˜j(1)(k)|2 � Re

h
e
�i2!t

e
i2!|x|

⇣
�%̃

2
(1)(k) + j̃2(1)(k)

⌘ i!
,

where k = !x̂ , (4.12)

where f̃(k) is the spatial Fourier transform of f(x). Using the specific forms of the charge and
current densities in (4.11), we have %̃(1)(k) = �iga�!'̃(!)x̂·B̄ and j̃(1)(k) = �i!ga�'̃(!)B̄+
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Figure 2. The e↵ective charge and current density (dipoles) induced by the presence of a soliton in
an external electromagnetic field background. The left image shows a charge dipole aligned with the
external magnetic field, and the right image shows a current dipole in a plane normal to the external
electric field. The charge density and current density oscillate in time, generating dipole radiation.
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explosive radiation

*keep soliton fixed, change axion-photon coupling
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dimensionless coupling

'0 should now also be thought of as the central amplitude of the oscillon. The threshold

can be determined by comparing µhom ⇠ ga�'0/m to the inverse width of the oscillon R
�1.

Essentially, if the produced photons can escape the system quickly enough (ie. R is small

enough), they do not lead to exponential growth due to parametric resonance (equivalently,

Bose-enhancement). That is,

ga�'0 ⌧ mR �! bounded periodic solutions ,

ga�'0 & mR �! unbounded exponentially growing solutions .
(4.2)

We re-mind the reader that that soliton configurations do not allow us to specify '0 and R

independently. For example, dilute and gravitationally supported solitons have '0 / R
�2.

For a dense axion star/oscillon we typically have '0 ⇠ f and R ⇠ few ⇥m
�1. In the dense

case, we can determine a critical value of a combination of parameters at the transition

between bounded and unbounded solutions as

(ga�f)crit = O(1) . (4.3)

Note that in the unbounded regime, the power in radiated electromagnetic fields

P� / e
2µe↵ t where µe↵ / ga�'0/m , (4.4)

In the next section, we will confirm this behaviour, and provide the numerical coe�cient

in front of this expression for µe↵ based on a specific oscillon profile. In our earlier work

[? ] (and in [? ]), these heuristic results have been confirmed in explicit scenarios.

4.2 Perturbative analysis

With the expectation of bounded solutions for small ga�'0, we pursue an analytic treatment

in the limit of small coupling ga� . With this small parameter in mind, we expand the fields,

densities and currents as follows:

E = E(0) + E(1) + E(2) + · · · , B = B(0) + B(1) + B(2) + · · · , (4.5)

⇢ = ⇢(0) + ⇢(1) + ⇢(2) + · · · , J = J(0) + J(1) + J(2) + · · · . (4.6)

Here we use the subscript (n) to denote the terms containing n-th power of ga�'0.

At the lowest order, the E(0) and B(0) stand for the electric and magnetic backgrounds

and are sourced by (⇢(0),J (0)) which are independent of the axion field configuration. For

example such background fields could be the fields in the magnetosphere of a neutron star or

in the intergalactic medium.To make the physics more transparent, we will consider spatio-

temporally constant background electromagnetic fields which we denote by E(0) = Ē and

B(0) = B̄. We are essentially assuming that the spatial extent of the axion star is much

smaller than the coherence length of the background fields, and that the time variation of

the background fields is slow compared to the time that configuration spends in the given

volume of the fields.
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non perturbative

amplitude '0 and oscillating harmonically with a frequency !, the electromagnetic fields
are always unstable, with the k ⇡ !/2 electromagnetic field modes growing as e

µhomt where
µhom ⇡ ga�'0!/4 at least when ga�'0 is not too large [113] (for larger amplitudes, it is model
dependent [41]). In contrast, for the localized soliton configuration, we expect a threshold
value of the coupling ga�'0 for which we get exponentially growing solutions. The parameter
'0 should now also be thought of as the central amplitude of the soliton. The threshold can be
determined by comparing µ

�1
hom to the width of the soliton R [41, 113, 114]. Essentially, if the

produced photons can escape the system quickly enough (ie. R is small enough), they do not
lead to exponential growth due to parametric resonance (equivalently, Bose-enhancement).
This motivates the definition of a dimensionless e↵ective coupling

C ⌘
R

µ
�1
hom

⇡
1

4
ga�'0!R. (4.2)

In terms of this e↵ective coupling:

C ⌧ 1 �! bounded periodic solutions, steady radiated power ,

C & 1 �! unbounded exponential solutions and radiated power .
(4.3)

We remind the reader that C is independent of background electromagnetic fields. Note that
for C > Ccrit ⇠ 1, the power in radiated electromagnetic fields

P� / e
2µe↵ t where µe↵ / ga�'0! , (4.4)

In Sec. 5, we will confirm this behaviour, and provide the numerical coe�cient in front of
this expression for µe↵ based on a specific soliton profile.

We remind the reader that soliton configurations do not allow us to specify '0, ! and
R independently. For example, dilute and gravitationally supported solitons have '0 / R

�2.
For dense, self-interaction supported axion stars/oscillons, '0 ⇠ f . For the dilute case, we
have !R � 1, so we can get C ⇠ 1 for ga�'0 ⌧ 1. For the dense case, we typically have
R ⇠ few ⇥ m

�1, so we can get C ⇠ 1 with ga�'0 ⇠ 1. The C ⌧ 1 can be achieved, for
example, by simply making ga� smaller in each case.

Before moving on to a quantitative analytical analysis, we briefly discuss the connection
of C ⌧ 1 and C & 1 regimes with e↵ective field theory (EFT) considerations. The action in
Eq. (2.1) represents the leading operators in an EFT with cuto↵ ⇤ ⇠ g

�1
a� describing axion-

photon interactions.4 The EFT also contains sub-leading operators that are suppressed by
additional powers of the cuto↵, e.g. Lsub � csub g

2
a��

2
F

2 or csub g
3
a�⇤�FF̃ . Validity of the

EFT requires the sub-leading operators to be negligible. As discussed above, it is possible to
have ga�'0 ⌧ 1 to get C ⌧ 1. For dilute axion stars, C ⇠ 1 can be obtained for ga�'0 ⌧ 1
also. However, for C ⇠ 1 in the dense case, we need ga�'0 ⇠ 1, which threatens to break the
EFT if higher-order operators are only suppressed by additional powers of ga�'0. Even in
this case, the EFT can remain reliable even for ga�'0 ⇠ 1 if the numerical coe�cient of the
higher-order operators is small, e.g. csub ⌧ 1. For some theoretical work on models with a
large axion-photon coupling, see [115–121].

4
If the axion-photon interaction is loop-induced, such as for models of the QCD axion, then one expects

ga� ⇡ ↵/2⇡f ⇠ 10
�3/f . However in this work we take a more general approach by treating ga� and f as

independent parameters where f enters as a scale in the axion potential.
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• parametric resonance does not even require 
background EM fields, quantum fluctuations are 
enough

• can be efficient for works for dilute and dense 
cases [see Hertzberg & Schiappacasse (2018), MA & Mou (2020)]

https://arxiv.org/search/hep-ph?searchtype=author&query=Schiappacasse%2C+E+D


explosive production from soliton mergers

• no emission before merger

• explosive after merger

• a threshold & resonant effect 

*simulation for dense, self-interaction supported oscillons. For analytics of dilute case see Hertzberg & Schippanaise (2018).

MA & Mou (2020)



explosive photon production from soliton mergers

~30% of total energy goes into axion waves

~20% of remaining goes into EM radiation

E� ⇠ 0.1⇥Moscc
2

the radiation spectrum peaks at E ⇠ ! ⇠ ma, which corresponds to radio frequencies for
typical axion masses. We have also seen that the radiation power grows as P

�
/ B̄

2 with the
strength of the external magnetic field. In this section we will discuss how this phenomenon
could lead to a variety of observational signatures in di↵erent environments with strong
magnetic fields. We again restrict our attention to results at leading order in ga� , although
the large ga� results might lead to more radiated power in some cases.

Using the dipole approximation from eq. (4.14) and (6.2), the luminosity (L ⌘ hP
�

(2)it)

of an axion star in a background magnetic field (with strength B̄) is estimated as

L '
�
4 ⇥ 1022 W

� ⇣ m

10�5 eV

⌘�2
✓

ga�

0.66 ⇥ 10�10 GeV�1

◆2✓
f

1010 GeV

◆�2

⇥

✓
B̄

1010 G

◆2✓
'0

f

◆2

F(!R, !p/!),

(7.1)

where we have normalized the axion-photon coupling ga� to the 95% CL upper limit from
the CAST helioscope [133], and we have set ! = m. We also remind the reader that 1 W =
107 erg/sec. The function F holds information about the soliton shape and plasma e↵ects:

F(!R, !p/!) ⇡

8
<

:
(⇡!R)4e�⇡!R

, for !p ⇡ 0 ,

1

16
(⇡!R)6

q
1 � !2

p/!2, for !p ⇡ ! .
(7.2)

where !p is the plasma frequency. Note the beneficial dependence on large radius and the
lack of exponential suppression in the “resonant” (!p ⇡ !) case. As long as the radius of
the star is smaller than the size of the resonant region, our calculation holds, and leads to a
large enhancement in the radiated power compared to the non-resonant case.

For the estimates in this section, we approximate the radiation spectrum as monochro-
matic, corresponding to a single spectral line. The frequency of this line is taken to be

⌫� =
!

2⇡
⇡

m

2⇡
'

�
2 GHz

� ⇣ m

10�5 eV

⌘
, (7.3)

and we take the width of the line, i.e. the signal bandwidth, to be �⌫� ⇠ ⌫� . For these
fiducial parameters, we also note that the mass scale and radius of a very dense axion star
(soliton) are expected to be on the order of

Msol ⇠ 102f2
/m '

�
2 ⇥ 109 kg

�✓ f

1010 GeV

◆2 ⇣
m

10�5 eV

⌘�1

Rsol ⇠ 2m
�1

'
�
4 cm

� ⇣ m

10�5 eV

⌘�1
.

(7.4)

Note that 2 ⇥ 109 kg ⇡ 10�21
M�.

7.1 Compact stars

The strongest magnetic fields in the universe today can be found in the magnetospheres of
compact stars. The magnetic field strength at the surface of a white dwarf star is typically
106�8 G [134] whereas the smaller neutron stars can reach 1012�14 G [135]. If an axion star
were to encounter these extreme magnetic fields, the result would be a sudden and extreme
release of electromagnetic radiation [67].
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interested in gravitational wave emission from ultra-
compact solitons 

gravitational waves from collisions ? (a small digression)

KCL-PH-TH/2018-9

Gravitational Wave Emission from Collisions of Compact Scalar Solitons

Thomas Helfer†, Eugene A. Lim†, Marcos A. G. Garcia‡, Mustafa A. Amin‡⇤
†
Theoretical Particle Physics and Cosmology Group, Physics Department,

Kings College London, Strand, London WC2R 2LS, United Kingdom
‡
Department of Physics and Astronomy, Rice University, Houston, Texas 77005-1827, U.S.A.

We numerically investigate the gravitational waves generated by the head-on collision of equal-
mass, self-gravitating, real scalar field solitons (oscillatons) as a function of their compactness C.
We start with solitons that are initially at rest with respect to each other, and show that there exist
three di↵erent possible outcomes resulting from their collisions: (1) an excited stable oscillaton for
low C, (2) a merger and formation of a black-hole for intermediate C, and (3) a pre-merger collapse
of both oscillatons into individual black-holes for large C. For (1), the excited, aspherical oscillaton
continues to emit gravitational waves. For (2), the total energy in gravitational waves emitted
increases with compactness, and possesses a maximum which is greater than that from the merger
of a pair of equivalent mass black-holes. The initial amplitudes of the quasi-normal modes in the
post-merger ring-down in this case are larger than that of collisions of corresponding mass black-
holes – potentially a key observable to distinguish black-hole mergers from their scalar mimics. For
(3), the gravitational wave output is indistinguishable from a similar mass, black-hole–black-hole
merger. Based on our results, LIGO may be sensitive to oscillaton collisions from light scalars of
mass 10�12 eV . m . 10�10 eV.

I. INTRODUCTION AND RESULTS

The spectacular recent detections of gravitational
waves from binary black-hole mergers has heralded a new
golden age in gravitational wave physics [1–3]. Gravita-
tional waves from the merger of compact objects are one
of our best resources for probing the strong-field regime
of gravity. They also provide us with a probe of the na-
ture of the compact objects themselves.

In addition to black-holes (BH) and neutron stars
(NS), the expected quality of the gravitational wave
data could allow for the search of exotic compact ob-
jects as progenitors in such collisions [4]. In particular,
coherent, self-gravitating, non-topological solitons made
of scalar fields are known to have highly compact cores
[5–7]. Their collisions may generate observable amounts
of gravitational waves and whose waveforms can deviate
from those of BH-BH or NS-NS mergers (see in particular
[8–11]).

In this paper, we study the head-on collisions of a
class of real scalar field solitons called oscillatons [12]
using GRChombo [13] in full general relativity. Unlike bo-
son stars made of complex scalar fields, oscillatons do
not have a conserved U(1) charge, but can nevertheless
be stable on cosmological time scales [14]. For example,
such objects can consist of a spatially localized conden-
sate of an axion field oscillating near the minimum of the
potential [15]. Such axion fields are ubiquitous in many
high energy physics theories, and are considered to be

⇤
thomashelfer@live.de; eugene.a.lim@gmail.com;

marcos.garcia@rice.edu; mustafa.a.amin@gmail.com
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FIG. 1. Fraction of initial rest mass energy of the two oscilla-
tons (Etot) radiated into gravitational waves (Egw) as a func-
tion of the initial compactness (C) of each oscillaton. In the
subcritical case, oscillatons collide to form a new stable but
aspherical, excited oscillaton. In the critical regime, oscilla-
tons collide to yield a black-hole after/during the collision. In
the degenerate case, individual oscillatons collapse to black-
holes before the collision. Note that in the critical regime (and
possibly in the subcritical regime also), the emitted fraction
in gravitational waves can exceed that of corresponding mass
black-holes (0.06% dashed line).

Helfer, Lim, Garcia & MA (2018)
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gravitational wave emission and compactness
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Gravitational Wave Emission from Collisions of Compact Scalar Solitons
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We numerically investigate the gravitational waves generated by the head-on collision of equal-
mass, self-gravitating, real scalar field solitons (oscillatons) as a function of their compactness C.
We start with solitons that are initially at rest with respect to each other, and show that there exist
three di↵erent possible outcomes resulting from their collisions: (1) an excited stable oscillaton for
low C, (2) a merger and formation of a black-hole for intermediate C, and (3) a pre-merger collapse
of both oscillatons into individual black-holes for large C. For (1), the excited, aspherical oscillaton
continues to emit gravitational waves. For (2), the total energy in gravitational waves emitted
increases with compactness, and possesses a maximum which is greater than that from the merger
of a pair of equivalent mass black-holes. The initial amplitudes of the quasi-normal modes in the
post-merger ring-down in this case are larger than that of collisions of corresponding mass black-
holes – potentially a key observable to distinguish black-hole mergers from their scalar mimics. For
(3), the gravitational wave output is indistinguishable from a similar mass, black-hole–black-hole
merger. Based on our results, LIGO may be sensitive to oscillaton collisions from light scalars of
mass 10�12 eV . m . 10�10 eV.

I. INTRODUCTION AND RESULTS

The spectacular recent detections of gravitational
waves from binary black-hole mergers has heralded a new
golden age in gravitational wave physics [1–3]. Gravita-
tional waves from the merger of compact objects are one
of our best resources for probing the strong-field regime
of gravity. They also provide us with a probe of the na-
ture of the compact objects themselves.

In addition to black-holes (BH) and neutron stars
(NS), the expected quality of the gravitational wave
data could allow for the search of exotic compact ob-
jects as progenitors in such collisions [4]. In particular,
coherent, self-gravitating, non-topological solitons made
of scalar fields are known to have highly compact cores
[5–7]. Their collisions may generate observable amounts
of gravitational waves and whose waveforms can deviate
from those of BH-BH or NS-NS mergers (see in particular
[8–11]).

In this paper, we study the head-on collisions of a
class of real scalar field solitons called oscillatons [12]
using GRChombo [13] in full general relativity. Unlike bo-
son stars made of complex scalar fields, oscillatons do
not have a conserved U(1) charge, but can nevertheless
be stable on cosmological time scales [14]. For example,
such objects can consist of a spatially localized conden-
sate of an axion field oscillating near the minimum of the
potential [15]. Such axion fields are ubiquitous in many
high energy physics theories, and are considered to be
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FIG. 1. Fraction of initial rest mass energy of the two oscilla-
tons (Etot) radiated into gravitational waves (Egw) as a func-
tion of the initial compactness (C) of each oscillaton. In the
subcritical case, oscillatons collide to form a new stable but
aspherical, excited oscillaton. In the critical regime, oscilla-
tons collide to yield a black-hole after/during the collision. In
the degenerate case, individual oscillatons collapse to black-
holes before the collision. Note that in the critical regime (and
possibly in the subcritical regime also), the emitted fraction
in gravitational waves can exceed that of corresponding mass
black-holes (0.06% dashed line).
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Figure 10. Power radiated by a dense soliton for large e↵ective coupling C = 1.7 (left panel). In
this regime the power grows exponentially with time, however backreaction eventually curtails this
growth when the radiated electromagnetic energy becomes comparable to the initial energy of the
soliton (right panel).

6.1 Medium e↵ects and “resonant” conversion

Our previous calculation was done with the axion star in the presence of background elec-
tromagnetic fields, with no other medium present at the background level. However, in
applications to astrophysical scenarios, such as axion-stars in the magnetosphere of a neu-
tron star, a plasma is present that leads to the photon having an e↵ective mass !p. The
e↵ect of such a constant e↵ective mass !p < ! can be approximately taken into account by
modifying eq. (4.8) and (4.9) making the replacement r
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the propagating mode would be exponentially suppressed.8

Following through with the same calculation as before, but carefully keeping track of
 and ! separately, we arrive at the generalization of our equation for the radiated power
(4.14):
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where '̃() is the Fourier transform of the axion field profile at |k| = . Note that for !p = 0,
 = ! and we recover our earlier result without the medium (4.14). However, for !p ! !

(“resonant conversion” domain), we have to be careful. Importantly, in the limit  ! 0, we
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Since we assume the background E and B fields to be constant, it is natural to assume !p is constant,

although in practice it does depend on the spatially varying free charge density also. In neutron star at-

mospheres, an approximation to the plasma frequency is given by !p =

p
4⇡↵emne/me where ne is the

Goldreich-Julian charge density [130], and me is the mass of the electron. Note that ne(x) ⇠ ⌦ ·B(x) where
⌦ is the angular velocity of the neutron star.
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If the compact star is a distance d? away, then the flux of radiation reaching Earth
is F = L/(4⇡d

2
?), which can be measured in erg/cm2

/sec. The corresponding spectral flux
density is calculated as S = F/B where B = �⌫� = !/2⇡ is the signal bandwidth. For a
nearby star, the spectral flux density evaluates to
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(7.5)

whereas the flux from a star at the galactic center (d? ⇡ 8 kpc) would be reduced to S '

3 ⇥ 103 µJy. For reference, an hour-long observation with a current or planned telescope
(such as GBT, JVLA, or SKA) would have a flux sensitivity of �S ⇠ 1 µJy; see the estimates
in Refs. [61, 72]. If an axion star were to pass through the magnetosphere of a compact star
while it was being observed by a radio telescope, then the signal could be quite striking, even
for modest couplings and field strengths.

Since the compact star is surrounded by a plasma, this must be taken into account
for the signal strength estimates. In Sec. 6.1 we have argued that the finite plasma density
modifies the radiation spectrum, which is captured by F in eq. (7.2). This factor depends
on the plasma frequency !p, which is grows larger at points closer to the star, and F peaks
near to where the plasma frequency matches the soliton’s oscillation frequency, !p ⇡ !, as
shown in Fig. 11. For example, using the fiducial parameters in Ref. [61], the width of the
resonance region is estimated to be !L ⇠ O(100). If the axion star’s radius is R ⇠ 0.1 L

then Fig. 11 implies an enhancement of F ⇠ 104 to the spectral flux density estimate from
eq. (7.5), which further increases the detectability.

Even if an axion star’s encounter with a compact star could be detected, we must address
the expected rate of these encounters [67, 72, 74]. The encounter rate between a particular
compact star and the ambient population of axion stars is estimated as � = �e↵vrelnas

where �e↵ is the e↵ective cross sectional area for the scattering, vrel is the typical relative
velocity, and nas is the number density of axion stars (near the target compact star). We
can also write nas = ⇢as/Msol where ⇢as is the local mass density in axion stars and Msol

is the typical energy per axion star (soliton). The e↵ective cross sectional area is further
enhanced by the gravitational focusing factor, and we estimate �e↵ = (1+v

2
esc/v

2
rel)⇡R

2
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v
2
esc = M?/4⇡m

2
plR? is the escape velocity at the surface of the neutron star. Combining these

factors allows us to estimate the encounter rate of axion stars with a particular white dwarf
star to be
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(7.6)
whereas the rate for encountering a neutron star (with R? = 10 km and other fiducial
parameters unchanged) is � ' 5 ⇥ 10�8 hr�1. The fiducial axion star density is taken to
equal the local dark matter energy density near Earth, ⇢dm = 0.3 GeV/cm3, although axion
stars are not expected to compose an O(1) fraction of the total dark matter density, which
is typically dominated by a di↵use population of axion particles.

The estimate in (7.6) appears very unfavorable. For the fiducial parameters we expect
a particular white dwarf star to encounter an axion star approximately once every 3 years
(or once every 2000 years for a neutron star). However, there are several reasons why the
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the radiation spectrum peaks at E ⇠ ! ⇠ ma, which corresponds to radio frequencies for
typical axion masses. We have also seen that the radiation power grows as P

�
/ B̄

2 with the
strength of the external magnetic field. In this section we will discuss how this phenomenon
could lead to a variety of observational signatures in di↵erent environments with strong
magnetic fields. We again restrict our attention to results at leading order in ga� , although
the large ga� results might lead to more radiated power in some cases.

Using the dipole approximation from eq. (4.14) and (6.2), the luminosity (L ⌘ hP
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of an axion star in a background magnetic field (with strength B̄) is estimated as

L '
�
4 ⇥ 1022 W

� ⇣ m

10�5 eV

⌘�2
✓

ga�

0.66 ⇥ 10�10 GeV�1

◆2✓
f

1010 GeV

◆�2

⇥

✓
B̄

1010 G

◆2✓
'0

f

◆2

F(!R, !p/!),

(7.1)

where we have normalized the axion-photon coupling ga� to the 95% CL upper limit from
the CAST helioscope [133], and we have set ! = m. We also remind the reader that 1 W =
107 erg/sec. The function F holds information about the soliton shape and plasma e↵ects:
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where !p is the plasma frequency. Note the beneficial dependence on large radius and the
lack of exponential suppression in the “resonant” (!p ⇡ !) case. As long as the radius of
the star is smaller than the size of the resonant region, our calculation holds, and leads to a
large enhancement in the radiated power compared to the non-resonant case.

For the estimates in this section, we approximate the radiation spectrum as monochro-
matic, corresponding to a single spectral line. The frequency of this line is taken to be
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and we take the width of the line, i.e. the signal bandwidth, to be �⌫� ⇠ ⌫� . For these
fiducial parameters, we also note that the mass scale and radius of a very dense axion star
(soliton) are expected to be on the order of
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(7.4)

Note that 2 ⇥ 109 kg ⇡ 10�21
M�.

7.1 Compact stars

The strongest magnetic fields in the universe today can be found in the magnetospheres of
compact stars. The magnetic field strength at the surface of a white dwarf star is typically
106�8 G [134] whereas the smaller neutron stars can reach 1012�14 G [135]. If an axion star
were to encounter these extreme magnetic fields, the result would be a sudden and extreme
release of electromagnetic radiation [67].
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where we have normalized the axion-photon coupling ga� to the 95% CL upper limit from
the CAST helioscope [133], and we have set ! = m. We also remind the reader that 1 W =
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where !p is the plasma frequency. Note the beneficial dependence on large radius and the
lack of exponential suppression in the “resonant” (!p ⇡ !) case. As long as the radius of
the star is smaller than the size of the resonant region, our calculation holds, and leads to a
large enhancement in the radiated power compared to the non-resonant case.

For the estimates in this section, we approximate the radiation spectrum as monochro-
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and we take the width of the line, i.e. the signal bandwidth, to be �⌫� ⇠ ⌫� . For these
fiducial parameters, we also note that the mass scale and radius of a very dense axion star
(soliton) are expected to be on the order of
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Note that 2 ⇥ 109 kg ⇡ 10�21
M�.

7.1 Compact stars

The strongest magnetic fields in the universe today can be found in the magnetospheres of
compact stars. The magnetic field strength at the surface of a white dwarf star is typically
106�8 G [134] whereas the smaller neutron stars can reach 1012�14 G [135]. If an axion star
were to encounter these extreme magnetic fields, the result would be a sudden and extreme
release of electromagnetic radiation [67].
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density is calculated as S = F/B where B = �⌫� = !/2⇡ is the signal bandwidth. For a
nearby star, the spectral flux density evaluates to

S '
�
2 ⇥ 107 µJy

�✓ d?

100 pc

◆�2 ⇣
m

10�5 eV

⌘�3
✓

ga�

0.66 ⇥ 10�10 GeV�1

◆2

⇥

✓
f

1010 GeV

◆�2✓ B̄

1010 G

◆2

F(!R, !p/!) ,

(7.5)

whereas the flux from a star at the galactic center (d? ⇡ 8 kpc) would be reduced to S '

3 ⇥ 103 µJy. For reference, an hour-long observation with a current or planned telescope
(such as GBT, JVLA, or SKA) would have a flux sensitivity of �S ⇠ 1 µJy; see the estimates
in Refs. [61, 72]. If an axion star were to pass through the magnetosphere of a compact star
while it was being observed by a radio telescope, then the signal could be quite striking, even
for modest couplings and field strengths.

Since the compact star is surrounded by a plasma, this must be taken into account
for the signal strength estimates. In Sec. 6.1 we have argued that the finite plasma density
modifies the radiation spectrum, which is captured by F in eq. (7.2). This factor depends
on the plasma frequency !p, which is grows larger at points closer to the star, and F peaks
near to where the plasma frequency matches the soliton’s oscillation frequency, !p ⇡ !, as
shown in Fig. 11. For example, using the fiducial parameters in Ref. [61], the width of the
resonance region is estimated to be !L ⇠ O(100). If the axion star’s radius is R ⇠ 0.1 L

then Fig. 11 implies an enhancement of F ⇠ 104 to the spectral flux density estimate from
eq. (7.5), which further increases the detectability.

Even if an axion star’s encounter with a compact star could be detected, we must address
the expected rate of these encounters [67, 72, 74]. The encounter rate between a particular
compact star and the ambient population of axion stars is estimated as � = �e↵vrelnas

where �e↵ is the e↵ective cross sectional area for the scattering, vrel is the typical relative
velocity, and nas is the number density of axion stars (near the target compact star). We
can also write nas = ⇢as/Msol where ⇢as is the local mass density in axion stars and Msol

is the typical energy per axion star (soliton). The e↵ective cross sectional area is further
enhanced by the gravitational focusing factor, and we estimate �e↵ = (1+v
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whereas the rate for encountering a neutron star (with R? = 10 km and other fiducial
parameters unchanged) is � ' 5 ⇥ 10�8 hr�1. The fiducial axion star density is taken to
equal the local dark matter energy density near Earth, ⇢dm = 0.3 GeV/cm3, although axion
stars are not expected to compose an O(1) fraction of the total dark matter density, which
is typically dominated by a di↵use population of axion particles.

The estimate in (7.6) appears very unfavorable. For the fiducial parameters we expect
a particular white dwarf star to encounter an axion star approximately once every 3 years
(or once every 2000 years for a neutron star). However, there are several reasons why the
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could lead to a variety of observational signatures in di↵erent environments with strong
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the large ga� results might lead to more radiated power in some cases.
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where we have normalized the axion-photon coupling ga� to the 95% CL upper limit from
the CAST helioscope [133], and we have set ! = m. We also remind the reader that 1 W =
107 erg/sec. The function F holds information about the soliton shape and plasma e↵ects:
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where !p is the plasma frequency. Note the beneficial dependence on large radius and the
lack of exponential suppression in the “resonant” (!p ⇡ !) case. As long as the radius of
the star is smaller than the size of the resonant region, our calculation holds, and leads to a
large enhancement in the radiated power compared to the non-resonant case.

For the estimates in this section, we approximate the radiation spectrum as monochro-
matic, corresponding to a single spectral line. The frequency of this line is taken to be
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and we take the width of the line, i.e. the signal bandwidth, to be �⌫� ⇠ ⌫� . For these
fiducial parameters, we also note that the mass scale and radius of a very dense axion star
(soliton) are expected to be on the order of
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Note that 2 ⇥ 109 kg ⇡ 10�21
M�.

7.1 Compact stars

The strongest magnetic fields in the universe today can be found in the magnetospheres of
compact stars. The magnetic field strength at the surface of a white dwarf star is typically
106�8 G [134] whereas the smaller neutron stars can reach 1012�14 G [135]. If an axion star
were to encounter these extreme magnetic fields, the result would be a sudden and extreme
release of electromagnetic radiation [67].
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Figure 2 | A slice of the density field of the  DM simulation on various
scales at z=0.1. This scaled sequence (each of thickness 60 pc) shows
how quantum interference patterns can be clearly seen everywhere from
the large-scale filaments, tangential fringes near the virial boundaries, to
the granular structure inside the haloes. Distinct solitonic cores with radii
⇠0.3–1.6kpc are found within collapsed haloes (which have virial masses
Mvir ⇠ 109˘1011 M�). The density shown here spans over nine orders of
magnitude, from 10�1 to 108 (normalized to the cosmic mean density). The
colour map scales logarithmically, with cyan corresponding to density .10.

giving rise to a co-moving Jeans length, �J / (1+z)1/4m�1/2
B , during

the matter-dominated epoch17. The insensitivity of �J to redshift, z ,
generates a sharp cuto�mass belowwhich structures are suppressed.
Cosmological simulations in this context turn out to be much
more challenging than standard N-body simulations, as the highest
frequency oscillations, !, given approximately by the matter wave
dispersion relation, ! /m�1

B �
�2, where � is the wavelength, occur

on the smallest scales, requiring very fine temporal resolution even
formoderate spatial resolution (Supplementary Fig. 1). In this work,
we optimize an adaptive-mesh-refinement (AMR) scheme, with
graphic processing unit acceleration, improving performance by
almost two orders of magnitude22 (see Supplementary Section 1
for details).

Figure 1 demonstrates that despite the completely di�erent
calculations employed, the pattern of filaments and voids generated
by a conventional N-body particle3CDM simulation is remarkably
indistinguishable from the wavelike 3 DM for the same linear
power spectrum (Supplementary Fig. 3). Here 3 represents the
cosmological constant. This agreement is desirable given the
success of standard 3CDM in describing the statistics of large-scale
structure. To examine the wave nature that distinguishes DM from
CDM on small scales, we re-simulate with a very high maximum
resolution of 60 pc for a 2 Mpc co-moving box, so that the densest
objects formed of &300 pc size are well resolved with ⇠103 grids. A
slice through this box is shown in Fig. 2, revealing fine interference
fringes defining long filaments, with tangential fringes near the
boundaries of virialized objects, where the de Broglie wavelengths
depend on the local velocity of matter. An unexpected feature of
our DMsimulations is the generation of prominent dense coherent
standing waves of dark matter in the centre of every gravitational
bound object, forming a flat core with a sharp boundary (Figs 2
and 3). These dark matter cores grow as material is accreted and
are surrounded by virialized haloes of material with fine-scale,
large-amplitude cellular interference, which continuously fluctuate
in density and velocity, generating quantum and turbulent pressure
support against gravity.

The central density profiles of all our collapsed cores fit well
the stable soliton solution of the Schrödinger–Poisson equation, as
shown in Fig. 3 (see also Supplementary Section 2 and Figs 2 and 4).
On the other hand, except for the lightest halo, which has just formed
and is not yet virialized, the outer profiles of other haloes possess a
steepening logarithmic slope, similar to the Navarro–Frenk–White
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Figure 3 | Radial density profiles of haloes formed in the  DMmodel.
Dashed lines with various symbols show six examples of the halo profiles
normalized to the cosmic mean density. All haloes are found to possess a
distinct inner core fitted extremely well by the soliton solution (solid lines).
A detailed soliton fit for the largest halo is inset, where the error is the root-
mean-square scatter of density in each radial bin. A Navarro–Frenk–White
(NFW) profile representing standard CDM is also shown for comparison
(black dot-dashed line, with a very large scale radius of 10kpc), which fits
well the profiles outside the cores. The yellow hatched area indicates the
⇢300 of the dSph satellites around the Milky Way3,24, which is consistent
with the majority of galaxy haloes formed in the  DM simulations.

(NFW) profile23 of standard CDM. These solitonic cores, which are
gravitationally self-bound and appear as additional mass clumps
superposed on the NFW profile, are clearly distinct from the cores
formed by WDM and collisional CDM, which truncate the NFW
cuspy inner profile at lower values and require an external halo for
confinement. The radius of the soliton scales inversely with mass,
such that the widest cores are the least massive and are hosted by the
least massive galaxies. Eighty percent of the haloes in the simulation
have an average density within 300 pc (defined as ⇢300) in the range
5.3⇥ 10�3–6.1⇥ 10�1 M�/pc3, consistent with the dSph satellites
around the Milky Way3,24, and objects like these are resilient to
close interaction with massive galaxies. By contrast, the very lowest
mass objects in our simulation have ⇢300 ⇠ 4.0⇥ 10�4 M�/pc3 and
Mvir ⇠108 M�, but exist only briefly as they are vulnerable to tidal
disruption by large galaxies in our simulations. Together with the
cuto� in the power spectrum at the Jeans scale (Supplementary
Fig. 3), this leads to a marked suppression of substructure below
a few times 108 M� relative to the prediction of standard CDM
(refs 8,9). A quantitative evaluation of the mass function of satellite
galaxies predicted by  DM with larger simulations is thus another
crucial test to be addressed.

The prominent solitonic cores uncovered in our simulations
provide an opportunity to estimate the boson mass, mB, by
comparison with observations, particularly for dSph galaxies where
dark matter dominates. The local Fornax dSph galaxy is the best
studied case, with thousands of stellar velocity measurements,
allowing a detailed comparison with our soliton mass profile.
We perform a Jeans analysis for the dominant intermediate
metallicity stellar population, which exhibits a nearly uniform
projected velocity dispersion (�k; ref. 25). We simultaneously
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Gravitational Bose-Einstein condensation in the kinetic regime
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We study Bose-Einstein condensation and formation of Bose stars in the virialized dark matter
halos/miniclusters by universal gravitational interactions. We prove that this phenomenon does
occur and it is described by kinetic equation. We give expression for the condensation time. Our
results suggest that Bose stars may form kinetically in the mainstream dark matter models such as
invisible QCD axions and Fuzzy Dark Matter.

1. Introduction. Bose stars are lumps of Bose -
Einstein condensate bounded by self-gravity [1, 2]. They
can be made of condensed dark matter (DM) bosons —
say, invisible QCD axions [3] or Fuzzy DM [4]. That is
why their physics, phenomenology and observational sig-
natures remain in the focus of cosmological research for
decades [5], see recent papers [6, 7]. Unfortunately, for-
mation of Bose stars is still poorly understood and many
recent works have to assume their existence.

In this Letter we study Bose-Einstein condensation in
the virialized DM halos/miniclusters caused by univer-
sal gravitational interactions. We work at large occupa-
tion numbers which is correct if the DM bosons are light.
Notably, we consider kinetic regime where the initial co-
herence length and period of the DM particles are close
to the de Broglie values (mv)�1 and (mv

2)�1 and much
smaller than the halo size R and condensation time ⌧gr,

mvR � 1 , mv
2
⌧gr � 1 . (1)

We numerically solve microscopic equations for the en-
semble of gravitating bosons in this case and find that
the Bose stars indeed form. We derive expression for ⌧gr
and study kinetics of the process.

Up to our knowledge, gravitational Bose-Einstein con-
densation in kinetic regime has not been observed in
simulations before. Old works considered only con-
tact interactions between the DM bosons [8] which
are non-universal and suppressed by quartic constants
� ⇠ 10�50 [9] and 10�100 [10] in models of QCD axions
and string axions/Fuzzy DM. Our results show that in
these cases gravitational condensation is faster: although
the Newton’s constant Gm

2 is tiny, its e↵ect is enhanced
by collective interaction of large fluctuations in the boson
gas at large distances, cf. [11].

On the other hand, all previous numerical studies of
Bose star formation considered coherent initial configura-
tions of the bosonic field — a Gaussian wavepacket [12] or
the Bose stars themself [13, 14]. A spectacular simulation
of structure formation by wavelike/Fuzzy DM [13, 15]
started from (almost) homogeneous Bose-Einstein con-
densate. In all these cases the Bose stars form almost
immediately [12, 13] from the lowest-energy part of the
initial condensate.

We consider entirely di↵erent situation (1) when the
DM bosons are virialized in the initial state. The closest

t̃ = 0 | ̃|

ỹ

x̃ x̃

t̃ = 1.3 · 106

0

.02

.1

FIG. 1. Formation of Bose star from random field with initial
distribution | ̃p̃|2 / e�p̃2

and total mass Ñ = 50 in the box
0  x̃, ỹ, z̃ < 125. These values correspond to the center of
the axion minicluster with Mc ⇠ 10�13M� and � ⇠ 2.7 in
Sec. 8. (a), (b) Sections z̃ = const of the solution | ̃(t̃, x̃)|
at (a) t̃ = 0 and (b) t̃ > ⌧̃gr ⇡ 1.08 · 106. (c) Radial profile
| ̃(r̃)| of the object in Fig. 1b (points) compared to the Bose
star  ̃s(r̃) with !̃s ⇡ �0.7 (line). (d) Maximum of | ̃(x̃)|
over the box as a function of time. (e) Spectra (3) at times
of Figs. 1a, b and at the eve of Bose star nucleation, t̃ =
1.05 · 106 ⇠ ⌧̃gr. (f) The spectrum at t ⇠ ⌧gr (dashed line)
versus the solution of Eq. (5) (circles) and thermal law F̃ /
!̃�1/2 (dots).
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“solitons” in axion-like fields can form naturally in the inflaton and in dark matter

also phase transitions, nucleation around BHs, etc.

rates depend on soliton formation mechanisms, lifetimes …



example: formation driven by self-interactions
2
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FIG. 1. Projected co-moving “densities” a
3
| |

2 (average along the line of sight) at several scale factors (a = 1 to a = 20) in
our 3+1 dimensional lattice simulations, with � ⌘ M/mpl = 0.03, and local gravitational interactions switched on (top panels)
and o↵ (bottom panels). The early instability due to self-interactions gives rise to the formation of solitons from an almost
homogeneous initial state. A statistical analysis of the locations of solitons at late times shows reveals evidence for clustering
only in the case where gravitational interactions are included. Note that inside solitons, | |2 = const. that is, their core density
does not redshift, whereas the background | ̄|

2
/ a

�3. Moreover, solitons maintain a fixed physical size, hence the illusion of
them shrinking in size in a co-moving volume. The initial size of the box is the size of the horizon at the beginning of the
simulation L ' H

�1
in . The solitons contain a dominant fraction (⇠ 80%) of the mass in the simulation volume. On a technical

aside, note that the projected co-moving density even in the densest (lightest in color) appearing regions in the above plot will
be smaller that the density inside the cores because of the small volume occupied by the solitons.

between relativistic/non-relativistic models and results
is discussed in the Appendix.

The rest of the paper is organized as follows in short
sections. In Section II we discuss the model for a non-
relativistic, self-interacting field in an expanding universe
with weak field gravity. In Section III, we briefly dis-
cuss the lattice simulation and our numerical algorithm.
The initial conditions for the simulations is provided
in Section IV. We analyze linear instabilities from self-
interactions and gravitational interactions in Section V.
The numerically calculated power spectrum for the field
perturbations is provided in Section VI. In Section VII we
discuss the formation of solitons, followed by a discussion
of their individual profiles and stability in Section VIII.
The gravitational clustering of solitons is discussed in
Section IX, and resulting strong soliton interactions are
explored in Section X. Finally, we present our conclusions
and future directions in Section XI. In the Appendix we
discuss connections to a related relativistic system.

II. THE MODEL

We use the following equations of motion (and con-
straint equations) to explore the dynamics of a non-
relativistic, self-interacting, self-gravitating scalar field in

an approximately homogeneous and isotropic universe:

i

✓
@t +

3

2
H

◆
+

1

2a2
r

2
� U

0
nl(| |

2) � �

�
 = 0 ,

r
2

a2
� =

�
2

2


| |

2 +
1

2a2
|r |

2 + Unl(| |
2)

�
�

3

2
H

2
,

H
2 =

�
2

3


| |2 +

1

2a2
|r |2 + Unl(| |2)

�
,

(1)

where [. . .] indicates a spatial average, a(t) is the scale-
factor, H(t) = ȧ(t)/a(t) is the Hubble rate,  (t,x) is
complex field amplitude, �(t,x) is the Newtonian po-
tential and Unl(| |

2) encodes the self-interactions of the
field.2

All variables and parameters appearing in the above
equation are dimensionless. We have expressed time t in
units of ⌧m = ~/mc

2, lengths in units of �m = ~/mc,
the Newtonian gravitational potential � in units of c

2

and | |
2 in units of m

2
M

2
c
3
/~3. Note that m

2
M

2
c
3
/~3

has dimensions of mass density. We assume that the
parameter

� ⌘
M

mpl
⌧ 1 . (2)

2
We have checked that qualitatively similar results are obtained

even if we set Unl ! 0 in the Poisson and Friedmann equations,

but keep U 0
n(| |2) ⌘ @| |2Un(| |2) in the nonlinear Schrödinger

equation.

8

FIG. 6. Gravitational clustering facilitates close encounters at late times between solitons. Such close encounters lead to
mergers, strong scattering and formation of soliton binaries. Non-gravitational interactions can play a dominant role in the
close-encounters, with the phase of the scalar field also playing an important role. This richness in the close-encounter dynamics
makes the soliton gas distinct from a gravitationally interacting gas of particles (CDM).

2. A few solitons merge to form more massive solitons
(typically when the relative phase is ⇠ 0), resulting
in a change in number density of solitons. Such in-
teractions are typically accompanied by generation
of a burst of scalar waves as the solitons settle into
new configurations.

3. A small fraction of solitons form orbiting binaries.

4. Only few � 10% of the number of solitons in our
simulations undergo strong encounters per Hubble
time.15 This is consistent with the rate of change
in the co-moving number density of solitons

d ln(a3
nsol)

d ln a
' 0.1 , (21)

as seen from Fig. 3.

We re-iterate that bouncing, binary formation and
merging of solitons is self-consistently obtained from our
cosmological initial conditions. Evidently, the dynamics
of these strong interactions are quite rich, and deviate
from the expectations of treating these solitons as just
point particles. The relative phase of the solitons plays
an important role in these close encounters. A more de-
tailed investigation of the rich dynamics of close encoun-
ters is left for future work.16

15
We inspected 6 numerical runs with di↵erent initial conditions

to get this number.
16

For an early, and detailed investigation of Q-ball interactions

(relativistic complex field valued analogs of our solitons), but

without gravity, see [55].

The repulsive and attractive behavior of such solitons
as a function of relative phase can be heuristically un-
derstood as follows. Consider a probe soliton moving
past another stationary soliton (in absence of gravity).
The nonlinearity in the Schrödinger equation (/ | |

2 for
| |

2
⌧ 1) can be thought of as a nonlinear refractive in-

dex.17 If the two solitons are in phase, we expect this
term to be larger in the region between the solitons than
the case when the stationary soliton is absent. It also in-
creases towards the stationary soliton. As a result, this
larger refractive index, and its gradient, will cause the
core of the probe soliton to bend towards the stationary
one, i.e. there will be attraction between the solitons. On
the other hand, when our two solitons are out of phase,
the | |

2 between the two solitons will be smaller, and
have to go to zero in the middle (from symmetry), caus-
ing the probe soliton to move away from the stationary
one (hence “repulsion”). A more detailed, e↵ective po-
tential based analysis at large separations is provided by
[37, 57].

XI. CONCLUSIONS & FUTURE DIRECTIONS

We investigated the dynamics of non-relativistic
scalar fields in an expanding background. By includ-
ing self-interactions and gravitational interactions, we

17
This is more than an analogy since nonlinear Schrödinger equa-

tions are used to model light pulse propagation in nonlinear me-

dia [56], we learned of the above heuristic explanation from the

same paper.

self-interaction 
instability

soliton
formation

gravitational
clustering

some late-time 
strong 
interactions

MA & Mocz (2019)



relativistic to non-relativistic effective theory

Klein-Gordon-Einstein
Nonrelativistic EFT for ‘slow’ modes
= Schrödinger-Poisson +  corrections

integrate out ‘fast’ modes

Figure 1: Schematic approach of our EFT method for identifying systematic corrections to the
Schrödinger-Poisson equations.

we obtain an e↵ective nonrelativisitic description for the system. Our specific approach was first
incorporated in Ref. [23] to obtain an e↵ective field theory (EFT) in Minkowski spacetime for a
self-interacting scalar field. It was then generalized for curved spacetimes in Ref. [24], and more
specifically applied to the case of a spatially flat Friedmann-Lemâıtre-Robertson-Walker (FLRW)
universe, with the analysis restricted to linearized perturbations.*1 However, one important feature
of dark matter is its ability to form dense, nonlinear structures due to gravitational instability in an
expanding universe. The focus of this work is therefore to develop an EFT without any assumptions
regarding the amplitude of the density perturbations of dark matter within an expanding universe.
In this sense we obtain an EFT for axion dark matter in the nonlinear regime. Although metric
perturbations are expected to remain small (at least in typical cosmological contexts [30, 31]), we
systematically go beyond linear order in the metric perturbations as well.

The leading-order result in our EFT is consistent with the Schrödinger-Poisson (SP) system
in an expanding universe, which is widely used in the literature [8]. For example, the SP system
has enabled long-time-scale simulations of nonlinear structure formation of axion-like fields [14,
32, 33]. It has also been used to understand the cosmological formation, gravitational clustering,
and scattering of solitons with strong self-interactions in the early and contemporary universe [16].
Mirroring the late-universe simulations, purely gravitational growth of structure in the very early
universe was pursued in Ref. [34] with the help of the SP system. The SP system was used
for numerically exploring mergers and collisions of solitons with and without self-interactions in
axion-like dark matter [35, 36], along with their non-gravitational consequences [37, 38]. The SP
system was at the heart of exploring dynamical friction [39], relaxation [40], turbulence [41], halo
substructure [42, 43], kinetic nucleation of solitons [15, 44], and the dynamics of transient vortices
in fuzzy dark matter scenarios [17]. A number of existing numerical algorithms and codes are being
used to explore the nonlinear dynamics of the SP system. (See, e.g., Refs. [41, 45, 46].)

Given its importance and widespread use, it is critical to understand the domain of validity
of the SP system as well as expected deviations from it. With our systematic expansion, which
relies upon integrating out the dynamics on short time-scales, we go beyond the leading-order SP
system of equations and capture quantitative deviations expected due to relativistic corrections.
See Fig. 1. These deviations are expected to be small in most cosmological contexts in the late
universe, when the fields are essentially nonrelativistic. Nevertheless, explicit expressions for the

*1Note that the terminology of e↵ective field theory refers to two di↵erent approaches. One approach is bottom-up,
in which all relevant operators that are consistent with the symmetries are included and then the coe�cients are
fixed by matching with experiments. This approach is incorporated for example in the EFT of inflation [26] and
large-scale structure formation [27]. In contrast, our approach here is top-down, in which an EFT is obtained by
taking the low-energy limit of a more complete theory. In this case, the coe�cients appearing in the EFT are fixed by
the parameters given in the more complete theory. This approach has been used for axion dark matter, for example
in Refs. [23, 28,29]. Useful comparisons of the di↵erent top-down results are also provided in the same papers.

2

MA, Kaiser, Namjoo, Salehian, Zhang (soon!)
Namjoo, Guth and Kaiser (2018)
Salehian, Kaiser, Namjoo (2005)
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CMB birefringence from ultralight-axion string networks
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Figure 1: The polarization of CMB photons (indicated by the black bar) passing through axionic
cosmic string loops (shown in green) is rotated by an angle ��. The rotation accumulates
along the photon’s path (orange arrow) as �� = A↵em/(2⇡fa)

R
xf

xi
dx · @xa, where a is the

axion field, A = O(1) and ↵em ⇡ 1/137. Along the photon path passing through the loop,
|a(xf ) � a(xi)| = 2⇡fa when the points xi and xf are su�ciently far from the loop.

2.2 Axion-induced birefringence

Since the axion is an ultralight particle, it is easy to arrange systems where the occupation
number of the field is high, and the field admits a classical description. As a photon passes
through a classical axion field, it will experience a rotation of its polarization axis, a phenomenon
known as birefringence. The polarization rotation angle that results from this axion-induced
birefringence e↵ect is [59–62, 88]

�� =
ga��

2

Z

C

dXµ
@µa(x) . (2)

To evaluate �� one integrates the axion’s spacetime gradient @µa along the photon’s worldline
X

µ that connects the point of photon emission with the point of photon detection. We include
a derivation of Eq. (2) in Appendix A.

If the axion field has a trivial topology, with �⇡fa ⌧ a(x) ⌧ ⇡fa throughout spacetime,
then the integral in Eq. (2) gives simply �� = ga��(ad � ae)/2 where ae and ad are the values
of the axion field at the photon’s point of emission and detection, respectively. For example, in
models with a larger value of ma than what we are interested in this paper, it is possible for the
axion to make up some or all of the dark matter. Then the axion field value varies in space and
time with the local dark matter density as |a| ⇠

p
⇢dm/ma. The associated CMB birefringence

e↵ect is on the order of |��| ⇠ |ga��|
p
⇢dm/ma [88]. Generally |a| ⌧ fa for axion dark matter

implying a relatively small birefringence signal |��| ⌧ |ga��|fa ⇠ |A|↵em.
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reasonable string network models, the largest contribution to the total birefringence comes from
nearly Hubble-scale loops (and also ‘long’ strings to the extent that they can be modelled as
Hubble-scale loops); (5) For string networks that collapse sometime between recombination and
today, there exists another scale `ma / 1/✓c in the birefringence power spectrum. The angle ✓c

corresponds to the angular extent of typical loops present at the time of collapse. For ` < `ma

the power spectrum increases like ⇠ `
2, while it has a similar behavior as in (2) for higher `.

The rest of the paper is organized as follows. We begin in Sec. 2 by discussing the model and
system of interest: an ultralight axion that couples to photons, forms a cosmological axion-string
network, and induces birefringence in the CMB radiation. Next in Sec. 3 we review the loop-
crossing model formalism for calculating the two-point correlation function of the birefringence
signal. In particular we identify a kernel function that appears in this calculation, and we derive
an analytic estimate to the kernel function, which is also validated against direct numerical
integration. Our analytic results for the kernel function are used in Sec. 4 to evaluate the
birefringence signal for several di↵erent models of the axion string network, compared against
the direct respective numerical results. We also compare the predicted signal against current
and projected constraints on CMB anisotropic birefringence. Finally in Sec. 5 we discuss and
summarize our key results. The article includes three appendices: Appendix A provides a
derivation of the axion-induced CMB birefringence e↵ect; Appendix B provides an estimate of
CMB birefringence due to axions particles produced by domain wall collapse; and Appendix C
provides a discussion of CMB birefringence in a model with stable domain walls.

2 Theoretical framework

In this section we discuss the axion model under consideration, the phenomenon of axion-induced
birefringence, and the cosmological network of axion strings.

2.1 An ultralight axion coupled to light

The axion’s interaction with electromagnetism is captured by a term in the Lagrangian

Lint = �
1

4
ga�� aFµ⌫F̃

µ⌫ (1)

where a(x) is the pseudoscalar axion field, Fµ⌫(x) is the electromagnetic field strength tensor,
and F̃

µ⌫(x) = 1/2 ✏µ⌫⇢�F⇢� is the dual tensor. In the simplest models, the axion’s interaction
with electromagnetism is induced by an anomaly, and for these models we can write the cou-
pling as ga�� = �A↵em/⇡fa where A = C�/2 is the anomaly coe�cient, ↵em ' 1/137 is the
electromagnetic fine structure constant, and fa is the Peccei-Quinn scale. Typically A is a O(1)
rational number. A variety of probes constrain the axion-photon coupling ga��. Most notable
are limits from the CAST helioscope which imposes |ga��| . 0.66⇥10�10 GeV�1 for axion masses
below roughly 10�2 eV [17].

5

The same theories that describe axion-like particles generally also have topological defects
in the spectrum of the theory. The existence of these defect solutions is a consequence of the
vacuum’s nontrivial topology, and our work focuses on the simplest theories that admit two
types of defects: one-dimensional strings and two-dimensional domain walls. In such cases,
the birefringence signal can be much larger. An axion string is a configuration of the axion
field that has a local cylindrical symmetry [44]. For a winding number w = ±1 string the
axion field changes by |�a| = 2⇡fa along a closed path that encircles the string. In particular,
consider a photon that passes through an axion string loop, as shown Fig. 1. If the points of
photon emission and detection are far away from the loop, then the photon experiences the full
|�a| = 2⇡fa change in the axion field (for a winding number w = ±1 loop, with a plus or a
minus sign depending on the orientation of the loop), and the birefringence angle is1 [73]

�� = ±ga��⇡fa = ±A↵em . (3)

Here we must make two important observations [73]. First the birefringence e↵ect induced
by axion strings is generally much larger than the e↵ect induced by axion dark matter, since
the field excursion is necessarily larger for the topological defect. Second the string-induced
birefringence is insensitive to the Peccei-Quinn scale for ga�� / 1/fa, which is the expected
scaling in the simplest and most compelling axion theories (but see also Ref. [89]). In this sense
�� is a direct probe of the anomaly coe�cient, A. Moreover, models with A = O(1) provide
natural targets!

2.3 A network of axion strings

The axion is the Goldstone boson of a U(1) complex Peccei-Quinn field with a symmetry break-
ing potential. At the PQ phase transition, the Universe is populated with a network of axion
strings [42, 42–44].2 The network’s evolution consists of long strings intersecting and reconnect-
ing to form loops, and loops oscillating and radiating axion particles. Axion radiation from the
network is e�cient, and a loop typically collapses in a time scale set by its light-crossing time;
i.e., less than O(1) Hubble time.3 The network soon converges to an attractor solution (i.e. inde-
pendent of the exact initial conditions). A property of this attractor solution is that the energy
density in the string network, to leading order, scales like the total dominant energy density in
the Universe and is said to be in scaling [46, 74–80]. With the string tension µ ' ⇡ f

2
a
log(fa/H),

under scaling the energy density of the string network is written as ⇢ = ⇠ µH
2 where ⇠ counts

the total string length (in units of inverse Hubble) in a Hubble volume and is a constant in time.

1
For a photon that traverses an axion domain wall, the change in the field amplitude is |�a| = 2⇡fa/Ndw where

the positive integer Ndw is called the domain wall number. The corresponding birefringence is |��| = A↵em/Ndw.
2
This must happen after inflation since otherwise the network would be ‘inflated out’. This imposes an upper

limit on the Peccei-Quinn scale, fa . fa,max ⌘
p

HinfMpl.
3
Rapid loop collapse is a general property of global string networks, such as axion strings. By contrast, gauge

string loops collapse slowly by gradual gravitational wave emission, and the network contains many small loops

with an abundance controlled by the string tension Gµ [49].

7

*see Agrawal,  Hook & Huang (2019)
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The first term, corresponding to the population of Hubble-scale loops, is equivalent to the
integral we encountered in Sec. 4.1 and the result is simply Eq. (46) with the replacements
⇠0 ! (1 � fsub) ⇠0 and ⇣0 ! ⇣max. In the second term, evaluating the integrals analytically is
more complicated because of the ⇣-dependent upper limit of z integration. However, for ✓o = 0
we have z̃⇤(⇣, 0) = zcmb and the integrals simplify to

h��(�̂1)��(�̂2)i
���
✓o=0

' (1 � fsub) ⇠0
�
A↵em

�2 ⇣max

4
log (1 + zcmb)

+ fsub ⇠0

�
A↵em

�2 ⇣max + ⇣min

8
log (1 + zcmb) ,

(50)

where we have neglected additional terms that are O(⇣2max, ⇣
2
min). It is interesting to note that

the sub-Hubble scale loops contribute parametrically the same as the Hubble-scale loops modulo
the di↵erent fsub dependence.

Fig. 7 shows the two-point correlation function and the angular power spectrum for mixed-
length axion string networks. We fix the maximum dimensionless loop radius such that ⇣max = 1,
and we show the results for ⇣min = 10�1 and 10�2 as well as fsub = 0.2, 0.6, and 0.9. Raising fsub

reduces the number of Hubble-scale loops with ⇣ = ⇣max and increases the number of sub-Hubble
loops with ⇣min < ⇣ < ⇣max. Similarly, lowering ⇣min spreads the distribution of sub-Hubble loops
to smaller sizes while conserving the total amount of strings in this population. Both raising
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our heuristic approach above. The evaluation of the z integral is straightforward, and we find11

h��(�̂1)��(�̂2)i '
⇠0⇣0

4

�
A↵em

�2
log

 
1 + (z3/2c + z̃

3/2
⇤ )2/3

1 + zc

!
. (54)

Note that Eq. (46) for the model in Sec. 4.1 is just a special case of this formula with zc = 0.

We show the correlation function and angular power spectrum in Fig. 8. Allowing the
string network to collapse before today leads to a suppression of the correlation function at
large angular scales. This can be understood as follows. Correlation results from photons
passing through a common set of string loops. If the opening angle between the photons is
large, the loops must also be large to intersect them both. In this model the comoving loop
radius grows with time as r = ⇣0/aH, so the largest loops aren’t present until late times. If the
network collapses before these large loops have formed, the correlation function is suppressed
on large angular scales.

In terms of the angular power spectrum, this suppression corresponds to `(`+ 1)C��
`

⇠ `
2

at small `. This introduces a new scale `ma in the power spectrum, controlled by the mass of

11
This expression assumes ✓o and ✓c < ✓t ⇡ 1. For larger values of ✓o and ✓c we have instead, h��

2
i '

⇠0(A↵em)
2
[(⇣0/4) log(1 + (z

3/2
c + z̃

3/2
⇤ )

2/3
) � (1/3⇣0) log

3
(1 + zc) � ⇣

2
0/12] for ✓o < ✓t < ✓c, and we have h��

2
i '

(⇠0/3⇣0)(A↵em)
2
[log

3
(1 + (z

3/2
c + z̃

3/2
⇤ )

2/3
) � log

3
(1 + zc)] for ✓t < ✓o, ✓c.
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end tangential digression
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Figure 2 | A slice of the density field of the  DM simulation on various
scales at z=0.1. This scaled sequence (each of thickness 60 pc) shows
how quantum interference patterns can be clearly seen everywhere from
the large-scale filaments, tangential fringes near the virial boundaries, to
the granular structure inside the haloes. Distinct solitonic cores with radii
⇠0.3–1.6kpc are found within collapsed haloes (which have virial masses
Mvir ⇠ 109˘1011 M�). The density shown here spans over nine orders of
magnitude, from 10�1 to 108 (normalized to the cosmic mean density). The
colour map scales logarithmically, with cyan corresponding to density .10.

giving rise to a co-moving Jeans length, �J / (1+z)1/4m�1/2
B , during

the matter-dominated epoch17. The insensitivity of �J to redshift, z ,
generates a sharp cuto�mass belowwhich structures are suppressed.
Cosmological simulations in this context turn out to be much
more challenging than standard N-body simulations, as the highest
frequency oscillations, !, given approximately by the matter wave
dispersion relation, ! /m�1

B �
�2, where � is the wavelength, occur

on the smallest scales, requiring very fine temporal resolution even
formoderate spatial resolution (Supplementary Fig. 1). In this work,
we optimize an adaptive-mesh-refinement (AMR) scheme, with
graphic processing unit acceleration, improving performance by
almost two orders of magnitude22 (see Supplementary Section 1
for details).

Figure 1 demonstrates that despite the completely di�erent
calculations employed, the pattern of filaments and voids generated
by a conventional N-body particle3CDM simulation is remarkably
indistinguishable from the wavelike 3 DM for the same linear
power spectrum (Supplementary Fig. 3). Here 3 represents the
cosmological constant. This agreement is desirable given the
success of standard 3CDM in describing the statistics of large-scale
structure. To examine the wave nature that distinguishes DM from
CDM on small scales, we re-simulate with a very high maximum
resolution of 60 pc for a 2 Mpc co-moving box, so that the densest
objects formed of &300 pc size are well resolved with ⇠103 grids. A
slice through this box is shown in Fig. 2, revealing fine interference
fringes defining long filaments, with tangential fringes near the
boundaries of virialized objects, where the de Broglie wavelengths
depend on the local velocity of matter. An unexpected feature of
our DMsimulations is the generation of prominent dense coherent
standing waves of dark matter in the centre of every gravitational
bound object, forming a flat core with a sharp boundary (Figs 2
and 3). These dark matter cores grow as material is accreted and
are surrounded by virialized haloes of material with fine-scale,
large-amplitude cellular interference, which continuously fluctuate
in density and velocity, generating quantum and turbulent pressure
support against gravity.

The central density profiles of all our collapsed cores fit well
the stable soliton solution of the Schrödinger–Poisson equation, as
shown in Fig. 3 (see also Supplementary Section 2 and Figs 2 and 4).
On the other hand, except for the lightest halo, which has just formed
and is not yet virialized, the outer profiles of other haloes possess a
steepening logarithmic slope, similar to the Navarro–Frenk–White
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Figure 3 | Radial density profiles of haloes formed in the  DMmodel.
Dashed lines with various symbols show six examples of the halo profiles
normalized to the cosmic mean density. All haloes are found to possess a
distinct inner core fitted extremely well by the soliton solution (solid lines).
A detailed soliton fit for the largest halo is inset, where the error is the root-
mean-square scatter of density in each radial bin. A Navarro–Frenk–White
(NFW) profile representing standard CDM is also shown for comparison
(black dot-dashed line, with a very large scale radius of 10kpc), which fits
well the profiles outside the cores. The yellow hatched area indicates the
⇢300 of the dSph satellites around the Milky Way3,24, which is consistent
with the majority of galaxy haloes formed in the  DM simulations.

(NFW) profile23 of standard CDM. These solitonic cores, which are
gravitationally self-bound and appear as additional mass clumps
superposed on the NFW profile, are clearly distinct from the cores
formed by WDM and collisional CDM, which truncate the NFW
cuspy inner profile at lower values and require an external halo for
confinement. The radius of the soliton scales inversely with mass,
such that the widest cores are the least massive and are hosted by the
least massive galaxies. Eighty percent of the haloes in the simulation
have an average density within 300 pc (defined as ⇢300) in the range
5.3⇥ 10�3–6.1⇥ 10�1 M�/pc3, consistent with the dSph satellites
around the Milky Way3,24, and objects like these are resilient to
close interaction with massive galaxies. By contrast, the very lowest
mass objects in our simulation have ⇢300 ⇠ 4.0⇥ 10�4 M�/pc3 and
Mvir ⇠108 M�, but exist only briefly as they are vulnerable to tidal
disruption by large galaxies in our simulations. Together with the
cuto� in the power spectrum at the Jeans scale (Supplementary
Fig. 3), this leads to a marked suppression of substructure below
a few times 108 M� relative to the prediction of standard CDM
(refs 8,9). A quantitative evaluation of the mass function of satellite
galaxies predicted by  DM with larger simulations is thus another
crucial test to be addressed.

The prominent solitonic cores uncovered in our simulations
provide an opportunity to estimate the boson mass, mB, by
comparison with observations, particularly for dSph galaxies where
dark matter dominates. The local Fornax dSph galaxy is the best
studied case, with thousands of stellar velocity measurements,
allowing a detailed comparison with our soliton mass profile.
We perform a Jeans analysis for the dominant intermediate
metallicity stellar population, which exhibits a nearly uniform
projected velocity dispersion (�k; ref. 25). We simultaneously
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Gravitational Bose-Einstein condensation in the kinetic regime
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We study Bose-Einstein condensation and formation of Bose stars in the virialized dark matter
halos/miniclusters by universal gravitational interactions. We prove that this phenomenon does
occur and it is described by kinetic equation. We give expression for the condensation time. Our
results suggest that Bose stars may form kinetically in the mainstream dark matter models such as
invisible QCD axions and Fuzzy Dark Matter.

1. Introduction. Bose stars are lumps of Bose -
Einstein condensate bounded by self-gravity [1, 2]. They
can be made of condensed dark matter (DM) bosons —
say, invisible QCD axions [3] or Fuzzy DM [4]. That is
why their physics, phenomenology and observational sig-
natures remain in the focus of cosmological research for
decades [5], see recent papers [6, 7]. Unfortunately, for-
mation of Bose stars is still poorly understood and many
recent works have to assume their existence.

In this Letter we study Bose-Einstein condensation in
the virialized DM halos/miniclusters caused by univer-
sal gravitational interactions. We work at large occupa-
tion numbers which is correct if the DM bosons are light.
Notably, we consider kinetic regime where the initial co-
herence length and period of the DM particles are close
to the de Broglie values (mv)�1 and (mv

2)�1 and much
smaller than the halo size R and condensation time ⌧gr,

mvR � 1 , mv
2
⌧gr � 1 . (1)

We numerically solve microscopic equations for the en-
semble of gravitating bosons in this case and find that
the Bose stars indeed form. We derive expression for ⌧gr
and study kinetics of the process.

Up to our knowledge, gravitational Bose-Einstein con-
densation in kinetic regime has not been observed in
simulations before. Old works considered only con-
tact interactions between the DM bosons [8] which
are non-universal and suppressed by quartic constants
� ⇠ 10�50 [9] and 10�100 [10] in models of QCD axions
and string axions/Fuzzy DM. Our results show that in
these cases gravitational condensation is faster: although
the Newton’s constant Gm

2 is tiny, its e↵ect is enhanced
by collective interaction of large fluctuations in the boson
gas at large distances, cf. [11].

On the other hand, all previous numerical studies of
Bose star formation considered coherent initial configura-
tions of the bosonic field — a Gaussian wavepacket [12] or
the Bose stars themself [13, 14]. A spectacular simulation
of structure formation by wavelike/Fuzzy DM [13, 15]
started from (almost) homogeneous Bose-Einstein con-
densate. In all these cases the Bose stars form almost
immediately [12, 13] from the lowest-energy part of the
initial condensate.

We consider entirely di↵erent situation (1) when the
DM bosons are virialized in the initial state. The closest

t̃ = 0 | ̃|

ỹ

x̃ x̃

t̃ = 1.3 · 106

0

.02

.1

FIG. 1. Formation of Bose star from random field with initial
distribution | ̃p̃|2 / e�p̃2

and total mass Ñ = 50 in the box
0  x̃, ỹ, z̃ < 125. These values correspond to the center of
the axion minicluster with Mc ⇠ 10�13M� and � ⇠ 2.7 in
Sec. 8. (a), (b) Sections z̃ = const of the solution | ̃(t̃, x̃)|
at (a) t̃ = 0 and (b) t̃ > ⌧̃gr ⇡ 1.08 · 106. (c) Radial profile
| ̃(r̃)| of the object in Fig. 1b (points) compared to the Bose
star  ̃s(r̃) with !̃s ⇡ �0.7 (line). (d) Maximum of | ̃(x̃)|
over the box as a function of time. (e) Spectra (3) at times
of Figs. 1a, b and at the eve of Bose star nucleation, t̃ =
1.05 · 106 ⇠ ⌧̃gr. (f) The spectrum at t ⇠ ⌧gr (dashed line)
versus the solution of Eq. (5) (circles) and thermal law F̃ /
!̃�1/2 (dots).
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Figure 2. The e↵ective charge and current density (dipoles) induced by the presence of a soliton in
an external electromagnetic field background. The left image shows a charge dipole aligned with the
external magnetic field, and the right image shows a current dipole in a plane normal to the external
electric field. The charge density and current density oscillate in time, generating dipole radiation.

4.2.1 Leading order in ga�: dipole radiation

At leading order in the coupling ga� , we have

Ë(1) � r2E(1) = �r⇢(1) � J̇(1), (4.8)

B̈(1) � r2B(1) = r ⇥ J(1). (4.9)

At this order in ga� , the background electromagnetic fields along with the axion configuration
�(t,x) = '(r) cos !t induce an e↵ective charge and current density:

⇢(1)(t,x) = Re
⇥
%(1)(x)e�i!t

⇤
, J(1)(t,x) = Re

⇥
j(1)(x)e�i!t

⇤
, (4.10)

with %(1)(x) = �ga�r'(r) · B̄, j(1)(x) = �i!ga�'(r)B̄ + ga�r'(r) ⇥ Ē. (4.11)

Due to the spatial derivative acting on ' along the direction of B̄ field, the positive and the
negative charges are distributed separately along the B̄ field axis like a dipole (see left panel
in Fig. 2). And with its oscillating nature of the axion configuration, such an oscillating dipole
will lead to dipolar electromagnetic radiation. A constant Ē field results in an oscillating
azimuthal current, which also results in dipolar radiation (see right panel in Fig. 2).

It is a standard textbook problem to compute the excited electric and magnetic fields
caused by the harmonic, spatially localized sources of the form (4.10), as well as the associated
Poynting flux S(2) ⌘ E(1) ⇥ B(1) and power emitted per unit solid angle. See for example
[111, 112]. We review some of the relevant details of the derivation in Appendix A. Here, we
directly write down the solution for the flux below. At a position x far from the source, and
at su�ciently late times, the power per unit solid angle dP

�

(2)/d⌦ = |x|
2x̂ · S(2), is given by

dP
�

(2)

d⌦
=

!
2

32⇡2
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h
e
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e
i2!|x|
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2
(1)(k) + j̃2(1)(k)

⌘ i!
,

where k = !x̂ , (4.12)

where f̃(k) is the spatial Fourier transform of f(x). Using the specific forms of the charge and
current densities in (4.11), we have %̃(1)(k) = �iga�!'̃(!)x̂·B̄ and j̃(1)(k) = �i!ga�'̃(!)B̄+
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Figure 2. The e↵ective charge and current density (dipoles) induced by the presence of a soliton in
an external electromagnetic field background. The left image shows a charge dipole aligned with the
external magnetic field, and the right image shows a current dipole in a plane normal to the external
electric field. The charge density and current density oscillate in time, generating dipole radiation.
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will lead to dipolar electromagnetic radiation. A constant Ē field results in an oscillating
azimuthal current, which also results in dipolar radiation (see right panel in Fig. 2).

It is a standard textbook problem to compute the excited electric and magnetic fields
caused by the harmonic, spatially localized sources of the form (4.10), as well as the associated
Poynting flux S(2) ⌘ E(1) ⇥ B(1) and power emitted per unit solid angle. See for example
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