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FIG. S4. Snapshots of the values of the Modulus (first row) and Higgs (second row) fields on a two-dimensional slice through
the simulation box at four di↵erent times. Around the time of backreaction, t ⇡ 23m�1 (second column), the Higgs field forms
domains (‘bubbles’) with � = ±p

2|�|f/q. They disappear within �t ⇠ 10m�1, due to collisions, as well as oscillations of the
remnant � condensate. The used parameters are b = 1, q = 102, M = 10�12m

pl

, f = m
pl

.

S2 Gravitational Waves and Lattice Simulations

1. Equations of Motion

We calculate the gravitational waves generated by the nonlinear field dynamics using

ḧTT
ij + 3HḣTT

ij � r2

a2

hTT
ij =

2

m2

pl

⇧TT
ij (S15)

where hTT
ij is the spatial, transverse, traceless part of the metric perturbations (gµ⌫ = gFRW

µ⌫ + hµ⌫), and ⇧TT
ij is the

transverse-traceless part of the energy momentum tensor of the fields which sources the gravitational waves. This is
a “passive calculation” where the (small) backreaction of the metric perturbations on the fields is ignored.

2. Characteristic Scales

Let us consider a gravitational wave generated at a = a
g

in the early universe with a co-moving wavenumber k.
By taking into account red-shifting due to expansion and conservation of entropy after thermalization, the frequency
today of this GW signal is
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where H
g

is the Hubble parameter of the universe at the time of generation of the gravitational waves, g
th

and g
0

are the e↵ective number of relativistic degrees of freedom at the epoch of thermalization (a
th

) and today (a
0

), ⌦
r,0 is

the fractional energy density in relativistic species today and w
mod

is the mean equation of state between generation
and thermalization (after which we assume a standard thermal history). We can parametrize the characteristic
wavenumber at which the gravitational waves are generated:
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main suggestion

If the Higgs potential is fine-tuned, there might be 
cosmological implications from the early universe: 
eq. of state + gravitational waves
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motivation



LHC: Standard Model Higgs 
but nothing else …



LHC: Standard Model Higgs 
— tuned Higgs mass/ potential 

Higgs mass/potential  is “tuned”

no new particles, does not necessarily 
rule out SUSY

(Higgs is accidentally light)



SUSY: field-dependent Higgs mass/potential
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� = modulus = could be the inflaton



accidentally light/tuned Higgs  
= precarious balance between broken and unbroken phase
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fine tuned / weakly broken potential:  
possible if global min. close to symmetry breaking point
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f = typical field range of modulus

point of symmetry breaking

global minimum



M = SUSY breaking scale
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light Higgs: 
possible if global min. close to symmetry breaking point
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fine-tuning ! small Higgs mass

* we take this to be the quantum corrected effective potential rather than the tree-
level potential; we do not have to compute shifts in VEVs induced by loop corrections. 
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how would we know today ? 

we cannot really go exploring in this field space, fixed  couplings/masses 
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how would we know? 
 early universe to the rescue
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a displaced modulus will naturally explore different Higgs potentials
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complex dynamics of the Higgs-modulus system
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tachyonic particle production and backreaction
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⌧ 1Necessary Fine Tuning ,

* related, but not identical dynamics in hybrid inflation, Dufaux et. al (2006) 
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Higgs tachyonic particle production
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FIG. S1. The instability chart featuring the real part of the Floquet exponent normalized by the modulus mass (left) and the
Hubble rate (right), characterizing the Higgs particle production rate. When �

in

⇠ f , Higgs particle production is expected for
q > 1. In FRW space-time k

phys

= k/a(t), implying that a given co-moving mode flows towards the bottom left corner of the
chart as the universe expands as indicated with the white lines in the second chart. Note that particle production is e�cient
if |<(µk)|/H ⇠ qm

pl

/f � 1.

The Fourier modes of the canonically normalized Higgs, �h
c

= a3/2�h, evolve according to

�ḧ
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ck = 0 , (S7)
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In the last line, we have used a standard approximation for a massive oscillating background scalar field, namely
a3/2(t)�(t) / cos(m�t) and 3H2 ⇡ �2Ḣ. For small enough k
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This implies that !2(k, t) < 0 for nearly a half of the �(t) oscillation. Such co-moving modes can then be unstable,
and grow exponentially with time. In the context of preheating this amplification is known as tachyonic resonance.

To study parametric resonance in the Higgs from a periodic frequency change, one can resort to Floquet theory. If
we ignore expansion, i.e., put a(t) = const. and �(t) = �

in

cos(m�t), then Eq. (S7) is just the equation of motion of a
simple harmonic oscillator with a periodically varying angular frequency. The Floquet theorem then tells us that its
solution takes the form

�h
ck(t) = eµktPk+

(t) + e�µktPk�(t) , (S10)

where µk is called the Floquet exponent and Pk±(t) are periodic functions of time. If <(µk) 6= 0 one of the two
terms increases exponentially with time. The numerically obtained exponent is given in the left panel in Fig. S1 as a
function of the model parameters. The broad instability bands are consistent with our naive expectations, Eq. (S9).
To explain the additional features, such as narrow stability and instability bands one has to consider the evolution
of �h

ck(t) in greater detail, e.g., take into account the non-adiabatic change of !2(k, t) every time �(t) = 0 for small
enough k and large initial amplitudes.

However, these small features are irrelevant after the expansion of the universe is restored. In the right panel in
Fig. S1 we show that a given co-moving mode can flow across multiple broad instability bands. If |<(µk)| � H, the
mode amplitude can grow significantly within less than an e-fold of expansion.
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implying that at the linear level the modulus fluctuations evolve as those of a scalar field with a constant mass,
whereas the Higgs ones have a time-dependent mass which can lead to instabilities.
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then fragmentation 
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FIG. S3. The evolution of the normalized fields power spectra for the orange curve in Fig. 3 (with b = 1, q = 102, f = m
pl

).
The normalized power spectrum of a field F (x) is PF (k) ⌘ ��2

osc

(d/d ln k)F 2(x), where �
osc

is the amplitude of the background
modulus oscillations. For this normalization, when P�(k) = O(1), the modulus becomes inhomogeneous. Initially, the tachyonic
instability in the Higgs is closely followed by excitations in the modulus (due to re-scattering). Comoving modes k < m�q1/2

grow exponentially. At the third oscillation of the modulus backreaction takes place. The spectra then settle down and power
slowly propagates towards higher comoving modes.

whereas we set a
in

= 1, with a
end

⇠ O[few e-folds]. Note that a slightly super-horizon box was needed sometimes
to capture the tachyonic instability in h. The number of co-moving lattice points is N = 5123, and our time steps
vary between dt = 0.00125m�1

� to 0.000625m�1

� depending on the parameters chosen. The violation of the energy

conservation in the above simulations is always less than O[10�4].

At the start of the simulations � has a background value, set to �
in

= m
pl

. The initial background field velocity,
�̇

in

, is equal to �3H
in

�
in

/2, in accordance with LatticeEasy conventions. The initial Fourier modes of the fields
and field velocities (excluding the zero modes of � and �̇) are drawn from Gaussian probability distributions with
covariance matrices equal to the squared amplitudes of the corresponding vacuum fluctuations. Initially, the energy
budget is dominated by the homogeneous �, i.e., almost no energy is stored in the gradients. The values of �

in

and
�̇

in

imply that w
in

⇡ �1/4 which is equivalent to starting the simulation soon after the end of slow-roll inflation if �
was the inflaton.

Simulation Outputs: Snapshots of the evolution of Higgs and modulus fields are shown in Fig. S2. The modulus
first begins its oscillations from �

in

= m
pl

, passes through � = 0, causing the Higgs potential to develop minima.
After a few oscillations, the fields start exploring these minima in a spatially inhomogeneous manner, leading to
the formation of temporary domains. This is also the time when the backreaction on the oscillating modulus field
becomes relevant. These domains quickly interact with each other and the still oscillating modulus field leading to
complex spatio-temporal behaviour of the fields. The domains annihilate and the modulus field fragments spatially.
The formation and dynamics of these domains turn out to be the dominant source of the gravitational wave signal
(see § S2).

The existence of transient h-domains (with accompanying domain walls) in this class of models is novel. The
development of a non-zero � vev was first pointed out in [15] and understood in terms of the initial backreaction of
the resonantly produced h quanta on the � condensate, but the existence of domain walls in such models was not
discussed. Note that within �t ⇠ 10m�1

� , the domains disappear completely, and the fields enter a long turbulent
stage. Perhaps, the shortness of the period in which the domains exist was the reason they were not noticed in [15].

At a more detailed level, we also monitored the power spectra of the two fields PF (k) / k3|F (k)|2 (F = h, �)
to understand the distribution and time evolution of field perturbations at di↵erent scales (see Fig. S3). Note that
the power spectra have been scaled by the the amplitude of the oscillating modulus. Thus when the spectra are of
order unity, the rms fluctuations in the fields are becoming comparable to the background modulus field, signaling
fragmentation of the modulus.

Along with the fields, we keep track of the spatially averaged energy density

⇢ = ⇢� + ⇢h + ⇢
int

, (S12)
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FIG. S4. Snapshots of the values of the Modulus (first row) and Higgs (second row) fields on a two-dimensional slice through
the simulation box at four di↵erent times. Around the time of backreaction, t ⇡ 23m�1 (second column), the Higgs field forms
domains (‘bubbles’) with � = ±p

2|�|f/q. They disappear within �t ⇠ 10m�1, due to collisions, as well as oscillations of the
remnant � condensate. The used parameters are b = 1, q = 102, M = 10�12m

pl

, f = m
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.

S2 Gravitational Waves and Lattice Simulations

1. Equations of Motion

We calculate the gravitational waves generated by the nonlinear field dynamics using

ḧTT
ij + 3HḣTT

ij � r2

a2

hTT
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ij (S15)

where hTT
ij is the spatial, transverse, traceless part of the metric perturbations (gµ⌫ = gFRW

µ⌫ + hµ⌫), and ⇧TT
ij is the

transverse-traceless part of the energy momentum tensor of the fields which sources the gravitational waves. This is
a “passive calculation” where the (small) backreaction of the metric perturbations on the fields is ignored.

2. Characteristic Scales

Let us consider a gravitational wave generated at a = a
g

in the early universe with a co-moving wavenumber k.
By taking into account red-shifting due to expansion and conservation of entropy after thermalization, the frequency
today of this GW signal is
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where H
g

is the Hubble parameter of the universe at the time of generation of the gravitational waves, g
th

and g
0

are the e↵ective number of relativistic degrees of freedom at the epoch of thermalization (a
th

) and today (a
0

), ⌦
r,0 is

the fractional energy density in relativistic species today and w
mod

is the mean equation of state between generation
and thermalization (after which we assume a standard thermal history). We can parametrize the characteristic
wavenumber at which the gravitational waves are generated:

k

a
g

H
g

⌘ ��1 ⇠ q1/2

m
plp

f�
g

, (S17)

11

FIG. S4. Snapshots of the values of the Modulus (first row) and Higgs (second row) fields on a two-dimensional slice through
the simulation box at four di↵erent times. Around the time of backreaction, t ⇡ 23m�1 (second column), the Higgs field forms
domains (‘bubbles’) with � = ±p

2|�|f/q. They disappear within �t ⇠ 10m�1, due to collisions, as well as oscillations of the
remnant � condensate. The used parameters are b = 1, q = 102, M = 10�12m

pl

, f = m
pl

.

S2 Gravitational Waves and Lattice Simulations

1. Equations of Motion

We calculate the gravitational waves generated by the nonlinear field dynamics using
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Universe at the time of the process. In [57], it was as-
sumed that the source was Gaussian with a peak, k⇤, and
width, �; both entered into the approximation as ratios
that include the Hubble parameter at the time of the
process, Hp. The general advice in [57] chose fiducial pa-
rameters for these ratios and set estimates for optimistic,
realistic, and pessimistic limits. We cannot rely on these
fiducial values here because the tachyonic processes at
work in these models excite modes that are very close to
horizon-sized, as can be seen in [34]. Using Fig. 1 of [34]
as a guide, we see that k⇤ can be as small as 3-5m (in
the axial case), which is only about a decade away from

Hp ⇡
s

8⇡

3m2
pl

✓
1

2
�̇2
0 +

1

2
m2�2

0

◆
⇡ 0.5 m. (39)

We can also approximate the width of the Gaussian to be
about the same order of magnitude as the peak, � ⇠ 5 m.
Taking h = .68 and the optimistic parameters, ↵ = 1,
� = 0.1 and w = 1/3, we get an optimistic estimate for
the peak height to be

⌦gw,0(f) ⇡ 10�8. (40)

where the estimate changes by a factor of a few when we
go from k⇤ = 3m to k⇤ = 5m. Therefore we see that
the enhancement of near–horizon-sized modes so quickly
after inflation can create a gravitational wave signal a
few orders of magnitude larger than we expect from a
parametric instability. These estimates are consistent
with our most e�cient results above.

Such a large signal puts the detection of gravitational
waves from preheating within the reach of ground-based
interferometers. In this work we choose the inflationary
scale m = 10�6 mpl to fit the amplitude of the scalar
spectrum for chaotic inflation, for which reason the fre-
quencies of the generated gravitational waves lie far from
those to which LIGO is sensitive. However, the amplitude
of this signal will remain (relatively6) invariant when
changing m, while the emitted frequencies are propor-
tional to this scale [14]. For this reason, these preheating
dynamics after low-scale inflation could in principle be
detected by LIGO. Advanced LIGO’s peak sensitivity
is on the order of ⌦gw,0(f)h2 ⇠ 10�10, which is sev-
eral orders of magnitude lower than that the amplitude
produced by the simulations which achieve complete re-
heating. aLIGO’s peak sensitivity lies around f ⇠ 50 Hz,
which would probe inflationary scales ⇠ 106 GeV. Note
that the subsequent expansion history of the Universe
also a↵ects the gravitational-wave transfer function; we
assume the Universe is radiation dominated after emis-
sion until matter-radiation equality. Since preheating into

6

The mass scale m only enters the simulations via the initial

amplitude of the Bunch-Davies spectrum; results should be fairly

insensitive to this amplitude due to the preheating’s dramatic

amplification of modes.

↵ ⌦
gw,0h

2

40 5.5 ⇥ 10�10

45 3.4 ⇥ 10�8

50 9.5 ⇥ 10�8

55 1.6 ⇥ 10�7

60 3.2 ⇥ 10�7

65 5.4 ⇥ 10�7

� ⌦
gw,0h

2

50.1 4.2 ⇥ 10�10

56.0 2.0 ⇥ 10�8

60.2 4.5 ⇥ 10�8

66.1 8.5 ⇥ 10�8

72.4 1.3 ⇥ 10�7

TABLE I. The fraction of the total energy density of the sim-
ulation in gravitational waves, ⌦
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gauge fields naturally leads into radiation domination
after inflation, this approximation is well-justified.

Further, the total energy density in gravitational waves,
i.e.,

⌦gw,0h
2 =

Z
d ln k

1

⇢

d⇢gw,0

d ln k
, (41)

is constrained by CMB measurements. If we assume that
there are no light degrees of freedom beyond the standard
model that contribute to the radiation density during
the formation of the CMB, we can directly translate the
constraint on Ne↵ onto a constraint on ⌦gw,0(f)h2 via [72]
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where ⌦�,0h
2 = 2.47 ⇥ 10�5 is the present energy density

in photons and �Ne↵ = (Ne↵ � 3.046). Planck limits
|�Ne↵ | . 0.33 [73], which constrains the energy density
to ⌦gw,0h

2 . 1.85 ⇥ 10�6. Next-generation CMB exper-
iments, such as CMB-S4, will probe �Ne↵ to a level of
�(Ne↵) ⇠ 0.02 � 0.03 [58] and potentially constrain the
gravitational wave energy density to

⌦gw,0h
2 . 1.12 � 1.68 ⇥ 10�7. (43)

In Table I we list the final value of ⌦gw,0h
2 for each

coupling; upcoming experiments could constrain the
axion-gauge field coupling ↵ < 55 and the dilaton-gauge
field coupling � < 72.4. A more sophisticated fore-
cast, such as that of [74], obtains constraints as low as
⌦gw,0h

2 . 7.6 ⇥ 10�8, which would probe ↵ ⇡ 50 and
� ⇡ 66.1.

A. Gravitational wave polarization

During axion-driven inflation, the rolling axion pref-
erentially amplifies one gauge-field polarization (in the
linear regime). These gauge fields in turn lead to the
production of gravitational waves through their contri-
bution to the anisotropic stress. That is, scattering of
helically-polarized gauge bosons produces gravitational
waves [52]. Because they are helically polarized and an-
gular momentum is conserved in their scattering, these
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Universe at the time of the process. In [57], it was as-
sumed that the source was Gaussian with a peak, k⇤, and
width, �; both entered into the approximation as ratios
that include the Hubble parameter at the time of the
process, Hp. The general advice in [57] chose fiducial pa-
rameters for these ratios and set estimates for optimistic,
realistic, and pessimistic limits. We cannot rely on these
fiducial values here because the tachyonic processes at
work in these models excite modes that are very close to
horizon-sized, as can be seen in [34]. Using Fig. 1 of [34]
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We can also approximate the width of the Gaussian to be
about the same order of magnitude as the peak, � ⇠ 5 m.
Taking h = .68 and the optimistic parameters, ↵ = 1,
� = 0.1 and w = 1/3, we get an optimistic estimate for
the peak height to be

⌦gw,0(f) ⇡ 10�8. (40)

where the estimate changes by a factor of a few when we
go from k⇤ = 3m to k⇤ = 5m. Therefore we see that
the enhancement of near–horizon-sized modes so quickly
after inflation can create a gravitational wave signal a
few orders of magnitude larger than we expect from a
parametric instability. These estimates are consistent
with our most e�cient results above.

Such a large signal puts the detection of gravitational
waves from preheating within the reach of ground-based
interferometers. In this work we choose the inflationary
scale m = 10�6 mpl to fit the amplitude of the scalar
spectrum for chaotic inflation, for which reason the fre-
quencies of the generated gravitational waves lie far from
those to which LIGO is sensitive. However, the amplitude
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changing m, while the emitted frequencies are propor-
tional to this scale [14]. For this reason, these preheating
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detected by LIGO. Advanced LIGO’s peak sensitivity
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insensitive to this amplitude due to the preheating’s dramatic

amplification of modes.

↵ ⌦
gw,0h

2

40 5.5 ⇥ 10�10

45 3.4 ⇥ 10�8

50 9.5 ⇥ 10�8

55 1.6 ⇥ 10�7

60 3.2 ⇥ 10�7

65 5.4 ⇥ 10�7

� ⌦
gw,0h

2

50.1 4.2 ⇥ 10�10

56.0 2.0 ⇥ 10�8

60.2 4.5 ⇥ 10�8

66.1 8.5 ⇥ 10�8

72.4 1.3 ⇥ 10�7

TABLE I. The fraction of the total energy density of the sim-
ulation in gravitational waves, ⌦

gw,0h
2, for the axial coupling,

↵, (left) and the dilatonic coupling, � (right).

gauge fields naturally leads into radiation domination
after inflation, this approximation is well-justified.

Further, the total energy density in gravitational waves,
i.e.,

⌦gw,0h
2 =

Z
d ln k

1

⇢

d⇢gw,0

d ln k
, (41)

is constrained by CMB measurements. If we assume that
there are no light degrees of freedom beyond the standard
model that contribute to the radiation density during
the formation of the CMB, we can directly translate the
constraint on Ne↵ onto a constraint on ⌦gw,0(f)h2 via [72]

⌦gw,0h
2

⌦�,0h2
=

7

8

✓
4

11

◆4/3

�Ne↵ , (42)

where ⌦�,0h
2 = 2.47 ⇥ 10�5 is the present energy density

in photons and �Ne↵ = (Ne↵ � 3.046). Planck limits
|�Ne↵ | . 0.33 [73], which constrains the energy density
to ⌦gw,0h

2 . 1.85 ⇥ 10�6. Next-generation CMB exper-
iments, such as CMB-S4, will probe �Ne↵ to a level of
�(Ne↵) ⇠ 0.02 � 0.03 [58] and potentially constrain the
gravitational wave energy density to

⌦gw,0h
2 . 1.12 � 1.68 ⇥ 10�7. (43)

In Table I we list the final value of ⌦gw,0h
2 for each

coupling; upcoming experiments could constrain the
axion-gauge field coupling ↵ < 55 and the dilaton-gauge
field coupling � < 72.4. A more sophisticated fore-
cast, such as that of [74], obtains constraints as low as
⌦gw,0h

2 . 7.6 ⇥ 10�8, which would probe ↵ ⇡ 50 and
� ⇡ 66.1.

A. Gravitational wave polarization

During axion-driven inflation, the rolling axion pref-
erentially amplifies one gauge-field polarization (in the
linear regime). These gauge fields in turn lead to the
production of gravitational waves through their contri-
bution to the anisotropic stress. That is, scattering of
helically-polarized gauge bosons produces gravitational
waves [52]. Because they are helically polarized and an-
gular momentum is conserved in their scattering, these

7



other implications of
non-trivial eq. of state : 1/4 . w . 1/3

Planck Collaboration: Cosmological parameters

�2

0.95 0.96 0.97 0.98 0.99 1.00

ns

0.00

0.05

0.10

0.15

0.20

0.25

r 0
.0

02

N
=

50
N
=

60

ConvexConcave

�

Planck TT+lowP

Planck TT+lowP+BKP

+lensing+ext

Fig. 21. Left: Constraints on the tensor-to-scalar ratio r0.002 in the ⇤CDM model, using Planck TT+lowP and Planck
TT+lowP+lensing+BAO+JLA+H0 (red and blue, respectively) assuming negligible running and the inflationary consistency rela-
tion. The result is model-dependent; for example, the grey contours show how the results change if there were additional relativistic
degrees of freedom with �Ne↵ = 0.39 (disfavoured, but not excluded, by Planck). Dotted lines show loci of approximately con-
stant e-folding number N, assuming simple V / (�/mPl)p single-field inflation. Solid lines show the approximate ns–r relation for
quadratic and linear potentials to first order in slow roll; red lines show the approximate allowed range assuming 50 < N < 60 and
a power-law potential for the duration of inflation. The solid black line (corresponding to a linear potential) separates concave and
convex potentials. Right: Equivalent constraints in the ⇤CDM model when adding B-mode polarization results corresponding to the
default configuration of the BICEP2/Keck Array+Planck (BKP) likelihood. These exclude the quadratic potential at a higher level
of significance compared to the Planck-alone constraints.

limited by cosmic variance of the dominant scalar anisotropies,
and it is also model dependent. In polarization, in addition to B-
modes, the EE and T E spectra also contain a signal from tensor
modes coming from reionization and last scattering. However,
in this release the addition of Planck polarization constraints at
` � 30 do not significantly change the results from temperature
and low-` polarization (see Table 5).

Figure 21 shows the 2015 Planck constraint in the ns–r plane,
adding r as a one-parameter extension to base ⇤CDM. Note that
for base ⇤CDM (r = 0), the value of ns is

ns = 0.9655 ± 0.0062, Planck TT+lowP. (38)

We highlight this number here since ns, a key parameter for in-
flationary cosmology, shows one of the largest shifts of any pa-
rameter in base ⇤CDM between the Planck 2013 and Planck
2015 analyses (about 0.7�). As explained in Sect. 3.1, part of
this shift was caused by the ` ⇡ 1800 systematic in the nominal-
mission 217 ⇥ 217 spectrum used in PCP13.

The red contours in Fig. 21 show the constraints from Planck
TT+lowP. These are similar to the constraints shown in Fig. 23
of PCP13, but with ns shifted to slightly higher values. The ad-
dition of BAO or the Planck lensing data to Planck TT+lowP
lowers the value of ⌦ch2, which at fixed ✓⇤ increases the small-
scale CMB power. To maintain the fit to the Planck tempera-
ture power spectrum for models with r = 0, these parameter
shifts are compensated by a change in amplitude As and the tilt
ns (by about 0.4�). The increase in ns to match the observed
power on small scales leads to a decrease in the scalar power
on large scales, allowing room for a slightly larger contribution

from tensor modes. The constraints shown by the blue contours
in Fig. 21, which add Planck lensing, BAO, and other astrophys-
ical data, are therefore tighter in the ns direction and shifted to
slightly higher values, but marginally weaker in the r-direction.
The 95 % limits on r0.002 are

r0.002 < 0.10, Planck TT+lowP, (39a)
r0.002 < 0.11, Planck TT+lowP+lensing+ext, (39b)

consistent with the results reported in PCP13. Note that we as-
sume the second-order slow-roll consistency relation for the ten-
sor spectral index. The result in Eqs. (39a) and (39b) are mildly
scale dependent, with equivalent limits on r0.05 being weaker by
about 5 %.

PCP13 noted a mismatch between the best-fit base ⇤CDM
model and the temperature power spectrum at multipoles ` <⇠ 40,
partly driven by the dip in the multipole range 20 <⇠ ` <⇠ 30. If
this mismatch is simply a statistical fluctuation of the ⇤CDM
model (and there is no compelling evidence to think otherwise),
the strong Planck limit (compared to forecasts) is the result of
chance low levels of scalar mode confusion. On the other hand if
the dip represents a failure of the ⇤CDM model, the 95 % limits
of Eqs. (39a) and (39b) may be underestimates. These issues are
considered at greater length in Planck Collaboration XX (2015)
and will not be discussed further in this paper.

As mentioned above, the Planck temperature constraints on
r are model-dependent and extensions to ⇤CDM can give sig-
nificantly di↵erent results. For example, extra relativistic de-
grees of freedom increase the small-scale damping of the CMB
anisotropies at a fixed angular scale, which can be compensated

34
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FIG. S6. The lower bound on m� as a function of ns (left) and r (right) with the inflation model in Eq. S40 and ↵ = 1.
The red solid and green dotted lines correspond to w

mod

= 0 and 0.1 respectively. In the left panel, the light blue shaded
region corresponds to the current 1� bounds on ns from Planck TT+lowP+lensing. The narrower darker blue shaded region
corresponds to the 1� bounds of a future CMB experiment of ns with sensitivity ±2 ⇥ 10�3 [34], assuming the same central
value as Planck. In the right panel, the blue shaded region corresponds to the 1� bounds of a future CMB experiment of r
with sensitivity ±5 ⇥ 10�4 [34], assuming a measured central value of r being 0.085.
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where we use ln
�
1010As

�
= 3.062 (central value of Planck TT+lowP+lensing) at k = 0.05 Mpc�1 [29], T
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Note that generically we expect 0 < w
re

< 1/3 and (1/4)(1 � 3w
re

)N
re

> 0, which leads to a conservative bound on
m� independent of the details of the inflation reheating stage
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The presence of a non-zero w
mod

could change the bound on m� dramatically compared to the case with w
mod

= 0.
Since the logarithmic terms in the exponent in Eq. S38, S39 are usually tiny, a crude rule of thumb is that when
Nk < 57, the bound could be significantly weakened with w

mod

> 0 while when Nk > 57.0, the bound is more
tightened with w

mod

< 0. The details of the bounds depend on specific inflation models. Let’s take a look at the
model with a polynomial potential

V
inf

=
1

2
m4�↵�↵

inf

, (S40)

where �
inf

is the inflaton and ↵ > 0. In this case, Nk, r and ⇢k/⇢
end

can be written in terms of the spectral index ns

and the power ↵:

Nk =
↵ + 2

2(1 � ns)
, r =
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(S41)
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* assuming an inflationary model, the eq. of state can significantly 
affect the lower bound on the modulus mass
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GFiRe: a Gauge Field integrator for Reheating 
Kaloian D. Lozanov & MA [arXiv:1911.06827]

New algorithm and code, GFiRe, to simulate nonlinear dynamics of 
Charged Scalars Fields coupled to Abelian Gauge Fields in an 
expanding universe

- algorithm uses link variables and includes self-consistent 
expansion

- algorithm is symplectic (arbitrary order) and has “exact” 
preservation of Gauss constraint
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Figure 12. Left panel:The energy conservation for three different conformal time steps. The red curve
is for the case from the left panel in Fig. 11. The green and blue curves are for the same simulation and
model parameters, but for time steps 10

1/4 and 10

1/2 times smaller. The used symplectic integrator
was of fourth order, k = 4, and the energy conservation scales appropriately with the time step,
/ O(�⌧k

). Right panel: As expected from our algorithm, the violation of the Gauss constraint does
not depend on the size of the time step.

Energy and Gauss Constraint: The energy conservation is shown in the left panel in Fig.
11. We have used the same lattice parameters as for the simulation from Section 4.1. The
energy conservation is still excellent,  10

�4. It is almost identical to the one for the v = 0

case given in the left panel in Fig. 8, worsening only slightly at late times. The reason for
this slightly worse performance for v 6= 0 can be traced back to the fact that we work with a
fixed conformal-time step, �⌧ . For v = 0, i.e., a quartic Higgs potential, the typical frequency
scales always decrease with time as / a�1, implying that their product with the cosmic-time
step, a(⌧)�⌧ , is constant.

On the other hand, for the massive case, v 6= 0, the typical frequency scales are constant,
implying that their product with the cosmic-time step grows like / a(⌧), thereby increasing
the time-integration error. Even though it was not necessary for this study, this small degra-
dation in energy conservation can be easily alleviated by decreasing the conformal-time step
only slightly. This takes advantage of the fact that the order of the time integrator, k, is high
and the energy conservation is quite sensitive to the time step. The local truncation error in
the time integration is O(�⌧k+1

), see Eq. (3.6), and the total accumulated error is O(�⌧k
).

For k = 4, the energy conservation can be improved by one or two orders of magnitude, when
we decrease the conformal-time step only by a factor of 10

1/4 or 10

1/2, respectively, as shown
in Fig. 12.

The Gauss constraint violation is shown in the right panel in Fig. 11 for a random lat-
tice point. We find that it is qualitatively identical to the one for the v = 0 case given in
Fig. 8. It is also insensitive to the conformal-time step, which is expected for a quantity
dominated by differencing noise.
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Figure 7. The evolution of the normalized electric (blue) and magnetic (orange) field energy densities
for the case where v = 0 (no symmetry breaking). The contours are drawn at fi = ⇢i/⇢

tot

= 0.4
where i = E, B. The middle panel is close to the time when backreaction begins. The rightmost
panel is at late times after the ' condensate has fragmented. Note that this figure is produced from
half the box compared to the rest of the text.

field with a quartic self-interaction, which implies the well-known result of 1/3 for the mean
equation of state [115] (in our notation, the only non-zero fis are fK = 2fV = 2/3). Later
on, since the ' self-interaction potential energy vanishes, the real and imaginary parts of ',
as well as the components of the gauge fields behave as massless radiation, again implying a
radiation-like equation of state (in our notation in the radiation limit, fK + f

elec

⇡ 1/2, since
the magnetic and electromagnetic components are approximately equal, as well as the Higgs
kinetic and gradient energies).

Lattice snapshots: Individual snapshots of the field configurations and their energy densi-
ties on the lattice at any given time reveal a rich spatial structure in the fields at both the
linear and nonlinear stages. In Fig. 7, we provide an example of snapshots of the fractional
electric and magnetic field densities at three different times. The initial resonance instabil-
ity leads to a growth of large length-scale modes with a somewhat larger fraction in electric
fields. The third panel reveals a more scrambled configuration at late times (after backreac-
tion). While we do not do so here, plotting the vector field configurations (rather than scalar
energy densities), or pseudoscalar quantities such as (E · B) also provides useful insight into
the complex underlying dynamics.

Energy and Gauss constraint preservation: To keep track of the violation of the energy con-
servation in our simulations, we consider the quantity

E ⌘ |CE |
a2⇢

=

�

�

�

�

1 � 3m2

PlH2

a2⇢

�

�

�

�

. (4.6)

where CE was defined in section Eq. (2.11). For the simulation whose results we have been
discussing so far, the evolution of E is shown in the left panel in Fig. 8. Note that it is easy to
achieve a very small degree of energy violation, < 10

�5, with a fairly large time step, due to
the high order of the symplectic time integrator. Furthermore, the energy violation is quite
stable and grows very slowly, due to the time-reversability of symplectic integrators.
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Resonant Production of 
Electric & Magnetic Fields
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Figure 9. Snapshots of the simulation box at four different times for the case where V (') has
a Sombrero-hat shape. The orange points have non-zero winding number, n, see Eq. (4.9). The
physical size of the simulation box, L, is given in units of the Hubble radius, H�1. There is a copious
production of subhorizon Nielsen-Olesen string loops around the time of backreaction. The loops
eventually start to evaporate away. In the last panel the string core is resolved by O[10] points per
linear dimension.

amplitude of '̄
1

oscillations, see Eq. (4.2), the initial parametric resonance phase is unaffected
by v. We still have significant �A resonant particle production. Again parametric resonance
does not develop in the Higgs due to our choice of e, as explained in Section 4.1. Only once
�A begins to backreact, there is significant amplification of a broad range of comoving Higgs
modes. After backreaction, the power spectra of the Higgs and the gauge fields again settle
into stable broad single-peaked configurations. Since the power spectra plot are qualitatively
similar to the v = 0 case, we have relegated them to an appendix.

Cosmic strings: Plotting the evolution of the fields in real space, reveals a phenomenon
that cannot be picked out from the evolution of the power spectra. Note that the v 6= 0

Higgs potential (right panel in Fig. 3), can support the non-trivial field configurations known
as topological strings [116]. They can be generated during thermal phase transitions via the
Kibble mechanism in the form of cosmic string networks (for reviews see, e.g., [14, 15, 117]).
Strings can be also produced after backreaction due to parametric resonance [27, 118–120],
just like in our case. Since strings are characterized by a non-zero integer topological number,
known as the winding number, n,

n ⌘ 1

2⇡

I

dl · r arg(') , (4.9)

we plot the lattice points with n 6= 0 at four different times in Fig. 9.
The first panel in Fig. 9 is at the start of the simulation. All lattice points have n = 0,

consistent with the inflationary initial conditions, see Eqs. (3.14) and (3.16). Towards the end
of the resonant particle production and the onset of backreaction we observe copious forma-
tion of strings and string loops with a sub-Hubble correlation length, as shown in the second
panel in Fig. 9. The strings then interact,13 reconnect into loops and gradually evaporate
via classical radiation. We see features developing on loops, which split from the larger loop
to form smaller loops, which then decay away. The last large loop in our simulation is seen

13The 2-dimensional counterparts to our strings are known as vortices. The long-range interaction force
between like-charged vortices is repulsive for e2 < 2� [109], and hence for our parameter choice, Eq. (4.3).
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Formation & Evolution of  
“Local” cosmic Strings
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* not necessarily explaining the fine tuning; we are exploring the 
implications of fine tuning 

* Higgs is a complex doublet, with associated gauge fields (future work, 
interested ?)

* model building (collaborators needed)

* implications for colliders ? (collaborators needed)
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FIG. S4. Snapshots of the values of the Modulus (first row) and Higgs (second row) fields on a two-dimensional slice through
the simulation box at four di↵erent times. Around the time of backreaction, t ⇡ 23m�1 (second column), the Higgs field forms
domains (‘bubbles’) with � = ±p

2|�|f/q. They disappear within �t ⇠ 10m�1, due to collisions, as well as oscillations of the
remnant � condensate. The used parameters are b = 1, q = 102, M = 10�12m

pl

, f = m
pl

.

S2 Gravitational Waves and Lattice Simulations

1. Equations of Motion

We calculate the gravitational waves generated by the nonlinear field dynamics using

ḧTT
ij + 3HḣTT

ij � r2

a2

hTT
ij =

2

m2

pl

⇧TT
ij (S15)

where hTT
ij is the spatial, transverse, traceless part of the metric perturbations (gµ⌫ = gFRW

µ⌫ + hµ⌫), and ⇧TT
ij is the

transverse-traceless part of the energy momentum tensor of the fields which sources the gravitational waves. This is
a “passive calculation” where the (small) backreaction of the metric perturbations on the fields is ignored.

2. Characteristic Scales

Let us consider a gravitational wave generated at a = a
g

in the early universe with a co-moving wavenumber k.
By taking into account red-shifting due to expansion and conservation of entropy after thermalization, the frequency
today of this GW signal is
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where H
g

is the Hubble parameter of the universe at the time of generation of the gravitational waves, g
th

and g
0

are the e↵ective number of relativistic degrees of freedom at the epoch of thermalization (a
th

) and today (a
0

), ⌦
r,0 is

the fractional energy density in relativistic species today and w
mod

is the mean equation of state between generation
and thermalization (after which we assume a standard thermal history). We can parametrize the characteristic
wavenumber at which the gravitational waves are generated:
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ḧTT
ij + 3HḣTT
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are the e↵ective number of relativistic degrees of freedom at the epoch of thermalization (a
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arXiv: 1802.00444

* future 
* related phenomenon ? 
* gauge fields 
* complex Higgs 
* self-interactions 
* model building



tangential digressions into other projects
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from review: MA, Kaiser, Karouby & Hertzberg (2013)



sufficiently complex models  
of inflation and reheating

• Wires to Cosmology 
(MA & Baumann 1512.02637)

• Multifield Stochastic Particle Production 
(MA, Garcia, Wen & Xie 1706.02319)

• Stochastic Particle Production in deSitter Space 
(Garcia, MA, Carlsten & Green 1902.06736)

• Curvature Perturbations from Stochastic Particle Production during Inflation
(Garcia, MA & Green  2001.09158)

appropriate for sufficiently complex models of inflation

Also see recent work by D. Green in 2015.  Early work in context of noise in preheating: Zanchin et. al 1997, Bassett 1998 
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Figure 1: Ratio of the component of the power spectrum sourced by stochastic particle production, ��2

⇣ , to
the component of the power spectrum sourced solely by the vacuum fluctuation, �2

⇣,0, as a function of the
number of e-folds N and wavenumber k. Here the characteristic disorder strength is given by Ns(�/H)2 = 25,
stochastic particle production is assumed to be e↵ective for N

tot

= 20 e-folds, and we have assumed that
�2

⇣,0 = �2

⇣,Planck

' 2.1 ⇥ 10�9. The wavenumber k
0

is that of the curvature mode that leaves the horizon at
N = 0. Each gray curve corresponds to a particular realization of disorder, for a total of 20 unique realizations.
The red (black) curve shows the arithmetic (geometric) sample mean. The blue curve shown in the rightmost
panel shows the reconstructed probability density function for ln(��2

⇣/�2

⇣,0) at N = 20, k/k
0

= e10.

Sourced Curvature Perturbations: Curvature perturbations are sourced by the excited specta-

tor field perturbations – calculating this sourced curvature spectrum is the main goal of this paper.

We summarize the main results here for convenience.

• We find that the curvature perturbations sourced by the spectator field can exceed the usual

vacuum contribution, without the spectator field dominating the background energy density of

the universe.

• The curvature power spectra generated (via the excited spectator fields) by each realization

of the e↵ective-mass ensemble can be highly non-trivial. For a finite duration of the epoch

during which repeated non-adiabatic particle production in the spectator field takes place, the

sourced component of the curvature power spectrum has a shape resembling a “tilted plateau”

with additional small-scale features on top in any given realization. At very low wavenumbers,

the sourced part of the spectrum rises with a slope determined by causality, while at very high

wavenumbers the spectrum decays due to the lack of excitation of deep sub-horizon modes.

• In the ensemble averaged sense, we calculate the shape and amplitude of the curvature power

spectrum semi-analytically (see Fig. 11) in terms of (i) Ns(�/H)2, where �2 is the variance

of the strength of the e↵ective mass, N
s

� 1 is the mean number of non-adiabatic changes

per e-fold of expansion, and (ii) the total number of e-folds (N
tot

) during with repeated,

non-adiabatic particle production takes place. Although in an ensemble sense, the e↵ective

mass realizations do not break scale invariance, the resulting sourced power spectra can do so.

There are features related to the beginning and end of the non-adiabatic period, as well as a

Ns(�/H)2 dependent tilt.

3
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from review: MA, Kaiser, Karouby & Hertzberg (2013)

Inflation 
(accelerated space expansion)

radiation domination 
(Hot Big Bang *)how long ?

V (�) / |�|2n

|�| ⇠ M

how ?

w ⌘ pressure

density
! 1/3

Reduction in  
theoretical uncertainty  
of inflationary observables

what we found:

The Equation of State & 
Duration to Radiation Domination After Inflation

              Kaloian D. Lozanov & Mustafa A.  Amin, Phys. Rev. Lett. 119, 061301 (2017) [arXiv: 1608.01213]

radiation  
domination

inflaton potential

w ! 0

n & 1

n = 1

NEW ? (1) Included effects from field fragmentation in a broad class of observationally consistent inflaton potentials 
          (2) Provided upper bound on duration to radiation domination, which can be reached even without coupling to other fields

“reheating” e-folds (how much the universe expands)
- increases with M
- increases as n moves away from 2
- for M << mPl, reheating e-folds < 1

field eve
ntually 

frag
ments 

eq. of state

eq. of state

the question: 
 arXiv: 1710.06851 



Oscillon Formation After Inflation and in Dark Matter
2
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FIG. 1. Projected co-moving “densities” a3| |2 (average along the line of sight) at several scale factors (a = 1 to a = 20) in
our 3+1 dimensional lattice simulations, with � ⌘ M/m

pl

= 0.03, and local gravitational interactions switched on (top panels)
and o↵ (bottom panels). The early instability due to self-interactions gives rise to the formation of solitons from an almost
homogeneous initial state. A statistical analysis of the locations of solitons at late times shows reveals evidence for clustering
only in the case where gravitational interactions are included. Note that inside solitons, | |2 = const. that is, their core density
does not redshift, whereas the background | ̄|2 / a�3. Moreover, solitons maintain a fixed physical size, hence the illusion of
them shrinking in size in a co-moving volume. The initial size of the box is the size of the horizon at the beginning of the
simulation L ' H�1

in

. The solitons contain a dominant fraction (⇠ 80%) of the mass in the simulation volume. On a technical
aside, note that the projected co-moving density even in the densest (lightest in color) appearing regions in the above plot will
be smaller that the density inside the cores because of the small volume occupied by the solitons.

between relativistic/non-relativistic models and results
is discussed in the Appendix.

The rest of the paper is organized as follows in short
sections. In Section II we discuss the model for a non-
relativistic, self-interacting field in an expanding universe
with weak field gravity. In Section III, we briefly dis-
cuss the lattice simulation and our numerical algorithm.
The initial conditions for the simulations is provided
in Section IV. We analyze linear instabilities from self-
interactions and gravitational interactions in Section V.
The numerically calculated power spectrum for the field
perturbations is provided in Section VI. In Section VII we
discuss the formation of solitons, followed by a discussion
of their individual profiles and stability in Section VIII.
The gravitational clustering of solitons is discussed in
Section IX, and resulting strong soliton interactions are
explored in Section X. Finally, we present our conclusions
and future directions in Section XI. In the Appendix we
discuss connections to a related relativistic system.

II. THE MODEL

We use the following equations of motion (and con-
straint equations) to explore the dynamics of a non-
relativistic, self-interacting, self-gravitating scalar field in

an approximately homogeneous and isotropic universe:

i

✓
@t +

3

2
H

◆
+

1

2a2

r2 � U 0
nl

(| |2) � �

�
 = 0 ,

r2

a2

� =
�2

2


| |2 +

1

2a2

|r |2 + U
nl

(| |2)
�

� 3

2
H2 ,

H2 =
�2

3


| |2 +

1

2a2

|r |2 + U
nl

(| |2)
�

,

(1)

where [. . .] indicates a spatial average, a(t) is the scale-
factor, H(t) = ȧ(t)/a(t) is the Hubble rate,  (t,x) is
complex field amplitude, �(t,x) is the Newtonian po-
tential and U

nl

(| |2) encodes the self-interactions of the
field.2

All variables and parameters appearing in the above
equation are dimensionless. We have expressed time t in
units of ⌧m = ~/mc2, lengths in units of �m = ~/mc,
the Newtonian gravitational potential � in units of c2

and | |2 in units of m2M2c3/~3. Note that m2M2c3/~3

has dimensions of mass density. We assume that the
parameter

� ⌘ M

m
pl

⌧ 1 . (2)

2 We have checked that qualitatively similar results are obtained
even if we set U

nl

! 0 in the Poisson and Friedmann equations,
but keep U 0

n

(| |2) ⌘ @| |2Un

(| |2) in the nonlinear Schrödinger
equation.

* including gravitational effects

arXiv: 1106.3335 arXiv:1902.06736 arXiv:2004.01202

MA et. al Mocs & MA Lozanov & MA Zhang et. al 

arXiv: 1902.07261



caveats and future directions (in the Higgs project)

* inclusion of self-interactions in the moduli: oscillons

h
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strong interactions
structure formation with light 
scalar fields
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(a) box              (b) projection                            (c) slice
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caustics
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1.5 Mpc                                                           0.5 Mpc
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FIG. 1. Anatomy of a cosmic filament. We show, for CDM, WDM, and FDM cosmologies: (a) the projected dark matter
distribution in the simulation domain at redshift z = 5.5; (b) projections of dark matter, gas, and stars in a filament; and (c)
slices of the dark matter through a filament. In CDM the dark matter fragments into subhalos on all scales. WDM exhibits
rich caustic structures. FDM has interference patterns at the scales of the de Broglie wavelength, which regularize caustic
singularities. These di↵erences in small-scale structure will help constrain the elusive nature of dark matter.

(WDM), which is often associated with fermionic dark
matter

:::::::
fermions

:
of particle mass of a few keV (typi-

cally treated as collisionless), Peccei-Quinn axions [28]
which are bosons of mass ⇠ 10�5–10�3 eV, and the ul-
tralight FDM of mass m ⇠ 10�22 eV, which is described
by a classical scalar field and exhibits wave phenomena
on scales of the de Broglie wavelength �

dB

of a few kpc
[18–21, 29, 30]. FDM may be axions expected in string
theory, which suggests the existence of a plenitude of
particles with masses over a broad range 10�33–10�10 eV
[29].

::::::::::::::
�
dB

⇠ few ⇥ kpc
::::::::::::::
[18–21, 29, 30].

:
WDM and FDM

both yield smoother structures than CDM on scales be-
low few kpc, due to either thermal motion (WDM) [23]
or quantum pressure (FDM)

:::
[18]. The existence of dwarf

galaxies in dark matter halos with masses of ⇠ 109 times
the mass of the sun (M�) in the local Universe, as well as
measurements of the ‘lumpiness’ of the dark matter dis-
tribution, constrain WDM and FDM theories, favoring

particle masses above m
WDM

⇠ 3 keV and m ⇠ 10�22 eV
respectively [31]

:::::::
[31, 32]. However, for FDM these con-

straints can only be used as guidelines, being based on
simulations that ignore the impact of wave e↵ects on
baryons.
The first objects in the Universe o↵er a unique way

to tighten the observational constraints. Compared to
the local Universe, in which galaxies in

:::::::
1011 M�:

dark
matter halos of 1011 M� are typical, an early CDM uni-
verse (at redshift z ⇠ 30when the Universe is

:
,
::::
i.e.,

108 years old
::::
after

:::
the

::::
Big

:::::
Bang) is populated by much

smaller nearly-spherical halos of ⇠ 105�107 M� in which
proto-galaxies are born [33]. In contrast, the

:::::
WDM

:
first

star-forming structures in WDM form later and are fila-
mentary due to the initial suppression of the dark matter
power spectrum by particle free-streaming [34, 35]. Com-
pared to WDM, wavelike FDM additionally features in-
terference patterns and soliton coreson kpc scales, as is

Mocz, +MA, et. al (2019)

“usual” cold  
dark matter

warm  
dark matter

“fuzzy” 
dark matter

implications 



Pre-thermalization production of dark matter 
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FIG. 1. Upper panel: The evolution of the inflaton field � (black curve) and its relativistic decay products � (gray shading).
The time t

end

denotes the end of inflation, t
th

is the time of full thermalization of �, and t
reh

denotes the end of reheating
when the inflaton decays almost entirely to �. After t

reh

, the universe becomes radiation dominated. Dark matter � can be
produced from � for t > t

end

in the non-thermal and thermal phases. Lower panel: Di↵erent paths to the observed dark matter
abundance. For a production cross section �(E) / En, the production of � from thermal � dominates for 2 � n (gray), while
the production of � from non-thermal � dominates for n > 2 (black). The n > 2 case is sensitive to the earliest stages at the
end of inflation.

A schematic summary of our results is shown in Fig. 1.
The upper panel shows the typical evolution of the in-
flaton field and its decay products (shown as a shaded
background), starting from the slow roll of � in the in-
flationary era, continuing through the reheating epoch,
dominated by the pressureless oscillation of �, and fin-
ishing in the radiation dominated era. Note the finite
non-thermal epoch, spanning times between the end of
inflation at t

end

and the time of formation of a fully ther-
malized background at t

th

. The lower panel shows the
evolution of the DM yield in freeze-in models as a func-
tion of n in (2) For n < �1 the cross section favors lower
energies, and the bulk of the DM is produced around the
time it becomes non-relativistic. For 2 � n > �1, the
production is enhanced at higher energies, but this en-
hancement cannot compete against the dilution due to
the decay of the inflaton, and as a result the population
created around t

reh

dominates. For n > 2, the DM pop-
ulation produced by the non-thermal particles survives
after the end of reheating and constitutes the majority
of the DM particles.

We next consider the pre-thermalization epoch in de-
tail. The treatment is mostly analytic. Numerical calcu-
lations for specific models are done in section III.

II. PRE-THERMALIZATION PARTICLE
PRODUCTION

The transfer of the energy density stored in the inflaton
field to its decay products during perturbative reheating
can be approximated by the following set of equations,

⇢̇� + 3H⇢� + ��⇢� = 0 , (6)

⇢̇� + 4H⇢� � ��⇢� = 0 , (7)

⇢� + ⇢� = 3M2

PH
2 , (8)

where we denote by ⇢� and ⇢� the energy densities of
the inflaton condensate and that of its relativistic decay
products, respectively. Since we are interested in a freeze-
in scenario, we implicitly assume that the contribution of
DM particles to ⇢� is negligible. We also assume that no
direct decay channel of the inflaton to DM is available.

A. Before Thermalization of �

In the very earliest stages of reheating, ��(t�t
end

) ⌧ 1
where the subscript “end” denotes the end of inflation,
the thermalization of the inflaton decay products will be
at best incomplete. In the limit in which the created
particles are not interacting, we can then approximate

M. Garcia and MA arXiv:1806.01865



“Hubble Tension” resolution  
— some novel implications
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