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plan for the talk

• WHAT was it that you saw ?

• WHY is it relevant for cosmology ?

• IMPLICATIONS ?



cosmological scalar fields  
self-interaction + gravity
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why study such systems ?

• relevant for end of inflation because observations favor such 
“opened up” potentials for inflation

• relevant for axions/axion-like fields (dark matter)
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observational implications

• eq. of state & energy transfer after inflation ?

• stochastic gravitational wave-generation ?

• primordial black hole (PBH) formation ?

• distinguishability from “usual” dark matter ?

• additional early/late early structure formation

• compact objects 
• eg. sources of gravitational waves ?

• source of signature in light

incomplete list!

dark matter 

after inflation



plan for the talk

• motivation

• understanding the dynamics: soliton formation & interactions

• implications



instability — formation of solitons  
(non-topological “solitons” in real scalar fields)
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insensitive to initial conditions

simulation of  “quasi-thermal” example in Farhi, Guth, Iqbal, Graham 2008



insensitive to initial conditions

simulation of  “quasi-thermal” example in Farhi, Guth, Iqbal, Graham 2008



soliton formation in 3D

MA, Easther, Finkel, Flauger & Hertzberg (2011) 

expansion

self-interactions

gravitational int.

1106.3335 



solitons ?

(1) oscillatory (2) spatially localized (3) very long lived

osci
llon!

For example:
Bogolubsky & Makhankov (1976)
Segur & Kruskal (1987)
Gleiser (1994)
Copeland et al. (1995) 
MA & Shirokoff (2010) 
Hertzberg (2011)
MA (2013) 
Mukaida et. al (2016)
Salmi & Hindmarsh (2014)
Zhang, MA, et. al (2020)



family of scalar field solitons
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long term dynamics ?

expansion

self-interactions

gravitational int.

assuming coupling to other fields is sufficiently weak



include gravity ?
expansion

self-interactions

gravitational int.

• gravitational clustering takes time … 

• long time makes it difficult to resolve very fast oscillatory time 
scale 

gravitational interactions



self-interactions  
+ gravity*  

(Schrodinger-Poisson)

MA & Mocz (2019)
1902.07261

*self interaction more important than gravity initially

expansion

self-interactions

gravitational int.

relativistic? 

**there are a number of caveats in the non-relativistic approximations



gravitational clustering of solitons
7

IX. GRAVITATIONAL CLUSTERING

For � ⌧ 1, gravitational clustering is expected to be-
come important at late times (significantly after the soli-
tons have formed, see eq. (12)). At these late times,
this universe essentially behaves as a matter dominated
universe (a(t) / t

2/3), with solitons becoming our new
non-relativistic dust particles on scales much larger than
their size. As a result, our zeroth order expectation is
that the gravitational clustering of these solitons should
proceed in a manner similar to dust in an expanding uni-
verse. Moreover, we can ignore non-gravitational forces
between the solitons at separations much larger than 2re

because we expect them to be Yukawa-like, with the force
falling away exponentially with separation.13

We construct the two point correlation function of soli-
ton locations obtained from our simulations to quantita-
tively investigate the e↵ects of gravitational clustering.
In Fig. 5, we show the two-point correlation function of
the solitons, calculated with the Landy-Szalay estimator
[52, 53]:

⇠LS(r) =
DD

RR
�

N � 1

N

DR

RR
+ 1 , (19)

where there are N solitons (the data D), and N uniform
randomly chosen points R, and RR is the number of soli-
ton pairs in a given co-moving radial separation bin, RR

is the mean count for the random points over several re-
alization R, and DR is the cross-correlation statistic.

As seen in Fig. 5, the measured two point correlation
function is the same for the case with and without gravi-
tational interactions at early times soon after soliton for-
mation (a . 4). The distribution is close to Poissonian
on large scales: ⇠LS(r & 10) ⇡ 0. However, the co-moving
scale rnl ⇠ k

�1
nl which is the typical separation of solitons

when they first form manifests itself in a negative corre-
lation function on small scales (we find very few solitons
with separations less than k

�1
nl ).

If we allow for gravitational interactions, solitons begin
to cluster. This clustering can be quantified in our simu-
lations at late times as excess power in ⇠LS (for a & 10).
Consistent with clustering of point particles in a matter
dominated universe starting with uncorrelated positions
[54], we find

⇠LS(r) /
1

r2
, (20)

where r is a co-moving separation. Fitting the model
⇠LS / a

↵
r

� for our 6 simulations in the range of a = 10

self-interaction potential), which also showed that the above sta-

bility criterion correctly predicted the survival of large amplitude

oscillons in simulations. We further note that three dimensional

oscillons in Sine-Gordon potentials (for axions, but without grav-

ity) are not stable and have a relatively short lifetime, compared

to flattened potentials [49, 50]. Also see the Appendix.
13

This is also reminiscent of the force between solitons as analyzed

by [51].

[co-moving separation]

/ r
�2

FIG. 5. The two point correlation function of soliton loca-
tions with and without the inclusion of gravitational interac-
tions. At early times, the correlation function with and with-
out gravity agree with each other. However, at late times
gravitational clustering ⇠LS(r) / r

�2 is clearly visible for the
a = 16 and a = 20 cases in the above figure.

to a = 20, we find: ↵ = 1.7 ± 0.3, � = �2.1 ± 0.2. It
would be interesting to explore this clustering further in
detail, since it might reveal di↵erences from the point
particle case at late times.

X. STRONG SOLITON INTERACTIONS

Self-gravity plays the important role of bringing soli-
tons together at late times (i.e., significantly after their
formation), and allows them to interact.14 Fig. 6 shows
three di↵erent types of interactions that are achieved
from our cosmological initial conditions.

1. Solitons “repel/bounce o↵” each other when the
relative phase of the interacting solitons |✓1 �✓2| ⇡

⇡ where  a(t,x) =  a(x)e�i(⌫at+✓a) with a = 1, 2.
The repulsive interactions lead to some of the
largest post interaction kicks to our solitons. We
observe some solitons zooming across our simula-
tion volume.

2. A few solitons merge to form more massive solitons
(typically when the relative phase is ⇠ 0), resulting
in a change in number density of solitons. Such in-
teractions are typically accompanied by generation
of a burst of scalar waves as the solitons settle into
new configurations.

3. A small fraction of solitons form orbiting binaries.

14
There are interactions at early times when gravity is ignored as

well, but not so at late times in our simulations.

consistent with nonlinear 
clustering of “point” masses



self-interactions  
+ gravity*  

(Schrodinger-Poisson)



strong interactionsstrong interactions: mergers
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strong interactionsstrong interactions: orbit

resolution is limited at late very times



strong interactionsstrong interactions: orbit

resolution is limited at late very times



strong interactionsphase dependent interactions
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EFT of non-topological solitons
 — MA & Iqbal (in progress)

   + undergrads 
Anamitra Paul and Rohith Karur



observational implications

• gravitational

• non-gravitational ( typically more fields needed)

implications



observational implications

• eq. of state & energy transfer after inflation ?

• stochastic gravitational wave-generation ?

• primordial black hole (PBH) formation ?

• distinguishability from “usual” dark matter ?

• additional early/late early structure formation

• sources of gravitational waves ?

• source of signature in light

incomplete list!

late universe

early universe

implications



relevant scales

size of soliton

mass of soliton

*numbers are different when held together by gravity instead of self interactions
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exploring soliton collisions 
 with full numerical GR
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interested in gravitational wave emission from ultra-
compact solitons 

Helfer, Lim, Garcia & MA (2018)

implications



sub-critical collisions  
(no black hole formation)

gr
av
it
at
io
n
al

w
av
e-
fo
rm

time !

using GRChombo

implications



sub-critical collisions  
(no black hole formation)

gr
av
it
at
io
n
al

w
av
e-
fo
rm

time !

using GRChombo

implications



sub-critical collisions  
(no black hole formation)

gr
av
it
at
io
n
al

w
av
e-
fo
rm

time !

using GRChombo

implications



critical collisions  
(black-hole formation after collision)
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gravitational waves from  
ultra-compact soliton collisions

black = corresponding mass black hole g-wave signal

sub-critical critical degenerate

implications



more energy in g-waves than  
corresponding mass BHs  

KCL-PH-TH/2018-9

Gravitational Wave Emission from Collisions of Compact Scalar Solitons

Thomas Helfer†, Eugene A. Lim†, Marcos A. G. Garcia‡, Mustafa A. Amin‡⇤
†
Theoretical Particle Physics and Cosmology Group, Physics Department,

Kings College London, Strand, London WC2R 2LS, United Kingdom
‡
Department of Physics and Astronomy, Rice University, Houston, Texas 77005-1827, U.S.A.

We numerically investigate the gravitational waves generated by the head-on collision of equal-
mass, self-gravitating, real scalar field solitons (oscillatons) as a function of their compactness C.
We start with solitons that are initially at rest with respect to each other, and show that there exist
three di↵erent possible outcomes resulting from their collisions: (1) an excited stable oscillaton for
low C, (2) a merger and formation of a black-hole for intermediate C, and (3) a pre-merger collapse
of both oscillatons into individual black-holes for large C. For (1), the excited, aspherical oscillaton
continues to emit gravitational waves. For (2), the total energy in gravitational waves emitted
increases with compactness, and possesses a maximum which is greater than that from the merger
of a pair of equivalent mass black-holes. The initial amplitudes of the quasi-normal modes in the
post-merger ring-down in this case are larger than that of collisions of corresponding mass black-
holes – potentially a key observable to distinguish black-hole mergers from their scalar mimics. For
(3), the gravitational wave output is indistinguishable from a similar mass, black-hole–black-hole
merger. Based on our results, LIGO may be sensitive to oscillaton collisions from light scalars of
mass 10�12 eV . m . 10�10 eV.

I. INTRODUCTION AND RESULTS

The spectacular recent detections of gravitational
waves from binary black-hole mergers has heralded a new
golden age in gravitational wave physics [1–3]. Gravita-
tional waves from the merger of compact objects are one
of our best resources for probing the strong-field regime
of gravity. They also provide us with a probe of the na-
ture of the compact objects themselves.

In addition to black-holes (BH) and neutron stars
(NS), the expected quality of the gravitational wave
data could allow for the search of exotic compact ob-
jects as progenitors in such collisions [4]. In particular,
coherent, self-gravitating, non-topological solitons made
of scalar fields are known to have highly compact cores
[5–7]. Their collisions may generate observable amounts
of gravitational waves and whose waveforms can deviate
from those of BH-BH or NS-NS mergers (see in particular
[8–11]).

In this paper, we study the head-on collisions of a
class of real scalar field solitons called oscillatons [12]
using GRChombo [13] in full general relativity. Unlike bo-
son stars made of complex scalar fields, oscillatons do
not have a conserved U(1) charge, but can nevertheless
be stable on cosmological time scales [14]. For example,
such objects can consist of a spatially localized conden-
sate of an axion field oscillating near the minimum of the
potential [15]. Such axion fields are ubiquitous in many
high energy physics theories, and are considered to be

⇤
thomashelfer@live.de; eugene.a.lim@gmail.com;

marcos.garcia@rice.edu; mustafa.a.amin@gmail.com
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FIG. 1. Fraction of initial rest mass energy of the two oscilla-
tons (Etot) radiated into gravitational waves (Egw) as a func-
tion of the initial compactness (C) of each oscillaton. In the
subcritical case, oscillatons collide to form a new stable but
aspherical, excited oscillaton. In the critical regime, oscilla-
tons collide to yield a black-hole after/during the collision. In
the degenerate case, individual oscillatons collapse to black-
holes before the collision. Note that in the critical regime (and
possibly in the subcritical regime also), the emitted fraction
in gravitational waves can exceed that of corresponding mass
black-holes (0.06% dashed line).

implications



important caveats/questions

• how likely are these ultra-compact solitons to form and collide ?

• head-on collisions: inspirals might change the answers 

• distinguishability?

implications



electromagnetic bursts  
from oscillon mergers?

interested in electromagnetic wave emission from 
merger of oscillons [we ignore gravity]

implications
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* for the idea in a non-relativistic, non-interacting context with analytic estimates
* see Tkachev (2014, for FRBs), Hertzberg & Schiappacasse (2018), Hertzberg et. al (2020)

https://arxiv.org/search/hep-ph?searchtype=author&query=Schiappacasse%2C+E+D
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electromagnetic bursts from mergers
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implications



important elements

• no emission before merger

• explosive after merger

• a threshold & resonant effect 

ga� ⇠ 1/M*assumption about axion-photon coupling
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some numbers
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energy emitted ?

frequency ?
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*choice of numbers is partly related to making these axions dark matter
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• merger rates? (collision rate > one/per yr/galaxy!)

• detailed history of formation, abundance/
distribution in a galaxy?

• off-axis, in-spirals, different phases etc.

• lifetimes of solitons with strong self-interactions

• axion-photon coupling?

implications

6.2 Binary Collision and Merger Rates

We wish to estimate the number of collisions expected between dark matter clumps in a typical galaxy
like ours. This collision rate can be estimated as follows (more details can be found in [2])

� =

Z
dr4⇡r

2 1

2

✓
fosc⇢dm(r)

Mosc

◆2

h�e↵vi (6.9)

where ⇢dm(r) is the smooth expected density of the dark matter halo, fosc is the fraction of dark matter
locked up in oscillons, Mosc is the mass of an oscillon, v is the relative velocity between oscillons, the
angled brackets imply a velocity average, and �e↵ is the e↵ective cross section for collision. This
e↵ective cross section is given by

�e↵ = 4⇡R
2
osc

 
1 +

v
2
esc,osc

v2

!
(6.10)

where v
2
esc,osc/c

2 = GMosc/Rosc. For a velocity average

h�e↵vi =

Z vesc

0
4⇡v

2
p(v)(�e↵v) (6.11)

we assume a distribution of the form p(v) = p0e
�v2/v2

0 where from normalization p0 ⇡ (⇡/v
2
0)3/2

and v0 = 220 km s�1 is the speed in the solar neighborhood. Note that the limiting velocity in the
integral is the escape velocity for the dark matter halo, which we take to be vesc = 544 km s�1. For
simplicity, if we assume a constant density of dark matter up to a radius R200 ⌘ (3M200/4⇡)1/3 with
M200 = 1012

M�, then the binary collision rate within a galaxy like ours turns out to be

� ⇠ O(1)

✓
fosc

10�2

◆2✓1012 GeV

M

◆4
"
1 + 10�6

✓
M

1012 GeV

◆2
#

collisions

galaxy year
. (6.12)

This rate can be refined further, for example, by taking a more realistic ⇢dm(r) profile. Note that when
oscillons from resonant instability in the axion field fosc ⇠ O[1]. So, on the one hand we are being
conservative here, by allowing for a much smaller fraction. However, since the lifetimes of oscillons
might be shorter than the current age of the universe, this might be an overestimate. More generally,
a detailed simulation of formation of halos (including oscillons) is desirable to get a more accurate
estimate of the collision rate.

For head on collisions, we have found that mergers take place for relative velocities as high as
v/c ⇠ 0.1 � vesc, hence a collision should typically lead to a merger. This is quite distinct from the
conclusion reached in [2] where the merger rate is significantly smaller than the collision rate. There
is no direct contradiction here because ... ??

6.3 Observability

The signal from a single event in our galaxy emits E� ⇠ 0.1Eosc ⇠ 1036 GeV(M/1012 GeV)6 amount
of energy. This leads to a spectral sensitivity (flux/frequency bin):

S ⇠
E�

�!��t�(4⇡d2)
(6.13)

where �t� is the duration during with axions are rapidly converted to photons (and can be taken to
be the backreaction time tbr estimated earlier), �!� is the band of frequencies of emission, and d is
the distance to the source. Using �!� ⇠ m (see Fig. 6) and �t� ⇠ tbr, we have

S ⇠ 108

✓
M

1012 GeV

◆6✓10 kpc

d

◆2

Jy (6.14)
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Classical Decay Rates of Oscillons 

Hong-Yi Zhang, Mustafa A.  Amin, Edmund J. Copeland, Paul M. Saffin, Kaloian D. Lozanov arXiv: 2004.01202

highly suppressed 
scalar radiation

�osc(t,x) ⇡ �(|x|) cos(!t)

x

old calculation

-3 -2 -1 1 2 3

0.5

1.0

1.5

2.0

Figure 3: Fourier analysis of the field amplitude at the centre of the oscillon r = 0m−1 (blue)

and far from the center where radiation dominates (orange). For both panels, note that the

frequency content of the oscillon is dominated by a single fundamental frequency ω, although

higher harmonics of ω are present (blue curves). For the left panel, we have chosen ω = 0.938m.

In this case the radiation content (orange) is dominated by the 3ω mode as expected, with

subdominant content in higher multiples of ω. In contrast, we chose ω = ωstar ≈ 0.82m for the

right panel which is the location of the dip in the decay rate in Fig. 2. As expected, in this case,

the 3ω mode is subdominant in the radiation, with the 5ω mode determining the decay rate.

These plots provide a verification of our underlying assumptions and confirm the results of our

analytic calculation.

the peaks are not quite robust, however, the trends can be trusted.

7.2 The Logarithmic Potential

If we take the limit q → 0 in the general potential (7.1), we have

V (φ) =
m2M2

2
ln

(
1 +

φ2

M2

)
. (7.6)

In Fig. 4, we show the comparison between the analytical and numerical results for this potential.

Apart from the excellent match between theory and numerics, it is worth noting that the numerics

does not show any non-monotonic behavior in the decay rate. Our analytics agree with this

behavior (green and orange curves). However, ignoring the effective mass incorrectly predicts the

existence of a dip, and provides a poor match for the numerics in general even at large ω. Note

that we did not simulate the eventual demise of these oscillons – their lifetime is longer than

107m−1, and could be a lot longer.

15

Figure 4: V (φ) = (1/2)m2M2 ln(1 + φ2/M2): For general description, see the caption of Fig. 2. Note
that the numerics and our analytic calculation match exceptional well both for the decay rates (right
panel) as well as amplitude and energy (left panel) of oscillons. Not that ignoring the effective mass (blue
curve, right panel) incorrectly predicts a dip in the decay rate which is not observed in the numerical
calculation (and is in general a bad estimate of the numerics). Also note that the lifetime of this oscillon
is larger than our maximum programming time, i.e. tmax = 3× 107m−1. The oscillon will collapse as long
after it reaches ωcrit ≈ 0.974m.

7.3 The Axion-Monodromy Potential

If we take q = 1 in the general potential (7.1), we have

V (φ) = m2M2

[√
1 +

φ2

M2
− 1

]
. (7.7)

In Fig. 5, we show the comparison between the analytical and numerical results for this potential.

Apart from the excellent match between theory and numerics, it is worth noting that the numerics

does not show any non-monotonic behavior in the decay rate. Our analytics agree with this

behavior (green and orange curves). However, ignoring the effective mass incorrectly predicts

the existence of a dip. Also note that we did not simulate the eventual demise of these oscillons.

Their lifetime is longer than 107m−1, and could be a lot longer.

7.4 Caveat

From the above figures, we notice that there are large deviations between the analytical and

numerical results at low frequencies, and this is because the hierarchy assumption of radiation

is totally broken. An obvious way to visualize this fact is to do Fourier analysis. Take q = 1 of

monodromy-type potentials for example. Our analytical predictions and Fourier manitudes are

presented in figure 5 and 6.

16

For ease of reference, we write down the decay rates for N = 3 and 5 explicitly below:

Γ(3) = Γ3 = − 1

8πEosc
[S̃(κ3)]2(3ω)κ3 ,

Γ(5) = Γ3 + Γ5 = − 1

8πEosc
[S̃(κ3)]2(3ω)κ3 −

1

8πEosc
[S̃(κ5)]2(5ω)κ5 .

(7.4)

where S̃ is the spatial Fourier Transform of Sj . Note that even if S̃(κ3) vanishes for some ω, then

Γ(3) also vanishes. However, for the same ω, we will typically have Γ(5) = Γ5 ̸= 0.

Numerics: For the numerical results, we carry time evolve the nonlinear Klein-Gordon equation

(2.3) (assuming spherical symmetry), and calculate the decay rate as a function of time. This

time dependence of the decay rate is translated to an ω dependence since the system evolves the

solution adiabatically, and contiuously through different oscillon configurations (characterized by

an adiabatically changing ω(t)). We typically start the calculation with field configurations cor-

responding to ω that are smaller than the ones shown in the upcoming plots. Regardless of the

starting points, we always end up on the same Γ−ω trajectory numerically. This is a consequence

of oscillons being attractors in the space of solutions, and the fact that there is a unique oscillon

profile for each ω.

7.1 The Hyperbolic Tangent Potential

A our first example, we consider a α-attractor T-model from conformal chaotic inflation [41], i.e.

V (φ) =
m2M2

2
tanh2

φ

M
. (7.5)

The numerical and analytical results for the field amplitude, energy and decay rate as a function

of ω are presented in Fig. 2.

Amplitude and Energy: In the left panel of Fig. 2, we show the central amplitude and total

energy of the oscillon configurations as a function of ω. Note that the amplitudes Φ(r = 0)/M ∼
O[1]. The upper-limit of the frequency corresponds to ωcrit, above which the oscillons are un-

stable against long-wavelength perturbations. The black dots indicate the numerically obtained

energies and amplitudes as the configurations evolve from low to high ω. The agreement between

the colored lines (analytic) and the black dots (numerical) indicates that our single frequency

ansatz works reasonably well in the range displayed – conservatively, it is consisted with the

numerical solutions at a few % level.

Decay Rate: In the right panel of Fig. 2, we show the numerically calculated decay rate (black

dots) as the oscillon evolves with time (from low to high ω) until its eventual demise at ω = ωcrit

at the right edge of the panel. Notice the significant “dip” in decay rate around ω⋆ ≈ 0.82m.

The solid red line shows that most of the lifetime of the oscillons is spent in the dip. We compare

these numerically obtained results with the analytic expectation of our calculations.

Note that Γ(3) (orange curve), where radiation modes with frequency 3ω were included, beau-

tifully captures the location of the dip in Γ as a function of ω. In particular, S̃3(κ3) = 0 at
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related solitons in BECs

Nguyen, Luo & Hulet (2017)

nonlinear Klein Gordon  — nonlinear Schrodinger eq. 
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FIG. 1. Projected co-moving “densities” a
3
| |

2 (average along the line of sight) at several scale factors (a = 1 to a = 20) in
our 3+1 dimensional lattice simulations, with � ⌘ M/mpl = 0.03, and local gravitational interactions switched on (top panels)
and o↵ (bottom panels). The early instability due to self-interactions gives rise to the formation of solitons from an almost
homogeneous initial state. A statistical analysis of the locations of solitons at late times shows reveals evidence for clustering
only in the case where gravitational interactions are included. Note that inside solitons, | |2 = const. that is, their core density
does not redshift, whereas the background | ̄|

2
/ a

�3. Moreover, solitons maintain a fixed physical size, hence the illusion of
them shrinking in size in a co-moving volume. The initial size of the box is the size of the horizon at the beginning of the
simulation L ' H

�1
in . The solitons contain a dominant fraction (⇠ 80%) of the mass in the simulation volume. On a technical

aside, note that the projected co-moving density even in the densest (lightest in color) appearing regions in the above plot will
be smaller that the density inside the cores because of the small volume occupied by the solitons.

between relativistic/non-relativistic models and results
is discussed in the Appendix.

The rest of the paper is organized as follows in short
sections. In Section II we discuss the model for a non-
relativistic, self-interacting field in an expanding universe
with weak field gravity. In Section III, we briefly dis-
cuss the lattice simulation and our numerical algorithm.
The initial conditions for the simulations is provided
in Section IV. We analyze linear instabilities from self-
interactions and gravitational interactions in Section V.
The numerically calculated power spectrum for the field
perturbations is provided in Section VI. In Section VII we
discuss the formation of solitons, followed by a discussion
of their individual profiles and stability in Section VIII.
The gravitational clustering of solitons is discussed in
Section IX, and resulting strong soliton interactions are
explored in Section X. Finally, we present our conclusions
and future directions in Section XI. In the Appendix we
discuss connections to a related relativistic system.

II. THE MODEL

We use the following equations of motion (and con-
straint equations) to explore the dynamics of a non-
relativistic, self-interacting, self-gravitating scalar field in

an approximately homogeneous and isotropic universe:

i
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where [. . .] indicates a spatial average, a(t) is the scale-
factor, H(t) = ȧ(t)/a(t) is the Hubble rate,  (t,x) is
complex field amplitude, �(t,x) is the Newtonian po-
tential and Unl(| |

2) encodes the self-interactions of the
field.2

All variables and parameters appearing in the above
equation are dimensionless. We have expressed time t in
units of ⌧m = ~/mc

2, lengths in units of �m = ~/mc,
the Newtonian gravitational potential � in units of c

2

and | |
2 in units of m

2
M

2
c
3
/~3. Note that m

2
M

2
c
3
/~3

has dimensions of mass density. We assume that the
parameter

� ⌘
M

mpl
⌧ 1 . (2)

2
We have checked that qualitatively similar results are obtained

even if we set Unl ! 0 in the Poisson and Friedmann equations,

but keep U 0
n(| |2) ⌘ @| |2Un(| |2) in the nonlinear Schrödinger

equation.
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FIG. 6. Gravitational clustering facilitates close encounters at late times between solitons. Such close encounters lead to
mergers, strong scattering and formation of soliton binaries. Non-gravitational interactions can play a dominant role in the
close-encounters, with the phase of the scalar field also playing an important role. This richness in the close-encounter dynamics
makes the soliton gas distinct from a gravitationally interacting gas of particles (CDM).

2. A few solitons merge to form more massive solitons
(typically when the relative phase is ⇠ 0), resulting
in a change in number density of solitons. Such in-
teractions are typically accompanied by generation
of a burst of scalar waves as the solitons settle into
new configurations.

3. A small fraction of solitons form orbiting binaries.

4. Only few � 10% of the number of solitons in our
simulations undergo strong encounters per Hubble
time.15 This is consistent with the rate of change
in the co-moving number density of solitons

d ln(a3
nsol)

d ln a
' 0.1 , (21)

as seen from Fig. 3.

We re-iterate that bouncing, binary formation and
merging of solitons is self-consistently obtained from our
cosmological initial conditions. Evidently, the dynamics
of these strong interactions are quite rich, and deviate
from the expectations of treating these solitons as just
point particles. The relative phase of the solitons plays
an important role in these close encounters. A more de-
tailed investigation of the rich dynamics of close encoun-
ters is left for future work.16

15
We inspected 6 numerical runs with di↵erent initial conditions

to get this number.
16

For an early, and detailed investigation of Q-ball interactions

(relativistic complex field valued analogs of our solitons), but

without gravity, see [55].

The repulsive and attractive behavior of such solitons
as a function of relative phase can be heuristically un-
derstood as follows. Consider a probe soliton moving
past another stationary soliton (in absence of gravity).
The nonlinearity in the Schrödinger equation (/ | |

2 for
| |

2
⌧ 1) can be thought of as a nonlinear refractive in-

dex.17 If the two solitons are in phase, we expect this
term to be larger in the region between the solitons than
the case when the stationary soliton is absent. It also in-
creases towards the stationary soliton. As a result, this
larger refractive index, and its gradient, will cause the
core of the probe soliton to bend towards the stationary
one, i.e. there will be attraction between the solitons. On
the other hand, when our two solitons are out of phase,
the | |

2 between the two solitons will be smaller, and
have to go to zero in the middle (from symmetry), caus-
ing the probe soliton to move away from the stationary
one (hence “repulsion”). A more detailed, e↵ective po-
tential based analysis at large separations is provided by
[37, 57].

XI. CONCLUSIONS & FUTURE DIRECTIONS

We investigated the dynamics of non-relativistic
scalar fields in an expanding background. By includ-
ing self-interactions and gravitational interactions, we

17
This is more than an analogy since nonlinear Schrödinger equa-

tions are used to model light pulse propagation in nonlinear me-

dia [56], we learned of the above heuristic explanation from the

same paper.
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Gravitational Wave Emission from Collisions of Compact Scalar Solitons
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We numerically investigate the gravitational waves generated by the head-on collision of equal-
mass, self-gravitating, real scalar field solitons (oscillatons) as a function of their compactness C.
We start with solitons that are initially at rest with respect to each other, and show that there exist
three di↵erent possible outcomes resulting from their collisions: (1) an excited stable oscillaton for
low C, (2) a merger and formation of a black-hole for intermediate C, and (3) a pre-merger collapse
of both oscillatons into individual black-holes for large C. For (1), the excited, aspherical oscillaton
continues to emit gravitational waves. For (2), the total energy in gravitational waves emitted
increases with compactness, and possesses a maximum which is greater than that from the merger
of a pair of equivalent mass black-holes. The initial amplitudes of the quasi-normal modes in the
post-merger ring-down in this case are larger than that of collisions of corresponding mass black-
holes – potentially a key observable to distinguish black-hole mergers from their scalar mimics. For
(3), the gravitational wave output is indistinguishable from a similar mass, black-hole–black-hole
merger. Based on our results, LIGO may be sensitive to oscillaton collisions from light scalars of
mass 10�12 eV . m . 10�10 eV.

I. INTRODUCTION AND RESULTS

The spectacular recent detections of gravitational
waves from binary black-hole mergers has heralded a new
golden age in gravitational wave physics [1–3]. Gravita-
tional waves from the merger of compact objects are one
of our best resources for probing the strong-field regime
of gravity. They also provide us with a probe of the na-
ture of the compact objects themselves.

In addition to black-holes (BH) and neutron stars
(NS), the expected quality of the gravitational wave
data could allow for the search of exotic compact ob-
jects as progenitors in such collisions [4]. In particular,
coherent, self-gravitating, non-topological solitons made
of scalar fields are known to have highly compact cores
[5–7]. Their collisions may generate observable amounts
of gravitational waves and whose waveforms can deviate
from those of BH-BH or NS-NS mergers (see in particular
[8–11]).

In this paper, we study the head-on collisions of a
class of real scalar field solitons called oscillatons [12]
using GRChombo [13] in full general relativity. Unlike bo-
son stars made of complex scalar fields, oscillatons do
not have a conserved U(1) charge, but can nevertheless
be stable on cosmological time scales [14]. For example,
such objects can consist of a spatially localized conden-
sate of an axion field oscillating near the minimum of the
potential [15]. Such axion fields are ubiquitous in many
high energy physics theories, and are considered to be

⇤
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FIG. 1. Fraction of initial rest mass energy of the two oscilla-
tons (Etot) radiated into gravitational waves (Egw) as a func-
tion of the initial compactness (C) of each oscillaton. In the
subcritical case, oscillatons collide to form a new stable but
aspherical, excited oscillaton. In the critical regime, oscilla-
tons collide to yield a black-hole after/during the collision. In
the degenerate case, individual oscillatons collapse to black-
holes before the collision. Note that in the critical regime (and
possibly in the subcritical regime also), the emitted fraction
in gravitational waves can exceed that of corresponding mass
black-holes (0.06% dashed line).
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