Smashing Solitons of Cosmology

Mustafa A. Amin

plan for the talk

- WHAT was it that you saw ?
- WHY is it relevant for cosmology ?
- IMPLICATIONS ?

cosmological scalar fields self-interaction + gravity

$$S = \int d^4x \sqrt{-g} \left[\frac{m_{\rm pl}^2}{2} R - \frac{1}{2} (\partial \phi)^2 - V(\phi) \right]$$

*opening up means of the potential there is an attractive interaction in addition to gravity

why study such systems ?

- relevant for end of inflation because observations favor such "opened up" potentials for inflation
- relevant for axions/axion-like fields (dark matter)

$$S = \int d^4x \sqrt{-g} \left[\frac{m_{\rm pl}^2}{2} R - \frac{1}{2} (\partial \phi)^2 - V(\phi) \right] \qquad V(\phi) = \frac{1}{2} m^2 \phi^2 + V_{\rm nl}(\phi)$$

observational implications incomplete list!

- eq. of state & energy transfer after inflation ?
- stochastic gravitational wave-generation ?
- primordial black hole (PBH) formation ?

- distinguishability from "usual" dark matter ?
- additional early/late early structure formation
- compact objects
 - eg. sources of gravitational waves ?
- source of signature in light

dark matter

after inflation

-> understanding the dynamics: soliton formation & interactions

• implications

instability — formation of solitons (non-topological "solitons" in real scalar fields)

instability — formation of solitons (non-topological "solitons" in real scalar fields)

MA (2010) 1006.3075

instability — formation of solitons (non-topological "solitons" in real scalar fields)

MA (2010) 1006.3075

insensitive to initial conditions

simulation of "quasi-thermal" example in Farhi, Guth, Iqbal, Graham 2008

insensitive to initial conditions

simulation of "quasi-thermal" example in Farhi, Guth, Iqbal, Graham 2008

soliton formation in 3D

MA, Easther, Finkel, Flauger & Hertzberg (2011) 1106.3335

solitons ?

(1) oscillatory (2) spatially localized (3) very long lived

For example: Bogolubsky & Makhankov (1976) Segur & Kruskal (1987) Gleiser (1994) Copeland et al. (1995) **MA & Shirokoff (2010)** Hertzberg (2011) **MA (2013)** Mukaida et. al (2016) Salmi & Hindmarsh (2014) **Zhang, MA, et. al (2020)**

family of scalar field solitons

long term dynamics ?

assuming coupling to other fields is sufficiently weak

self-interactions

include gravity ?

gravitational interactions

- gravitational clustering takes time ...
- long time makes it difficult to resolve very fast oscillatory time scale

self-interactions + gravity* (Schrodinger-Poisson)

expansion self-interactions gravitational int. relativistic? X

MA & Mocz (2019) 1902.07261 *self interaction more important than gravity initially **there are a number of caveats in the non-relativistic approximations

gravitational clustering of solitons

self-interactions + gravity* (Schrodinger-Poisson)

strong interactions: mergers

strong interactions: mergers

strong interactions: mergers

strong interactions: bounce

strong interactions: bounce

strong interactions: bounce

strong interactions: orbit

resolution is limited at late very times

strong interactions: orbit

resolution is limited at late very times

phase dependent interactions

$$\phi \propto \Re[\psi]$$

 $\psi_a(t, \mathbf{x}) = \Psi_a(\mathbf{x})e^{-i\nu_a t + \theta_a}$

$$|\theta_1 - \theta_2| \simeq \pi$$

 $|\theta_1 - \theta_2| \simeq 0$

EFT of non-topological solitons — MA & Iqbal (in progress)

+ undergrads Anamitra Paul and Rohith Karur

observational implications

- gravitational
- non-gravitational (typically more fields needed)

observational implications incomplete list!

- eq. of state & energy transfer after inflation ?
- stochastic gravitational wave-generation ?
- primordial black hole (PBH) formation ?

- distinguishability from "usual" dark matter ?
- additional early/late early structure formation
- sources of gravitational waves ?
- source of signature in light

late universe

early universe

relevant scales

*numbers are different when held together by gravity instead of self interactions

exploring soliton collisions with full numerical GR

$$\begin{split} S &= \int d^4x \sqrt{-g} \left[\frac{m_{\rm pl}^2}{2} R - \frac{1}{2} (\partial \phi)^2 - V(\phi) \right] \\ V(\phi) &= \frac{1}{2} m^2 \phi^2 + V_{\rm pl}(\phi) \qquad \text{ignore self-interactions} \end{split}$$

interested in gravitational wave emission from ultracompact solitons

Helfer, Lim, Garcia & MA (2018)

sub-critical collisions (no black hole formation)

time \rightarrow

using GRChombo

sub-critical collisions (no black hole formation)

using GRChombo

sub-critical collisions (no black hole formation)

using GRChombo

implications critical collisions (black-hole formation after collision)

 1 = 2 m = 0)			
			-	

time \rightarrow

implications critical collisions (black-hole formation after collision)

time \rightarrow

implications critical collisions (black-hole formation after collision)

gravitational waves from ultra-compact soliton collisions

implications

black = corresponding mass black hole g-wave signal

more energy in g-waves than corresponding mass BHs

 $c \approx 0$

important caveats/questions

- how likely are these ultra-compact solitons to form and collide ?
- head-on collisions: inspirals might change the answers
- distinguishability?

electromagnetic bursts from oscillon mergers?

$$S = \int d^4x \left[-\frac{1}{2} \partial_\mu \phi \partial^\mu \phi - V(\phi) - \frac{1}{4} F_{\mu\nu} F^{\mu\nu} - \frac{g_{\phi\gamma}}{4} \phi F_{\mu\nu} \tilde{F}^{\mu\nu} \right]$$

$$V(\phi) = \frac{1}{2}m^2\phi^2 + V_{\rm nl}(\phi)$$

interested in electromagnetic wave emission from merger of oscillons [we ignore gravity]

* for the idea in a non-relativistic, non-interacting context with analytic estimates

* see Tkachev (2014, for FRBs), Hertzberg & Schiappacasse (2018), Hertzberg et. al (2020)

WORKIN PROGRESS

electromagnetic bursts from mergers

important elements

- no emission before merger
- explosive after merger
- a threshold & resonant effect

WORK IN BROGRES

*assumption about axion-photon coupling $g_{a\gamma} \sim 1/M$

some numbers

energy emitted ?

$$E_{\gamma} \sim 0.1 \times M_{\rm osc} c^2$$

$$\sim 10^{36} \left(\frac{M}{10^{12} \,\mathrm{GeV}}\right)^2 \left(\frac{10^{-2} \mathrm{eV}}{m}\right) \,\mathrm{GeV}$$

NORKINSS PROGRESS

frequency ?

$$\omega_{\gamma} \sim m$$

$$\sim 10^4 \left(\frac{m}{10^{-2} {\rm eV}}\right) \, {\rm GHz}$$

*choice of numbers is partly related to making these axions dark matter

caveats

 $\Gamma \sim \mathcal{O}(1) \left(\frac{f_{\rm osc}}{10^{-2}}\right)^2 \left(\frac{10^{12}\,{\rm GeV}}{M}\right)^4 \left[1 + 10^{-6} \left(\frac{M}{10^{12}\,{\rm GeV}}\right)^2\right] \frac{{\rm collisions}}{{\rm galaxy\,year}} \,.$

- merger rates? (collision rate > one/per yr/galaxy!)
- detailed history of formation, abundance/ distribution in a galaxy?
- off-axis, in-spirals, different phases etc.
- lifetimes of solitons with strong self-interactions
- axion-photon coupling? $g_{a\gamma} \sim M^{-1}$

NORREE ROGREE

Classical Decay Rates of Oscillons

Hong-Yi Zhang, Mustafa A. Amin, Edmund J. Copeland, Paul M. Saffin, Kaloian D. Lozanov arXiv: 2004.01202

- decay rates for large amplitude oscillons

key improvement:

systematically including a spacetime-dependent effective mass term in the radiation calculation.

Capable of capturing **non-trivial features** at large amplitudes

tangential digression

related solitons in BECs

Nguyen, Luo & Hulet (2017)

nonlinear Klein Gordon — nonlinear Schrodinger eq.

$$\begin{array}{c} \partial_t^2 \phi - c^2 \nabla^2 \phi + \partial_\phi V(\phi) = 0 \\ & \swarrow \\ \partial_t^2 \varphi - c_{\rm s}^2 \nabla^2 \varphi + \partial_\varphi \mathcal{V}(\varphi) = 0 & \longleftrightarrow \\ \partial_t \psi = \left[-\frac{1}{2m} \nabla^2 + U'(|\psi|^2) \right] \psi \\ \text{relative phase between different condensates} \\ & \text{non-relativistic} \end{array}$$

end tangential digression

summary

thanks !

thanks!

