Light from Dark Solitons

Mustafa A. Amin (Rice University)

[arXiv: 2103.12082] with Andrew J. Long, Zong-Gang Mou, Paul Saffin and [arXiv: 2009.11337] with Zong-Gang Mou

very-long lived, dynamical excitation in a field, with nonlinearities balancing dispersion

- discovered in nonlinear waves in water in canals (John Scott Russell, 1834)
- optics, hydrodynamics, BECs, high energy physics, and cosmology

Image Credit: Heriot-Watt University

water

John Scott Russell, 1834) and cosmology

solitons in axion-like fields

"solitons" in axion-like fields can form naturally in the inflaton and in dark matter - can have gravitational and non-gravitational effects

MA & Mocz (2019)

also phase transitions, nucleation around BHs, etc.

Levkov et. al (2018)

main takeaways

axion stars/oscillons/solitons can radiate energy in electromagnetic fields

radiation from solitons in external electromagnetic fields (with or without plasma)

+ Fast Radio Bursts (maybe)

$g_{a\gamma}\phi \mathbf{E}\cdot \mathbf{B}$

radiation from collisions of solitons *gravitational and electromagnetic possible

 $g_{a\gamma}\phi \mathbf{E}\cdot \mathbf{B}$ axion stars/oscillons/solitons can radiate energy in electromagnetic fields radiated power depends on axion-photon coupling and characteristics of soliton configuration

MA & Mou (2020), MA, Long, Mou & Saffin (2021)

lots of excitement: constrain axion photon coupling

why EM radiation from solitons ?

solitons with coherence & large (non-redshifting) central amplitudes — can significantly change expectations of axion-photon conversion

*global picture in terms of the soliton properties, coupling strengths etc.

- orientation •
- *physics of soliton formation, stability and clustering (later)
- light (and gravitational waves) from dark solitons

our cosmic story

dark matter

lots of fun astrophysics here

our cosmic story

lots of fun high energy physics + phase transitions here

after inflation

length scales ?

microscopic length scales end of inflation

sizes scales with inverse mass of the scalar field

macroscopic length scales but (usually) smaller than galactic scales dark matter

cosmological scalar fields + gravity + photons

$$S = \int d^4x \sqrt{-g} \left[\frac{m_{\rm pl}^2}{2} R - \frac{1}{2} (\partial \phi)^2 - V(\phi)^2 \right]$$

relevant for soliton formation, clustering and gravitational wave production

* scalar field is real valued

 $(\phi) - \frac{1}{4} F_{\mu\nu} F^{\mu\nu} - \frac{g_{\phi\gamma}}{4} \phi F_{\mu\nu} \tilde{F}^{\mu\nu}$

relevant for photon production

cosmological scalar fields + gravity

$$S = \int d^4x \sqrt{-g} \left[\frac{m_{\rm pl}^2}{2} R - \frac{1}{2} (\partial \phi)^2 - V(\phi)^2 \right]$$

relevant for soliton properties, formation, clustering and gravitational wave production

*if coupling to photons is very large, it can significantly influence formation as well, particularly relevant for (p)reheating applications

cosmological scalar fields + gravity

$$S = \int d^4x \sqrt{-g} \left[\frac{m_{\rm pl}^2}{2} R - \frac{1}{2} (\partial \phi)^2 - V(\phi) \right]$$

"opening up" of the potential means there is an attractive interaction in addition to gravity

> opening up potentials common for inflation and axion-like fields

solitons : oscillons, axion stars ...

spatially localized coherently oscillating exceptionally long-lived

For example:

Bogolubsky & Makhankov (1976) Segur & Kruskal (1987) Seidel and Sun (1990) Gleiser (1994) Copeland et al. (1995) MA & Shirokoff (2010) Hertzberg (2011) MA (2013) Mukaida et. al (2016) Zhang, MA, et. al (2020)

*ask me about lifetimes, see Zhang et. al (2020a, b)

20a, b)

spatially localized, coherently oscillating, long-lived

self-interaction

194. 194.	
199	
anna Stairt	12 12
80	`100 ²

solitons : oscillons, axion stars ... spatially localized, coherently oscillating, long-lived

*lifetimes can be much shorter than age of universe for very dense objects, see Zhang et. al (2020a, b)

194. 194.	
199	
anna Stairt	12 12
80	`100 ²

solitons : oscillons, axion stars ... spatially localized, coherently oscillating, long-lived

$$m^{-1}$$

194. 194.	
Ъ., 	
anna Stairt	12 12
80	`100 ²

cosmological scalar fields + gravity + photons

assume "Newtonian" gravity

relevant for soliton formation, clustering and gravitational wave production

relevant for photon production

axion electrodynamics

modified Maxwell's eqns.

$$\dot{oldsymbol{E}} =
abla imes oldsymbol{B} - g_{a\gamma} \left(\dot{\phi} oldsymbol{B} +
abla \phi imes oldsymbol{E}
ight)$$

 $\dot{oldsymbol{B}} = -
abla imes oldsymbol{E} ,$
 $abla \cdot oldsymbol{E} = -g_{a\gamma}
abla \phi \cdot oldsymbol{B} ,$
 $abla \cdot oldsymbol{B} = 0 .$

modified Klein-Gordon eq.

$$\ddot{\phi} - \nabla^2 \phi + \partial_{\phi} V = g_{a\gamma} \boldsymbol{E} \cdot \boldsymbol{B}$$

effective charge and current densities

$$ho = -g_{a\gamma}
abla \phi \cdot oldsymbol{B}$$
 $oldsymbol{J} = g_{a\gamma} \left(\dot{\phi} oldsymbol{B} +
abla \phi imes oldsymbol{E}
ight)$

including gravity (non-relativistic)

$$\partial_{\phi} V \to (1+2\Psi)\partial_{\phi} V$$

$$\nabla^2 \Psi = (1/2m_{\rm pl}^2)\rho_\phi$$

$$\nabla^2 E = -\nabla \rho - \dot{J}$$

$$\nabla^2 B = \nabla \times J$$

 $\rho = -g_{a\gamma}\nabla\phi\cdot\boldsymbol{B}$

$$g_{a\gamma}\left(\dot{\phi}oldsymbol{B}+
abla\phi imesoldsymbol{E}
ight)$$

electromagnetic radiation from solitons

$$oldsymbol{
abla}^2 oldsymbol{E} = - oldsymbol{
abla}
ho - oldsymbol{J}$$
 $oldsymbol{
abla}^2 oldsymbol{B} = oldsymbol{
abla} imes oldsymbol{J}$
 $-g_{a\gamma}
abla \phi \cdot oldsymbol{B}$
 $g_{a\gamma} \left(\dot{\phi} oldsymbol{B} +
abla \phi imes oldsymbol{E}
ight)$

electromagnetic radiation from solitons

$$oldsymbol{
abla}^2 oldsymbol{E} = - oldsymbol{
abla}
ho - oldsymbol{J}$$
 $oldsymbol{
abla}^2 oldsymbol{B} = oldsymbol{
abla} imes oldsymbol{J}$
 $-g_{a\gamma}
abla \phi \cdot oldsymbol{B}$
 $g_{a\gamma} \left(\dot{\phi} oldsymbol{B} +
abla \phi imes oldsymbol{E}
ight)$

electromagnetic radiation from solitons

axion field oscillations = periodic coefficients — Floquet theory applies:

- I. steady solutions
- $oldsymbol{E},oldsymbol{B}$
- 2. exponentially growing

$$egin{aligned} oldsymbol{
abla}^2 oldsymbol{E} &= - oldsymbol{
abla}
ho - oldsymbol{J} &= oldsymbol{
abla} imes oldsymbol{J} imes oldsymbol{J} &= oldsymbol{
abla} imes oldsymbol{J} imes oldsymbol{J} imes oldsymbol{J} &= oldsymbol{abla} imes oldsymbol{J} imes oldsymbol{J} imes oldsymbol{J} imes oldsymbol{J} imes oldsymbol{A} imes oldsymbol{J} imes oldsymbol{A} imes oldsymbol{J} imes oldsymbol{A} imes oldsymbol{J} imes oldsymbol{A} imes oldsym$$

EM radiation from solitons: steady vs. explosive

$C \equiv \frac{\text{escape time-scale}}{\text{Bose-enhancement time-scale}}$

Hertzberg 2010

EM radiation from solitons: steady vs. explosive

 $C \equiv \frac{\text{escape time-scale}}{\text{Bose-enhancement time-scale}}$

$$\equiv \frac{R}{\mu_{\rm hom}^{-1}} \approx \frac{1}{4} g_{a\gamma} \varphi_0 \omega R_{\rm c}$$

numerator and denominator are calculable "by hand" depends on axion-photon coupling and soliton parameters

EM radiation from solitons: steady vs. explosive

 $C \equiv \frac{\text{escape time-scale}}{\text{Bose-enhancement time-scale}}$

$$\equiv \frac{R}{\mu_{\rm hom}^{-1}} \approx \frac{1}{4} g_{a\gamma} \varphi_0 \omega R_{\star}$$

numerator and denominator are calculable "by hand" depends on axion-photon coupling and soliton parameters

EM radiation from solitons: perturbative calculation

 $\rho = -g_{a\gamma} \nabla \phi \cdot \bar{B}$

 $\boldsymbol{J} = g_{a\gamma} \left(\dot{\phi} \boldsymbol{\bar{B}} + \nabla \phi \times \boldsymbol{\bar{E}}
ight)$

 $\mathcal{C} \sim g_{a\gamma} \varphi_0 \omega R \ll 1$ bounded periodic solutions

leading order in $g_{a\gamma}\varphi_0$ only

EM radiation from solitons: dipole radiation

 $\rho = -g_{a\gamma}\nabla\phi\cdot\bar{B}$

 $\frac{dP_{(2)}^{\gamma}}{d\Omega} = \frac{g_{a\gamma}^2 \omega^4 \tilde{\varphi}^2(\omega)}{32\pi^2} \Big[\left(\hat{\boldsymbol{x}} \times \bar{\boldsymbol{B}} \right)^2 + \left(\hat{\boldsymbol{x}} \times \bar{\boldsymbol{E}} \right)^2 - 2\hat{\boldsymbol{x}} \cdot \Big]$ dipole radiation

$$\boldsymbol{J} = g_{a\gamma} \left(\dot{\phi} \boldsymbol{\bar{B}} + \nabla \phi \times \boldsymbol{\bar{E}} \right)$$

 $\mathcal{C} \sim g_{a\gamma} \varphi_0 \omega R \ll 1$ bounded periodic solutions

leading order in $g_{a\gamma}\varphi_0$ only

$$(\bar{\boldsymbol{E}} \times \bar{\boldsymbol{B}}) | (1 + \cos(2\omega t - 2\omega |\boldsymbol{x}|))$$

EM radiation & soliton profile

spatial Fourier transform of soliton profile at radiating frequency wavenumber

EM radiation & soliton profile

 $dP^{\gamma}_{(2)}$ $g_{a\gamma}^2 \omega^4 \tilde{arphi}^2$ $\bar{B}^2 \sin^2 \theta$ $d\Omega$

spatial Fourier transform of soliton profile at radiating frequency wavenumber

leading order in $g_{a\gamma}\varphi_0$ only

- I. use correct physical profile
- 2. focus on dense, small radius solitons

what is the relevance of the soliton? — interference effects

ratio of radiated power

N incoherent dipoles $e^{\pi\omega R}$ coherent soliton N

lose power by sub-dividing too much

EM radiation at moderate coupling

*keep soliton fixed, change axion-photon coupling

higher order in $g_{a\gamma}\varphi_0$

 $\mathcal{C} \sim g_{a\gamma} \varphi_0 \omega R \lesssim 1$

EM radiation at moderate coupling

*keep soliton fixed, change axion-photon coupling

higher order in $g_{a\gamma}\varphi_0$

 $\mathcal{C} \sim g_{a\gamma} \varphi_0 \omega R \lesssim 1$

suppression for B background at intermediate coupling !

EM radiation at moderate coupling

*keep soliton fixed, change axion-photon coupling

higher order in $g_{a\gamma}\varphi_0$

- dipole est. works well for small coupling (as expected)
 - suppression for B background at intermediate coupling !
 - change in dominant frequency of radiation

steady EM radiation at moderate coupling

*keep soliton fixed, change axion-photon coupling

higher order in $g_{a\gamma}\varphi_0$

 $\mathcal{C} \sim g_{a\gamma} \varphi_0 \omega R \lesssim 1$

- dipole est. works well for small coupling (as expected)
 - suppression for B background at intermediate coupling !
 - difference between E and B begins to show

explosive radiation

*keep soliton fixed, change axion-photon coupling

 $\mathcal{C} \sim g_{a\gamma} \varphi_0 \omega R$

explosive production from soliton mergers

- no emission before merger $\mathcal{C} \lesssim 1$
- explosive after merger $\mathcal{C} \gtrsim 1$
- a threshold & resonant effect

*simulation for dense, self-interaction supported oscillons. For analytics of dilute case see Hertzberg & Schippanaise (2018).

MA & Mou (2020)

explosive photon production from soliton mergers

~30% of total energy goes into axion waves

~20% of remaining goes into EM radiation

$$E_{\gamma} \sim 0.1 \times M_{\rm osc} c^2 \sim 10^{35} \left(\frac{f}{10^{10} \,{\rm GeV}}\right)^2 \left(\frac{10^{-5} {\rm eV}}{m}\right) {\rm GeV}$$

$$\nu_{\gamma} = \frac{\omega}{2\pi} \approx \frac{m}{2\pi} \simeq (2 \text{ GHz}) \left(\frac{m}{10^{-5} \text{ eV}}\right)$$

gravitational waves from collisions ? (a small digression)

$$\begin{split} S &= \int d^4x \sqrt{-g} \left[\frac{m_{\rm pl}^2}{2} R - \frac{1}{2} (\partial \phi)^2 - V(\phi) \right] \\ V(\phi) &= \frac{1}{2} m^2 \phi^2 + V_{\rm efl}(\phi) \quad \text{ ignore self-interactions} \end{split}$$

interested in gravitational wave emission from ultracompact solitons

Helfer, Lim, Garcia & MA (2018)

 $c \approx 0$

sub-critical collisions (no black hole formation)

sub-critical collisions (no black hole formation)

sub-critical collisions (no black hole formation)

critical collisions (black hole formation)

critical collisions (black hole formation)

gravitational waves from collisions ?

black = corresponding mass black hole g-wave signal

gravitational wave emission and compactness

 $c \approx 0$

multi-messenger signals?

LIGO LabWirgo

solitons falling on to compact stars — plasma effects ?

Recent Review, see Fortin et. al (2021)

solitons falling on to compact stars — resonant conversion!

*This resonance is NOT parametric resonance discussed earlier

$$\langle P_{(2)}^{\gamma} \rangle_{t} = \frac{g_{a\gamma}^{2} \omega^{4}}{12\pi} \frac{\kappa}{\omega} \tilde{\varphi}^{2}(\kappa) \left(\bar{B}^{2} + \bar{E}^{2} \right)$$

where $\kappa \equiv \sqrt{\omega^{2} - \omega_{p}^{2}}$

$$\omega_p \approx \sqrt{4\pi \alpha n_e/m_e}$$
 plasma frequency

some numbers

$$M_{\rm sol} \sim 10^2 f^2 / m \simeq (2 \times 10^9 \text{ kg}) \left(\frac{f}{10^{10} \text{ GeV}}\right)^2$$

 $R_{\rm sol} \sim 2m^{-1} \simeq (4 \text{ cm}) \left(\frac{m}{10^{-5} \text{ eV}}\right)^{-1}.$

*Conservative axion star - compact star interaction rate, there is freedom to change these numbers by orders of magnitude

$$\Gamma \simeq \left(4 \times 10^{-5} \text{ hr}^{-1}\right) \left(\frac{M_{\star}}{1 \, M_{\odot}}\right) \left(\frac{R_{\star}}{0.01 \, R_{\odot}}\right) \left(\frac{\rho_{\rm as}}{0.3 \, \text{GeV/cm}^3}\right) \left(\frac{M_{\rm sol}}{10^9 \, \text{kg}}\right)^{-1} \left(\frac{v_{\rm rel}}{10^{-3}}\right)^{-1}$$

* dense regime only, different for dilute.

some numbers

$$S \simeq (2 \times 10^7 \ \mu \text{Jy}) \left(\frac{d_{\star}}{100 \text{ pc}}\right)^{-2} \left(\frac{m}{10^{-5} \text{ eV}}\right)^{-3} \left(\frac{1000 \text{ F}}{1000 \text{ F}}\right)^{-3} \left(\frac{1000 \text{ F}}{1000 \text{ F}}\right)^{-3}$$

$$\mathcal{F}(\omega R, \omega_p / \omega) \approx \begin{cases} (\pi \omega R)^4 e^{-\pi \omega R}, & \text{for } \omega_p \approx 0\\ \frac{1}{16} (\pi \omega R)^6 \sqrt{1 - \omega_p^2 / \omega^2}, & \text{for } \omega_p \approx \omega \end{cases}$$

$$\nu_{\gamma} = \frac{\omega}{2\pi} \approx \frac{m}{2\pi} \simeq (2 \text{ GHz}) \left(\frac{m}{10^{-5} \text{ eV}}\right)$$

* does not include large coupling regime.

rates depend on soliton formation mechanisms, lifetimes ...

"solitons" in axion-like fields can form naturally in the inflaton and in dark matter

also phase transitions, nucleation around BHs, etc.

example: formation driven by self-interactions

MA & Mocz (2019)

relativistic to non-relativistic effective theory

Klein-Gordon-Einstein

integrate out 'fast' modes

MA, Kaiser, Namjoo, Salehian, Zhang (soon!) Namjoo, Guth and Kaiser (2018) Salehian, Kaiser, Namjoo (2005)

insensitivity to initial conditions

insensitivity to initial conditions

tangential digression (advertisement)

$$\mathscr{L}_{\text{int}} = -\frac{1}{4} g_{a\gamma\gamma} a F_{\mu\nu} \tilde{F}^{\mu\nu}$$
$$\Delta \Phi = \frac{g_{a\gamma\gamma}}{2} \int_C dX^{\mu} \partial_{\mu} a(x) = \pm g_{a\gamma\gamma} \pi f_a = \pm g_{a\gamma\gamma} \pi f_a$$

*see Agrawal, Hook & Huang (2019)

CMB birefringence from ultralight-axion string networks

[arXiv:2103.10962] with Andrew Long and Mudit Jain

end tangential digression

light from dark solitons : summary

 $g_{a\gamma}\phi \mathbf{E} \cdot \mathbf{B}$ perturbative & non-perturbative effects included

[arXiv: 2103.12082]

[arXiv: 2009.11337]

