The Violent Cosmic History of the Higgs

based on "Cosmological dynamics of Higgs potential fine tuning", Phys. Rev. D 99, 035008 (2019)

Mustafa A. Amin with Jiji Fan, Kaloian Lozanov & Matthew Reece

The Violent Cosmic History of the Higgs

based on "Cosmological dynamics of Higgs potential fine tuning", Phys. Rev. D 99, 035008 (2019)

Mustafa A. Amin with Jiji Fan, Kaloian Lozanov & Matthew Reece

main suggestion

If the Higgs potential is fine-tuned, there might be cosmological implications from the early universe: eq. of state + gravitational waves

motivation

LHC: Standard Model Higgs but nothing else ...

LHC: Standard Model Higgs — tuned Higgs mass/ potential

no new particles, does not necessarily rule out SUSY

Higgs mass/potential is "tuned" (Higgs is accidentally light)

SUSY: field-dependent Higgs mass/potential

 $\phi = \text{modulus} = \text{could be the inflaton}$

accidentally light/tuned Higgs = precarious balance between broken and unbroken phase

fine tuned / weakly broken potential: possible if global min. *close to* symmetry breaking point

f = typical field range of modulus

light Higgs: possible if global min. *close to* symmetry breaking point

M = SUSY breaking scale

* we take this to be the quantum corrected effective potential rather than the treelevel potential; we do not have to compute shifts in VEVs induced by loop corrections.

how would we know today ?

we cannot really go exploring in this field space, fixed couplings/masses

Necessary Fine Tuning \Leftrightarrow

$$\frac{\phi_{\rm m} - \phi_0}{f} \ll 1$$

how would we know? early universe to the rescue

a displaced modulus will naturally explore different Higgs potentials

Necessary Fine Tuning \Leftrightarrow

$$\frac{\phi_{\rm m} - \phi_0}{f} \ll 1$$

complex dynamics of the Higgs-modulus system

tachyonic particle production and backreaction

 $\frac{\phi_{\rm m} - \phi_0}{f} \ll 1$ Necessary Fine Tuning \Leftrightarrow

* related, but not identical dynamics in hybrid inflation, Dufaux et. al (2006)

Higgs tachyonic particle production

* under certain conditions, later in the talk

3.0

2.0

-1.0

-0.0

-1.0

-2.0

-3.0

Higgs dynamics

Higgs dynamics

tachyonic particle production and fragmentation

Higgs dynamics

tachyonic particle production and fragmentation

power spectrum: higgs/modulus

complex dynamics of the Higgs-modulus system

time \longrightarrow

* under certain conditions, later in the talk

* 3D simulation with "real" Higgs, actual Higgs is complex— higher dimension in field space

fine tuning — non-perturbative dynamics — implications

an important parameter in the Higgs-modulus potential

for violent nonlinear dynamics: 2 conditions

* b ~ O(1) is possible, but non-trivial for model building. Use flat directions in SUSY

non-perturbative dynamics -

non-trivial eq. of state

$$V(\phi,h) = \frac{1}{2}m_{\phi}^{2}\phi^{2} + M^{2}\frac{(\phi-\phi_{0})}{f}h^{\dagger}h + \lambda(h^{\dagger}h)^{2} + V_{0}$$

fragmentation efficiency

 $b \equiv \frac{M^4}{2\lambda f^2 m_\phi^2}$

* likely returns to matter domination at late times, unless there are other decay channels. We cannot simulate very long times

$$V(\phi,h) = \frac{1}{2}m_{\phi}^{2}\phi^{2} + M^{2}\frac{(\phi-\phi_{0})}{f}h^{\dagger}h + \lambda(h^{\dagger}h)^{2} + V_{0}$$

fragmentation efficiency

$$b \equiv \frac{M^4}{2\lambda f^2 m_\phi^2} \sim \mathcal{O}(1)$$

for high frequency gw-detection ideas see:

Akutsu et. al (2010), Goryachev & Tobar (2014), Arvanitaki & Geraci (2016)

$$V(\phi,h) = \frac{1}{2}m_{\phi}^{2}\phi^{2} + M^{2}\frac{(\phi-\phi_{0})}{f}h^{\dagger}h + \lambda(h^{\dagger}h)^{2} + V_{0}$$

fragmentation efficiency

$$b \equiv \frac{M^4}{2\lambda f^2 m_\phi^2} \sim \mathcal{O}(1)$$

for high frequency gw-detection ideas see:

Akutsu et. al (2010), Goryachev & Tobar (2014), Arvanitaki & Geraci (2016)

$$V(\phi,h) = \frac{1}{2}m_{\phi}^{2}\phi^{2} + M^{2}\frac{(\phi-\phi_{0})}{f}h^{\dagger}h + \lambda(h^{\dagger}h)^{2} + V_{0}$$

fragmentation efficiency

$$b \equiv \frac{M^4}{2\lambda f^2 m_\phi^2} \sim \mathcal{O}(1)$$

* IF universe becomes matter dominated for N_{mod} e-folds again before BBN

$$f_{0} \sim 30 \,\mathrm{kHz} \times e^{-\frac{N_{\mathrm{mod}}}{4}(1-3w_{\mathrm{mod}})} \sqrt{\frac{m_{\phi}}{10^{2} \,\mathrm{TeV}}}$$

$$\Omega_{\mathrm{gw},0} \sim 10^{-8} \times e^{-N_{\mathrm{mod}}(1-3w_{\mathrm{mod}})}$$

$$\int_{0}^{\frac{10}{5}} \frac{10^{-10}}{10^{-12}}$$

$$\int_{0}^{\frac{10}{5}} \frac{10^{-10}}{10^{-12}}$$

$$\int_{0}^{\frac{10}{5}} \frac{10^{-10}}{10^{-14}}$$

$$\int_{0}^{\frac{10}{5}} \frac{N_{\mathrm{mod}}}{10^{-14}}$$

$$\int_{0}^{\frac{10}{5}} \frac{N_{\mathrm{mod}}}{10^{-14}}$$

$$\int_{0}^{\frac{10}{5}} \frac{10^{-10}}{10^{-14}}$$

$$\int_{0}^{\frac{10}{5}} \frac{N_{\mathrm{mod}}}{10^{-14}}$$

$$V(\phi,h) = \frac{1}{2}m_{\phi}^{2}\phi^{2} + M^{2}\frac{(\phi-\phi_{0})}{f}h^{\dagger}h + \lambda(h^{\dagger}h)^{2} + V_{0}$$

fragmentation efficiency

$$b \equiv \frac{M^4}{2\lambda f^2 m_\phi^2} \sim \mathcal{O}(1)$$

Constraints from effective number of relativistic species *

$$\frac{\Omega_{\rm gw,0}h^2}{\Omega_{\gamma,0}h^2} = \frac{7}{8} \left(\frac{4}{11}\right)^{4/3} \Delta N_{\rm eff}$$
$$\Omega_{\rm gw,0}h^2 \lesssim 1.12 - 1.68 \times 10^{-7}$$

other implications of

non-trivial eq. of state

* assuming an inflationary model, the eq. of state can significantly affect the lower bound on the modulus mass

$$m_{\phi}^2 \gtrsim \frac{3(1+w_{\rm mod})}{2c} m_{\rm pl}^2 \exp\left(-\frac{6(1+w_{\rm mod})}{1-3w_{\rm mod}} \left(-N_k + 57 + \frac{1}{4}\ln r + \frac{1}{4}\ln\left(\frac{\rho_k}{\rho_{\rm end}}\right)\right)\right)$$

caveats and future directions

* not necessarily *explaining* the fine tuning; we are exploring the implications of fine tuning

caveats and future directions

* not necessarily *explaining* the fine tuning; we are exploring the implications of fine tuning

* what if no fine tuning ?

no significant backreaction -

eq. of state $w \approx 0$

 $b \sim 1$

caveats and future directions

- * not necessarily *explaining* the fine tuning; we are exploring the implications of fine tuning
- * what if no fine tuning ?
- * Higgs is a complex doublet, with associated gauge fields (include decays, future work)

caveats and future directions

- * not necessarily *explaining* the fine tuning; we are exploring the implications of fine tuning
- * what if no fine tuning ?
- * Higgs is a complex doublet, with associated gauge fields (include decays, future work)

GFiRe: a Gauge Field integrator for Reheating

Kaloian D. Lozanov & MA [arXiv:1911.06827]

Formation & Evolution of "Local" cosmic Strings

caveats and future directions

- * not necessarily *explaining* the fine tuning; we are exploring the implications of fine tuning
- * what if no fine tuning ?
- * Higgs is a complex doublet, with associated gauge fields (future work)
- * model building

model building

$$V(\phi,h) = \frac{1}{2}m_{\phi}^{2}\phi^{2} + M^{2}\frac{(\phi-\phi_{0})}{f}h^{\dagger}h + \lambda(h^{\dagger}h)^{2} + V_{0}$$
$$b \equiv \frac{M^{4}}{2\lambda f^{2}m_{\phi}^{2}} \sim \mathcal{O}(1) \qquad \text{fragmentation efficiency}$$

 $a)m_{\phi} \lesssim M \ll f \sim M_{\rm pl}, \lambda \ll 1$ $b)m_{\phi} \ll M \ll f \sim M_{\rm pl}, \lambda \sim 1$

D-flat directions in SUSY can help with small λ

caveats and future directions

- * not necessarily *explaining* the fine tuning; we are exploring the implications of fine tuning
- * Higgs is a complex doublet, with associated gauge fields (future work, interested ?)
- * model building (collaborators needed)
- * implications for colliders ? (collaborators needed)

summary: Cosmological Dynamics of Higgs Fine Tuning

arXiv: 1802.00444

tangential digressions into other projects

reheating after inflation

expansion history, baryogenesis ...

sufficiently complex models of inflation and reheating

appropriate for sufficiently complex models of inflation

- Wires to Cosmology (MA & Baumann 1512.02637)
- Multifield Stochastic Particle Production (MA, Garcia, Wen & Xie 1706.02319)
- Stochastic Particle Production in deSitter Space (Garcia, MA, Carlsten & Green 1902.06736)
- Curvature Perturbations from Stochastic Particle Production during Inflation (Garcia, MA & Green 2001.09158)

Also see recent work by D. Green in 2015. Early work in context of noise in preheating: Zanchin et. al 1997, Bassett 1998

The Equation of State & Duration to Radiation Domination After Inflation

Kaloian D. Lozanov & Mustafa A. Amin, Phys. Rev. Lett. 119, 061301 (2017) [arXiv: 1608.01213]

arXiv: 1710.06851

NEW ? (1) Included effects from field fragmentation in a broad class of observationally consistent inflaton potentials
 (2) Provided upper bound on duration to radiation domination, which can be reached even without coupling to other fields

Oscillon Formation After Inflation and in Dark Matter

* including gravitational effects

MA et. al arXiv: 1106.3335 Mocs & MA arXiv: 1902.07261 Lozanov & MA arXiv:1902.06736 Zhang et. al arXiv:2004.01202

caveats and future directions (in the Higgs project)

* inclusion of self-interactions in the moduli: oscillons

implications

structure formation with light scalar fields

Mocz, +MA, et. al (2019)

Pre-thermalization production of dark matter

arXiv:1806.01865 M. Garcia and MA

"Hubble Tension" resolution — some novel implications

*no-solitons

Smith, Poulin & MA (2019),

MA, Lozanov & Smith (in progress)

