Smashing Solitons of Cosmology
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plan for the talk

WHAT was it that you saw !

WHY is it relevant for cosmology !

* IMPLICATIONS



cosmological scalar fields
self-interaction + gravity
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6= M

*opening up means of the potential there is an attractive interaction in addition to gravity



why study such systems ?

relevant for end of inflation because observations favor such
“opened up” potentials for inflation

relevant for axions/axion-like fields (dark matter)
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observational implications

incomplete list!

eq. of state & energy transfer after inflation ?
. L ) . . .
stochastic gravitational wave-generation ! after inflation

primordial black hole (PBH) formation ?

distinguishability from “usual” dark matter ?
additional early/late early structure formation

compact objects

eg. sources of gravitational waves ! dark matter

source of signature in light



plan for the talk

v/ motivation
=) understanding the dynamics: soliton formation & interactions

implications



instability — formation of solitons

(non-topological “solitons” in real scalar fields)

expansion v
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instability — formation of solitons

(non-topological “solitons” in real scalar fields)

expansion v
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instability — formation of solitons

(non-topological “solitons” in real scalar fields)

expansion v
self-interactions \/

gravitational int. X
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insensitive to initial conditions

field
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simulation of “quasi-thermal” example in Farhi, Guth, Igbal, Graham 2008



insensitive to initial conditions

L=3Y91

field

X —

simulation of “quasi-thermal” example in Farhi, Guth, Igbal, Graham 2008



expansion v’
self-interactions \/

gravitational int. X

MA, Easther, Finkel, Flauger & Hertzberg (2011)
1 106.3335



solitons ?

For example:

Bogolubsky & Makhankov (1976)
Segur & Kruskal (1987)
Gleiser (1994)

Copeland et al. (1995)
MA & Shirokoff (2010)
Hertzberg (201 1)

MA (2013)

Mukaida et.al (2016)
Salmi & Hindmarsh (2014)
Zhang, MA, et. al (2020)

(1) oscillatory (2) spatially localized (3) very long lived




family of scalar field solitons
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expansion v’
self-interactions \/

gravitational int. X

assuming coupling to other fields is sufficiently weak



include gravity ?

gravitational interactions

- gravitational clustering takes time ...

- long time makes it difficult to resolve very fast oscillatory time
scale



selt-interactions .
+ gravity™
(Schrodinger-Poisson)
expansion v’
self-interactions \/

gravitational int. 3/

relativistic?

MA & Mocz (2019) *self ﬂeraction‘ore important th’gra\w initial
**there are a number of caveataimthe nongelativistic approximations
1902.0726 | caveaigyige '] PP



gravitational clustering of solitons
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self-interactions

+ gravity™
(Schrodinger-Poisson)
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orbit

.resolution is limited at late very times



resolution is limited at late very times



bounce
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merger

“binary”
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EFT of non-topological solitons
— MA & Igbal (in progress)

+ undergrads
Anamitra Paul and Rohith Karur



implications

observational implications

» gravitational

’ non-gravitational ( typically more fields needed)



implications

observational implications

incomplete list!

eq. of state & energy transfer after inflation ?
stochastic gravitational wave-generation ? early universe

primordial black hole (PBH) formation ?

distinguishability from “usual” dark matter !
additional early/late early structure formation
sources of gravitational waves ! late universe

source of signature in light



implications

relevant scales

size of soliton Ry ~ 10m™1! |
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*numbers are different when held together by gravity instead of self interactions




implications

exploring soliton collisions

with full numerical GR

2
5= [dtoy=g |Z2R- 5067 - V(®

V(¢) — —m2¢2 + V; (¢) ignore self-interactions

interested in gravitational wave emission from ultra-
compact solitons

Helfer, Lim, Garcia & MA (2018)



gravitational wave-form

time —
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gravitational wave-form
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using GRChombo



gravitational wave-form

time —

using GRChombo
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gravitational wave-form

—_— Py 1=2m=0

Black hole formation
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implications

gravitational waves from

ultra-compact soliton collisions
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implications

more energy in g-waves than

corresponding mass BHs
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implications

important caveats/questions

how likely are these ultra-compact solitons to form and collide ?
head-on collisions: inspirals might change the answers

- distinguishability?



implications

electromagnetic bursts

from oscillon mergers!?

Q
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V(6) = 5m’6” + V()

interested in electromagnetic wave emission from
merger of oscillons [we ignore gravity]

- (@) -e

* for the idea in a non-relativistic, non-interacting context with analytic estimates
* see Tkachev (2014, for FRBs), Hertzberg & Schiappacasse (2018), Hertzberg et. al (2020)



https://arxiv.org/search/hep-ph?searchtype=author&query=Schiappacasse%2C+E+D

electromagnetic bursts from mergers

Mou
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electromagnetic bursts from mergers
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implications

electromagnetic bursts from mergers

t = 40m ! t=250m ! t—=300m ! t = 350m !
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implications

important elements

* no emission before merger

* explosive after merger

 a threshold & resonant effect

*assumption about axion-photon coupling gay ~ 1/M



implications

some numbers

energy emitted ?
E, ~ 0.1 X Mg’

M > /10~ 2eV
36
t0 (1012GeV) ( m )Ge\/

frequency ?

Cdnym

!
<10 (2 ) GHe -

*choice of numbers is partly related to making these axions dark matter



implications

caveats

2| collisions
galaxy year '

e \2 /1012 Gev\*
rom (i) (F5)

* merger rates? (collision rate > one/per yr/galaxy!)

M
1+10°¢
+10 (1012GeV)

* detailed history of formation, abundance/
distribution in a galaxy?

* off-axis, in-spirals, different phases etc.
* lifetimes of solitons with strong self-interactions

* axion-photon coupling? ga, ~ M~ »



Classical Decay Rates of Oscillons

Hong-Yi Zhang, Mustafa A. Amin, Edmund J. Copeland, Paul M. Saffin, Kaloian D. Lozanov arXiv: 2004.01202

V()

Gosc(t,x) ~ ®(|x|) cos(wt)

highly suppressed *
scalar radiation

decay rate in hyperbolic tangent potentials

Lo old calculation

- decay rates for large amplitude oscillons 5 new & improved

10~
key improvement: £ 1o numerics
systematically including a spacetime-dependent E o
effective mass term in the radiation calculation. %

< 108

Capable of capturing non-trivial features at large 190
amplitudes
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tangential digression
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related solitons in BECs

0 | 100 200 300

nonlinear Klein Gordon — nonlinear Schrodinger eq.
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end tangential digression




summary

self-interaction soliton gravitational some late-time
instability formation clustering strong interactions
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implications:

L 5 }
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- small scale clustering 002y
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