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synopsis 
(results more general than end of inflation)

theoretical/numerical results obs. implications

1. instability in oscillating fields

2. formation of solitons (oscillons)

3. eq. of state (with & without solitons)

2. gravitational waves

3. structure formation*

1. expansion history

+ some novel connections to 
axions, early dark energy & condensed matter systems



what we “know” about inflation

Planck Collaboration: Cosmological parameters
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Fig. 21. Left: Constraints on the tensor-to-scalar ratio r0.002 in the ⇤CDM model, using Planck TT+lowP and Planck
TT+lowP+lensing+BAO+JLA+H0 (red and blue, respectively) assuming negligible running and the inflationary consistency rela-
tion. The result is model-dependent; for example, the grey contours show how the results change if there were additional relativistic
degrees of freedom with �Ne↵ = 0.39 (disfavoured, but not excluded, by Planck). Dotted lines show loci of approximately con-
stant e-folding number N, assuming simple V / (�/mPl)p single-field inflation. Solid lines show the approximate ns–r relation for
quadratic and linear potentials to first order in slow roll; red lines show the approximate allowed range assuming 50 < N < 60 and
a power-law potential for the duration of inflation. The solid black line (corresponding to a linear potential) separates concave and
convex potentials. Right: Equivalent constraints in the ⇤CDM model when adding B-mode polarization results corresponding to the
default configuration of the BICEP2/Keck Array+Planck (BKP) likelihood. These exclude the quadratic potential at a higher level
of significance compared to the Planck-alone constraints.

limited by cosmic variance of the dominant scalar anisotropies,
and it is also model dependent. In polarization, in addition to B-
modes, the EE and T E spectra also contain a signal from tensor
modes coming from reionization and last scattering. However,
in this release the addition of Planck polarization constraints at
` � 30 do not significantly change the results from temperature
and low-` polarization (see Table 5).

Figure 21 shows the 2015 Planck constraint in the ns–r plane,
adding r as a one-parameter extension to base ⇤CDM. Note that
for base ⇤CDM (r = 0), the value of ns is

ns = 0.9655 ± 0.0062, Planck TT+lowP. (38)

We highlight this number here since ns, a key parameter for in-
flationary cosmology, shows one of the largest shifts of any pa-
rameter in base ⇤CDM between the Planck 2013 and Planck
2015 analyses (about 0.7�). As explained in Sect. 3.1, part of
this shift was caused by the ` ⇡ 1800 systematic in the nominal-
mission 217 ⇥ 217 spectrum used in PCP13.

The red contours in Fig. 21 show the constraints from Planck
TT+lowP. These are similar to the constraints shown in Fig. 23
of PCP13, but with ns shifted to slightly higher values. The ad-
dition of BAO or the Planck lensing data to Planck TT+lowP
lowers the value of ⌦ch2, which at fixed ✓⇤ increases the small-
scale CMB power. To maintain the fit to the Planck tempera-
ture power spectrum for models with r = 0, these parameter
shifts are compensated by a change in amplitude As and the tilt
ns (by about 0.4�). The increase in ns to match the observed
power on small scales leads to a decrease in the scalar power
on large scales, allowing room for a slightly larger contribution

from tensor modes. The constraints shown by the blue contours
in Fig. 21, which add Planck lensing, BAO, and other astrophys-
ical data, are therefore tighter in the ns direction and shifted to
slightly higher values, but marginally weaker in the r-direction.
The 95 % limits on r0.002 are

r0.002 < 0.10, Planck TT+lowP, (39a)
r0.002 < 0.11, Planck TT+lowP+lensing+ext, (39b)

consistent with the results reported in PCP13. Note that we as-
sume the second-order slow-roll consistency relation for the ten-
sor spectral index. The result in Eqs. (39a) and (39b) are mildly
scale dependent, with equivalent limits on r0.05 being weaker by
about 5 %.

PCP13 noted a mismatch between the best-fit base ⇤CDM
model and the temperature power spectrum at multipoles ` <⇠ 40,
partly driven by the dip in the multipole range 20 <⇠ ` <⇠ 30. If
this mismatch is simply a statistical fluctuation of the ⇤CDM
model (and there is no compelling evidence to think otherwise),
the strong Planck limit (compared to forecasts) is the result of
chance low levels of scalar mode confusion. On the other hand if
the dip represents a failure of the ⇤CDM model, the 95 % limits
of Eqs. (39a) and (39b) may be underestimates. These issues are
considered at greater length in Planck Collaboration XX (2015)
and will not be discussed further in this paper.

As mentioned above, the Planck temperature constraints on
r are model-dependent and extensions to ⇤CDM can give sig-
nificantly di↵erent results. For example, extra relativistic de-
grees of freedom increase the small-scale damping of the CMB
anisotropies at a fixed angular scale, which can be compensated
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end of inflation
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• shape of the potential (self couplings) 

• couplings to other fields

V (�) / |�|2n

|�| ⇠ M

flattened potential �p<2
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Fig. 21. Left: Constraints on the tensor-to-scalar ratio r0.002 in the ⇤CDM model, using Planck TT+lowP and Planck
TT+lowP+lensing+BAO+JLA+H0 (red and blue, respectively) assuming negligible running and the inflationary consistency rela-
tion. The result is model-dependent; for example, the grey contours show how the results change if there were additional relativistic
degrees of freedom with �Ne↵ = 0.39 (disfavoured, but not excluded, by Planck). Dotted lines show loci of approximately con-
stant e-folding number N, assuming simple V / (�/mPl)p single-field inflation. Solid lines show the approximate ns–r relation for
quadratic and linear potentials to first order in slow roll; red lines show the approximate allowed range assuming 50 < N < 60 and
a power-law potential for the duration of inflation. The solid black line (corresponding to a linear potential) separates concave and
convex potentials. Right: Equivalent constraints in the ⇤CDM model when adding B-mode polarization results corresponding to the
default configuration of the BICEP2/Keck Array+Planck (BKP) likelihood. These exclude the quadratic potential at a higher level
of significance compared to the Planck-alone constraints.

limited by cosmic variance of the dominant scalar anisotropies,
and it is also model dependent. In polarization, in addition to B-
modes, the EE and T E spectra also contain a signal from tensor
modes coming from reionization and last scattering. However,
in this release the addition of Planck polarization constraints at
` � 30 do not significantly change the results from temperature
and low-` polarization (see Table 5).

Figure 21 shows the 2015 Planck constraint in the ns–r plane,
adding r as a one-parameter extension to base ⇤CDM. Note that
for base ⇤CDM (r = 0), the value of ns is

ns = 0.9655 ± 0.0062, Planck TT+lowP. (38)

We highlight this number here since ns, a key parameter for in-
flationary cosmology, shows one of the largest shifts of any pa-
rameter in base ⇤CDM between the Planck 2013 and Planck
2015 analyses (about 0.7�). As explained in Sect. 3.1, part of
this shift was caused by the ` ⇡ 1800 systematic in the nominal-
mission 217 ⇥ 217 spectrum used in PCP13.

The red contours in Fig. 21 show the constraints from Planck
TT+lowP. These are similar to the constraints shown in Fig. 23
of PCP13, but with ns shifted to slightly higher values. The ad-
dition of BAO or the Planck lensing data to Planck TT+lowP
lowers the value of ⌦ch2, which at fixed ✓⇤ increases the small-
scale CMB power. To maintain the fit to the Planck tempera-
ture power spectrum for models with r = 0, these parameter
shifts are compensated by a change in amplitude As and the tilt
ns (by about 0.4�). The increase in ns to match the observed
power on small scales leads to a decrease in the scalar power
on large scales, allowing room for a slightly larger contribution

from tensor modes. The constraints shown by the blue contours
in Fig. 21, which add Planck lensing, BAO, and other astrophys-
ical data, are therefore tighter in the ns direction and shifted to
slightly higher values, but marginally weaker in the r-direction.
The 95 % limits on r0.002 are

r0.002 < 0.10, Planck TT+lowP, (39a)
r0.002 < 0.11, Planck TT+lowP+lensing+ext, (39b)

consistent with the results reported in PCP13. Note that we as-
sume the second-order slow-roll consistency relation for the ten-
sor spectral index. The result in Eqs. (39a) and (39b) are mildly
scale dependent, with equivalent limits on r0.05 being weaker by
about 5 %.

PCP13 noted a mismatch between the best-fit base ⇤CDM
model and the temperature power spectrum at multipoles ` <⇠ 40,
partly driven by the dip in the multipole range 20 <⇠ ` <⇠ 30. If
this mismatch is simply a statistical fluctuation of the ⇤CDM
model (and there is no compelling evidence to think otherwise),
the strong Planck limit (compared to forecasts) is the result of
chance low levels of scalar mode confusion. On the other hand if
the dip represents a failure of the ⇤CDM model, the 95 % limits
of Eqs. (39a) and (39b) may be underestimates. These issues are
considered at greater length in Planck Collaboration XX (2015)
and will not be discussed further in this paper.

As mentioned above, the Planck temperature constraints on
r are model-dependent and extensions to ⇤CDM can give sig-
nificantly di↵erent results. For example, extra relativistic de-
grees of freedom increase the small-scale damping of the CMB
anisotropies at a fixed angular scale, which can be compensated
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end of inflation in “simple” models

� , �

• shape of the potential (self couplings) 

• couplings to other fields

V (�) / |�|2n

|�| ⇠ M
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where potential flattens

flattened potential �p<2
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 See P. Adshead’s talk about very strong coupling to gauge fields



instability of oscillating fields
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instabilities in an expanding universe
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Figure 2. The instability bands and the magnitude of the Floquet exponent (in units of the field dependent
e↵ective mass m(�̄)) are shown as functions of the oscillating condensate amplitude and the dimensionless physical
wavenumber  = k/am. The white lines indicate how a given co-moving wavenumber passes through the instability
bands as the universe expands.

Linear Instability Analysis — At the end of infla-
tion, the homogeneous inflaton condensate �̄ starts
oscillating around the minimum of its potential. In
the presence of any perturbations, such homoge-
neous oscillations are unstable: they lead to a rapid
growth in field perturbations ��(t,x ), or equiva-
lently, to non-adiabatic particle production [22–25].

A useful way of characterizing the e�ciency of
particle production is as follows. First, let us ignore
expansion. Floquet theory tells us that the gen-
eral solution for the field perturbations in Fourier
space is of the form ��

k

/ exp(±µkt), where µk is
the Floquet exponent. If <(µk) 6= 0, then there is
an ‘unstable’ solution growing exponentially with
time. In general, any nonlinearity in V (�) will
lead to resonant particle production. The real part
of the Floquet exponent, which characterizes the
particle production rate, is shown in Fig. 2 as a
function of the amplitude of the oscillating con-
denstate and the physical wavenumber  ⌘ k/am

(with a = 1). Note that we have expressed k and
µk in units of a field/time dependent e↵ective mass

scale: m2 ⌘ 2n⇤2 (⇤/M)2
�
�̄/M

�
2(n�1)

. This e↵ec-
tive mass scale m2 ⇡ @

¯�V/�̄ when �̄ ⌧ M and is
what sets the period of �̄.

The expansion of the universe can now be in-
corporated qualitatively. The amplitude of the
inflaton field oscillating in V / |�|2n decays as
�̄ / a�3/(n+1), and the dimensionless wavenumber
scales as  / a�2(2�n)/(1+n). Hence a given Fourier
mode flows through a number of Floquet bands as
shown in Fig. 2. Heuristically, the mode will grow
if the expansion rate H is much less than |<(µk)|.
Strong resonance occurs for |<(µk)|/H ⇠> O[10].

For the lowest-k band (k/am near 0):

[|<(µk)|/H]0
max

= f(n)(mPl/M), (1)

where f(n) . O[1] with a very weak dependence
on n for moderate values of n. It is M/mPl that
controls whether there is e�cient self-resonance
at low wave-numbers. In particular, for M .
2.5 ⇥ 10�2mPl, the fluctuations grow rapidly and
become energetically comparable to the homoge-
neous condensate. They backreact on the conden-
sate, leading to its complete fragmentation.

When the initial fragmentation is ine�cient
(M & 2.5 ⇥ 10�2mPl), the higher order instabil-
ity bands can play an important role. Compared
to the band near k = 0, the bands at higher k are
narrower, and < (µk) is typically smaller. However,
these narrow bands can lead to fragmentation of the
condensate at late times for two reasons. First, in
these bands

[<(µk)/H]1 / mPl/|�̄| |�̄| ⌧ M . (2)

Furthermore, the modes tend to spend a lot of
time in these narrow bands. This e↵ect can be
understood by considering the white flow lines in
Fig. 2. The flow lines cross the first narrow band
from right to left (n < 2), left to right (n > 2),
or never leave it (n = 2). The narrow resonance
will clearly persist until non-linear e↵ects become
important in the n = 2 case. Upon closer inspec-
tion, the same holds for the n < 2 and n > 2 cases
as well. For these two cases, |̇| ⇠ H. Since H

is decreasing, at some point a given k-mode will
spend su�cient time within the narrow band for
fluctuations to grow substantially. This eventually
leads to backreaction on the condensate and



result 1: instability in oscillating fields 

oscillating, cosmologically relevant, (almost) 
homogeneous scalar fields are often unstable to 
spatial perturbations

* there are timescales associated with the instability, typically the longest is Hubble time scale

Khlopov, Malomed, Zeldovich (1985)



what drives the instabilities ?

• self-interactions
- fields can cluster/become inhomogeneous
- (can be) much faster than Hubble (due to self-resonance)

• gravity 
- fields cluster, Hubble time scales 

*for this talk, I will ignore interactions with other fields, which can also be important.
Kofman, Linde, Starobinsky (1994/97)

MA, Kaiser, Karouby, Herzberg [1410.3808]Review :

V (�) / �2

�2

Khlebnikov & Tkachev (1996), Bellido & Linde (1997)
Shatnov, Traschen & Brandenburger (1990/95) 

Early Works :

gravity only: Gilmore, Flauger & Easther (2012)



instability — formation of oscillons  
(non-topological “solitons” in real scalar fields)

⇤� = V 0(�)

expansion

self-interactions

gravitational int.
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          MA (2010) 
1006.3075



insensitive to initial conditions

simulation of  “quasi-thermal” example in Farhi, Guth, Iqbal, Graham 2008



oscillon formation at the end of inflation

MA, Easther, Finkel, Flauger & Hertzberg (2011) 

0.25H�1
end

expansion

self-interactions

gravitational int.

1106.3335 



solitons ?

(1) oscillatory (2) spatially localized (3) very long lived

Bogolubsky & Makhankov (1976), Gleiser (1994), Copeland, Gleiser and Mueller et al. (1995) …

osci
llon!

For example:
Segur & Kruskal (1987)
MA & Shirokoff (2010)
Hertzberg (2011)
MA (2013)
Mukaida et. al (2016)
Salmi & Hindmarsh (2014)
Sakstein & Trodden (2018)



lifetimes (without gravity)
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m2M2

2
tanh2

✓
�

M

◆

V (�) = m2M2

"r
1 +

�2

M2
� 1

#

V (�) = m2M2


1� cos

�

M

�

T
max

⇠ 106 m�1

T
max
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Zhang, MA, Copeland, Saffin, Lozanov (in progress)



family of scalar field solitons
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1. oscillons dominate 
the energy density 
of the field 

2. eq. of state w = 0 

oscillon formation at the end of inflation

expansion

self-interactions

gravitational int.



long term dynamics ?

expansion

self-interactions

gravitational int.

assuming coupling to other fields is sufficiently weak



self-interactions  
+ gravity*  

(Schrodinger-Poisson)

MA & Mocz (2019)
1902.07261

self interaction more important than gravity initially

expansion

self-interactions

gravitational int.

relativistic? 

qualitative comparison 
with relativistic system
Lozanov & MA (2019) 1902.06736
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gravitational clustering of solitons
7

IX. GRAVITATIONAL CLUSTERING

For � ⌧ 1, gravitational clustering is expected to be-
come important at late times (significantly after the soli-
tons have formed, see eq. (12)). At these late times,
this universe essentially behaves as a matter dominated
universe (a(t) / t2/3), with solitons becoming our new
non-relativistic dust particles on scales much larger than
their size. As a result, our zeroth order expectation is
that the gravitational clustering of these solitons should
proceed in a manner similar to dust in an expanding uni-
verse. Moreover, we can ignore non-gravitational forces
between the solitons at separations much larger than 2re

because we expect them to be Yukawa-like, with the force
falling away exponentially with separation.13

We construct the two point correlation function of soli-
ton locations obtained from our simulations to quantita-
tively investigate the e↵ects of gravitational clustering.
In Fig. 5, we show the two-point correlation function of
the solitons, calculated with the Landy-Szalay estimator
[52, 53]:

⇠
LS

(r) =
DD

RR
� N � 1

N
DR

RR
+ 1 , (19)

where there are N solitons (the data D), and N uniform
randomly chosen points R, and RR is the number of soli-
ton pairs in a given co-moving radial separation bin, RR
is the mean count for the random points over several re-
alization R, and DR is the cross-correlation statistic.

As seen in Fig. 5, the measured two point correlation
function is the same for the case with and without gravi-
tational interactions at early times soon after soliton for-
mation (a . 4). The distribution is close to Poissonian
on large scales: ⇠

LS

(r & 10) ⇡ 0. However, the co-moving
scale r

nl

⇠ k�1

nl

which is the typical separation of solitons
when they first form manifests itself in a negative corre-
lation function on small scales (we find very few solitons
with separations less than k�1

nl

).
If we allow for gravitational interactions, solitons begin

to cluster. This clustering can be quantified in our simu-
lations at late times as excess power in ⇠

LS

(for a & 10).
Consistent with clustering of point particles in a matter
dominated universe starting with uncorrelated positions
[54], we find

⇠
LS

(r) / 1

r2

, (20)

where r is a co-moving separation. Fitting the model
⇠
LS

/ a↵r� for our 6 simulations in the range of a = 10

self-interaction potential), which also showed that the above sta-
bility criterion correctly predicted the survival of large amplitude
oscillons in simulations. We further note that three dimensional
oscillons in Sine-Gordon potentials (for axions, but without grav-
ity) are not stable and have a relatively short lifetime, compared
to flattened potentials [49, 50]. Also see the Appendix.

13 This is also reminiscent of the force between solitons as analyzed
by [51].

[co-moving separation]

/ r�2

FIG. 5. The two point correlation function of soliton loca-
tions with and without the inclusion of gravitational interac-
tions. At early times, the correlation function with and with-
out gravity agree with each other. However, at late times
gravitational clustering ⇠

LS

(r) / r�2 is clearly visible for the
a = 16 and a = 20 cases in the above figure.

to a = 20, we find: ↵ = 1.7 ± 0.3, � = �2.1 ± 0.2. It
would be interesting to explore this clustering further in
detail, since it might reveal di↵erences from the point
particle case at late times.

X. STRONG SOLITON INTERACTIONS

Self-gravity plays the important role of bringing soli-
tons together at late times (i.e., significantly after their
formation), and allows them to interact.14 Fig. 6 shows
three di↵erent types of interactions that are achieved
from our cosmological initial conditions.

1. Solitons “repel/bounce o↵” each other when the
relative phase of the interacting solitons |✓

1

�✓
2

| ⇡
⇡ where  a(t,x) =  a(x)e�i(⌫at+✓a) with a = 1, 2.
The repulsive interactions lead to some of the
largest post interaction kicks to our solitons. We
observe some solitons zooming across our simula-
tion volume.

2. A few solitons merge to form more massive solitons
(typically when the relative phase is ⇠ 0), resulting
in a change in number density of solitons. Such in-
teractions are typically accompanied by generation
of a burst of scalar waves as the solitons settle into
new configurations.

3. A small fraction of solitons form orbiting binaries.

14 There are interactions at early times when gravity is ignored as
well, but not so at late times in our simulations.

*theoretical arguments for r-2 in Saslaw 1980

consistent with nonlinear 
clustering of “point” masses

*we don’t fully understand the velocity distribution



strong interactionsphase dependent interactions
m

er
ge

r
bo

un
ce

“b
in

ar
y”

|✓1 � ✓2| ' ⇡

|✓1 � ✓2| ' 0

 a(t,x) =  a(x)e
�i⌫at+✓a

� / <[ ]



result 2: oscillon formation (solitons)

resonant growth

�

V (�)

�2

�↵<2

� ⇠ M ⌧ mpl

1.oscillons dominate the energy density

2.they cluster gravitationally

3. can undergo complex scattering



so far, quadratic minima with wings …

� , �

• shape of the potential (self couplings) 

• couplings to other fields

V (�) / |�|2n

|�| ⇠ M

quadratic minimum

flattened potential �p<2

V (�) / �2



non-quadratic, power-law minima ?

� , �

• shape of the potential (self couplings)

• couplings to other fields

V (�) / |�|2n

|�| ⇠ M

power law at the minimum

flattened potential
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Fig. 21. Left: Constraints on the tensor-to-scalar ratio r0.002 in the ⇤CDM model, using Planck TT+lowP and Planck
TT+lowP+lensing+BAO+JLA+H0 (red and blue, respectively) assuming negligible running and the inflationary consistency rela-
tion. The result is model-dependent; for example, the grey contours show how the results change if there were additional relativistic
degrees of freedom with �Ne↵ = 0.39 (disfavoured, but not excluded, by Planck). Dotted lines show loci of approximately con-
stant e-folding number N, assuming simple V / (�/mPl)p single-field inflation. Solid lines show the approximate ns–r relation for
quadratic and linear potentials to first order in slow roll; red lines show the approximate allowed range assuming 50 < N < 60 and
a power-law potential for the duration of inflation. The solid black line (corresponding to a linear potential) separates concave and
convex potentials. Right: Equivalent constraints in the ⇤CDM model when adding B-mode polarization results corresponding to the
default configuration of the BICEP2/Keck Array+Planck (BKP) likelihood. These exclude the quadratic potential at a higher level
of significance compared to the Planck-alone constraints.

limited by cosmic variance of the dominant scalar anisotropies,
and it is also model dependent. In polarization, in addition to B-
modes, the EE and T E spectra also contain a signal from tensor
modes coming from reionization and last scattering. However,
in this release the addition of Planck polarization constraints at
` � 30 do not significantly change the results from temperature
and low-` polarization (see Table 5).

Figure 21 shows the 2015 Planck constraint in the ns–r plane,
adding r as a one-parameter extension to base ⇤CDM. Note that
for base ⇤CDM (r = 0), the value of ns is

ns = 0.9655 ± 0.0062, Planck TT+lowP. (38)

We highlight this number here since ns, a key parameter for in-
flationary cosmology, shows one of the largest shifts of any pa-
rameter in base ⇤CDM between the Planck 2013 and Planck
2015 analyses (about 0.7�). As explained in Sect. 3.1, part of
this shift was caused by the ` ⇡ 1800 systematic in the nominal-
mission 217 ⇥ 217 spectrum used in PCP13.

The red contours in Fig. 21 show the constraints from Planck
TT+lowP. These are similar to the constraints shown in Fig. 23
of PCP13, but with ns shifted to slightly higher values. The ad-
dition of BAO or the Planck lensing data to Planck TT+lowP
lowers the value of ⌦ch2, which at fixed ✓⇤ increases the small-
scale CMB power. To maintain the fit to the Planck tempera-
ture power spectrum for models with r = 0, these parameter
shifts are compensated by a change in amplitude As and the tilt
ns (by about 0.4�). The increase in ns to match the observed
power on small scales leads to a decrease in the scalar power
on large scales, allowing room for a slightly larger contribution

from tensor modes. The constraints shown by the blue contours
in Fig. 21, which add Planck lensing, BAO, and other astrophys-
ical data, are therefore tighter in the ns direction and shifted to
slightly higher values, but marginally weaker in the r-direction.
The 95 % limits on r0.002 are

r0.002 < 0.10, Planck TT+lowP, (39a)
r0.002 < 0.11, Planck TT+lowP+lensing+ext, (39b)

consistent with the results reported in PCP13. Note that we as-
sume the second-order slow-roll consistency relation for the ten-
sor spectral index. The result in Eqs. (39a) and (39b) are mildly
scale dependent, with equivalent limits on r0.05 being weaker by
about 5 %.

PCP13 noted a mismatch between the best-fit base ⇤CDM
model and the temperature power spectrum at multipoles ` <⇠ 40,
partly driven by the dip in the multipole range 20 <⇠ ` <⇠ 30. If
this mismatch is simply a statistical fluctuation of the ⇤CDM
model (and there is no compelling evidence to think otherwise),
the strong Planck limit (compared to forecasts) is the result of
chance low levels of scalar mode confusion. On the other hand if
the dip represents a failure of the ⇤CDM model, the 95 % limits
of Eqs. (39a) and (39b) may be underestimates. These issues are
considered at greater length in Planck Collaboration XX (2015)
and will not be discussed further in this paper.

As mentioned above, the Planck temperature constraints on
r are model-dependent and extensions to ⇤CDM can give sig-
nificantly di↵erent results. For example, extra relativistic de-
grees of freedom increase the small-scale damping of the CMB
anisotropies at a fixed angular scale, which can be compensated
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dynamics in different power law minima
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result 3: “equation-of-state”

the spatially averaged equation-of-state of fields

- (n = 1) quadratic minima        w = 0 
- (n > 1) non-quadratic minima w = 1/3 (after sufficient time)

V (�) / |�|2n

|�| ⇠ M

power law at the minimum

Lozanov & MA (2016/17)

1608.01213, 1710.06851 

µk/H / ��1why?



eq. of state & CMB observables
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reduction in uncertainty

V (�) / |�|2n

|�| ⇠ M

4

Figure 4. A summary for the asymptotic equation of
state without coupling to additional fields. The nu-
merical results from lattice simulations are shown as
green circles for M ⇡ 2.45mPl, and orange squares for
M ⇡ 7.75 ⇥ 10�3mPl. The dotted blue line is the ex-
pectation from a homogeneous, oscillating condensate.

the transients decay, the inflaton is completely
fragmented with almost no energy remaining in the
homogeneous condensate. The field configuration
now evolves freely in a turbulent manner (as
discussed for n = 2 in [29]). Numerically, we find
that the kinetic and gradient energies are approxi-
mately equal to each other and much greater than
the potential energy, implying w ! 1/3 (cf. Fig.
3), and that the field is virialized in the sense that
h�̇2/2i

s,t

= h(r�)2/2a2i
s,t

+ nhV i
s,t

holds. We
can then get an estimate of the deviation of w

from 1/3: w � 1/3 ! (2/3)(n � 2)⇥ the fraction
of energy density in the potential energy. For
ine�cient initial resonance M & 2.5⇥10�2mPl and
n = 1, we observe initially some small excitations
of the modes near k = 0 due to the broad band
which is eventually shut o↵ by expansion. The
condensate energy is redshifted as a�3, slower than
the gradient energy (a�4). Hence, the fluctuations
become ever smaller, and the oscillating condensate
determines the equation of state, yielding w = 0.
For n > 1, after initial particle production is shut
o↵ the condensate energy decays as a�6n/(n+1),
whereas the gradient energy stored in field fluctu-
ations decays as a�4 (i.e. like radiation) until the
first narrow resonance band becomes important
and particles are again produced. This second
phase of particle production in a narrow k band is
expected from our Floquet analysis and confirmed
by our lattice simulations. Subsequent evolution
includes a shifting of this peak towards higher

(n < 2) or lower (n > 2) co-moving momenta as
expected from the flow lines in the Floquet anal-
ysis. This is followed by the generation of a series
of secondary peaks from nonlinear scattering (for
n = 2, see [30]). Eventually the growth is shut o↵
by backreaction. All the peaks smear out, whereas
the remnant condensate continues to oscillate with
slowly decaying amplitude, continuing its particle
production. After su�ciently long times, we find
that the kinetic and gradient energies are approxi-
mately equal and much greater than the potential
energy with the field again virialized. This yields
an equation of state parameter w ⇡ 1/3. Note that
the n = 2 case would yield w = 1/3 for the homo-
geneous and inhomogeneous field. A summary of
the asymptotic equation of state is shown in Fig. 4.

e-folds to Radiation Domination — Our linear
analysis of the instabilities allows us to estimate
the number of e-folds after inflation required to
reach radiation domination, �N

rad

⌘ R arad

aend
d ln a,

by calculating the time of backreaction of the fluc-
tuations. First, note that for n = 2, �N

rad

⌧ 1
since in this case w ! 1/3 with and without
fragmentation. For all other n & 1, the universe
becomes radiation dominated within

�N
rad

⇠
8
<

:

1 M . 10�2mPl ,
n + 1

3
ln

✓


�

10M

m
Pl

◆
M & 10�2mPl .

(5)
Here, �/ ⇠ 10�2 is the fractional width of the

first k 6= 0 narrow resonance band (cf. Fig. 2).
Note that �/ becomes vanishingly small as n !
1 (and n � 2), leading to �N

rad

� 1. These
estimates are confirmed by our lattice simulations
(see Fig. 3).

We emphasize that w ! 1/3 can be achieved
without coupling to other fields for all n & 1.
When coupling to other massless fields is included,
�N

rad

is reduced further. Thus the above calcu-
lated �N

rad

should be taken as an upper bound on
�N

rad

. Using these results, we can calculate the
expected values of the tensor-to-scalar ratio r and
the spectral index n

s

for di↵erent values of M and
n, even including the uncertainty from couplings
to additional light fields (see Fig. 5, we use a pivot
scale k? = 0.002 Mpc�1). The solid black lines use
�N

rad

calculated above, whereas the width of the
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FIG. 2. Formation of oscillons after inflation and their persistence. In each row we show the histograms of the energy
density, ⇢, Newtonian potential, �, and the gravitational acceleration, g, across the simulation box at �N e-folds
after the end of inflation (in each column, later times are at the bottom). The orange contours, in the snapshots of
the simulation box in the last column, are drawn around regions of overdensity � 5. This is for the T-model with
n = 1, M =

p
6↵mPl, ↵ = 10�5. The vertical dashed line is at gR = �� = 10(M/mPl)

2 – the approximate prediction
for the Newtonian potential on the oscillon surface of radius R. Since oscillons are spherical, localized objects, g
should be maximal near their surfaces. It agrees with the observed maximal value of g within the simulation box.

Gravitational field:
In the third column of Fig. 2, we show the evolution
of histograms of the gravitational field (equivalently,
acceleration). If the oscillons had a uniform spheri-
cally symmetric density up to radius R, then g / r
for r < R and g / r�2 for r > R, where r is the
distance from the oscillon core. Hence, the maximal
g will be on the surface of the oscillons. Our oscil-
lons do not have an exactly uniform density, but we
still expect that the maximal g in the histograms
will come from regions close to the oscillon surfaces.
This maximal value was estimated in eq. (12) and is

represented by a vertical dashed line; it again agrees
with the values from the numerical simulations.

Let us re-iterate the main takeaway from this sub-
section. Since oscillons do not form e�ciently for
M & 10�2mPl, the gravitational potential on the
surfaces of individual objects is bound to be
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Oscillons do not gravitate strongly, justifying the
linear treatment of metric perturbations. Neverthe-
less, it will be interesting to study the stability of
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quantitative? 
gravitational clustering of solitons7

IX. GRAVITATIONAL CLUSTERING

For � ⌧ 1, gravitational clustering is expected to be-
come important at late times (significantly after the soli-
tons have formed, see eq. (12)). At these late times,
this universe essentially behaves as a matter dominated
universe (a(t) / t2/3), with solitons becoming our new
non-relativistic dust particles on scales much larger than
their size. As a result, our zeroth order expectation is
that the gravitational clustering of these solitons should
proceed in a manner similar to dust in an expanding uni-
verse. Moreover, we can ignore non-gravitational forces
between the solitons at separations much larger than 2re

because we expect them to be Yukawa-like, with the force
falling away exponentially with separation.13

We construct the two point correlation function of soli-
ton locations obtained from our simulations to quantita-
tively investigate the e↵ects of gravitational clustering.
In Fig. 5, we show the two-point correlation function of
the solitons, calculated with the Landy-Szalay estimator
[52, 53]:

⇠
LS

(r) =
DD

RR
� N � 1

N
DR

RR
+ 1 , (19)

where there are N solitons (the data D), and N uniform
randomly chosen points R, and RR is the number of soli-
ton pairs in a given co-moving radial separation bin, RR
is the mean count for the random points over several re-
alization R, and DR is the cross-correlation statistic.

As seen in Fig. 5, the measured two point correlation
function is the same for the case with and without gravi-
tational interactions at early times soon after soliton for-
mation (a . 4). The distribution is close to Poissonian
on large scales: ⇠

LS

(r & 10) ⇡ 0. However, the co-moving
scale r

nl

⇠ k�1

nl

which is the typical separation of solitons
when they first form manifests itself in a negative corre-
lation function on small scales (we find very few solitons
with separations less than k�1

nl

).
If we allow for gravitational interactions, solitons begin

to cluster. This clustering can be quantified in our simu-
lations at late times as excess power in ⇠

LS

(for a & 10).
Consistent with clustering of point particles in a matter
dominated universe starting with uncorrelated positions
[54], we find

⇠
LS

(r) / 1

r2

, (20)

where r is a co-moving separation. Fitting the model
⇠
LS

/ a↵r� for our 6 simulations in the range of a = 10

self-interaction potential), which also showed that the above sta-
bility criterion correctly predicted the survival of large amplitude
oscillons in simulations. We further note that three dimensional
oscillons in Sine-Gordon potentials (for axions, but without grav-
ity) are not stable and have a relatively short lifetime, compared
to flattened potentials [49, 50]. Also see the Appendix.

13 This is also reminiscent of the force between solitons as analyzed
by [51].

[co-moving separation]

/ r�2

FIG. 5. The two point correlation function of soliton loca-
tions with and without the inclusion of gravitational interac-
tions. At early times, the correlation function with and with-
out gravity agree with each other. However, at late times
gravitational clustering ⇠

LS

(r) / r�2 is clearly visible for the
a = 16 and a = 20 cases in the above figure.

to a = 20, we find: ↵ = 1.7 ± 0.3, � = �2.1 ± 0.2. It
would be interesting to explore this clustering further in
detail, since it might reveal di↵erences from the point
particle case at late times.

X. STRONG SOLITON INTERACTIONS

Self-gravity plays the important role of bringing soli-
tons together at late times (i.e., significantly after their
formation), and allows them to interact.14 Fig. 6 shows
three di↵erent types of interactions that are achieved
from our cosmological initial conditions.

1. Solitons “repel/bounce o↵” each other when the
relative phase of the interacting solitons |✓

1

�✓
2

| ⇡
⇡ where  a(t,x) =  a(x)e�i(⌫at+✓a) with a = 1, 2.
The repulsive interactions lead to some of the
largest post interaction kicks to our solitons. We
observe some solitons zooming across our simula-
tion volume.

2. A few solitons merge to form more massive solitons
(typically when the relative phase is ⇠ 0), resulting
in a change in number density of solitons. Such in-
teractions are typically accompanied by generation
of a burst of scalar waves as the solitons settle into
new configurations.

3. A small fraction of solitons form orbiting binaries.

14 There are interactions at early times when gravity is ignored as
well, but not so at late times in our simulations.

consistent with nonlinear 
clustering of “point” masses

implications
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also potential constraints from Neff from CMB S4



another example: Higgs - modulus system
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FIG. S4. Snapshots of the values of the Modulus (first row) and Higgs (second row) fields on a two-dimensional slice through
the simulation box at four di↵erent times. Around the time of backreaction, t ⇡ 23m�1 (second column), the Higgs field forms
domains (‘bubbles’) with � = ±p

2|�|f/q. They disappear within �t ⇠ 10m�1, due to collisions, as well as oscillations of the
remnant � condensate. The used parameters are b = 1, q = 102, M = 10�12m
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S2 Gravitational Waves and Lattice Simulations

1. Equations of Motion

We calculate the gravitational waves generated by the nonlinear field dynamics using

ḧTT
ij + 3HḣTT

ij � r2

a2

hTT
ij =

2

m2

pl

⇧TT
ij (S15)

where hTT
ij is the spatial, transverse, traceless part of the metric perturbations (gµ⌫ = gFRW

µ⌫ + hµ⌫), and ⇧TT
ij is the

transverse-traceless part of the energy momentum tensor of the fields which sources the gravitational waves. This is
a “passive calculation” where the (small) backreaction of the metric perturbations on the fields is ignored.

2. Characteristic Scales

Let us consider a gravitational wave generated at a = a
g

in the early universe with a co-moving wavenumber k.
By taking into account red-shifting due to expansion and conservation of entropy after thermalization, the frequency
today of this GW signal is

f
0

=
1

2⇡

k

a
0

=
1

2⇡

✓
k

a
g

H
g

◆p
H

g

H
0

✓
a
g

a
th

◆
(1�3w

mod

)/4

✓
g
th

g
0

◆�1/12

⌦1/4

r,0 , (S16)

where H
g

is the Hubble parameter of the universe at the time of generation of the gravitational waves, g
th

and g
0

are the e↵ective number of relativistic degrees of freedom at the epoch of thermalization (a
th

) and today (a
0

), ⌦
r,0 is

the fractional energy density in relativistic species today and w
mod

is the mean equation of state between generation
and thermalization (after which we assume a standard thermal history). We can parametrize the characteristic
wavenumber at which the gravitational waves are generated:
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electroweak symmetry breaking and early universe cos-
mology. It also motivates further studies on the potential
of gravitational wave probes for new physics beyond the
SM.

II A Simple Model A simplified potential captur-
ing the most salient features of a Higgs field, h, coupled
to a modulus, �, is

1

2
m2

��2 +
M2

f
(� � �

0

)

✓
h†h � v2

2

◆
+ �(h†h)2. (1)

The global minimum of the potential lies at � = 0, where
the potential becomes simply the Standard Model Higgs
potential. The constant v2 = M2�

0

/(�f). Placing the
minimum at � = 0 is a pure convention; in particular, �
carries no charges and can be shifted by a constant. We
take the mass scale M2 to be the natural value of the
Higgs mass and f to be the natural scale of the modulus
field �. That is, we suppose that quantum corrections to
the Higgs mass would be of order M2 and that generic
values � ⇠ f produce Higgs masses of this order.

The e↵ective Higgs boson mass

m2

h; e↵

(�) = M2

� � �
0

f
(2)

is positive at � � 0 and negative at � ⌧ 0, transitioning
through zero when � = �

0

. The SM Higgs mass parame-
ter is m2

h; e↵

(0) = �M2�
0

/f . In this model, the criterion
for fine tuning is

Fine tuning , � ⌘ f

�
0

� 1. (3)

In other words, it is an accident if the Higgs mass is zero
at the same point where the � potential is minimized; the
closer these two points, the more surprising the result.

We will mostly have in mind supersymmetric theories,
where this toy simplified potential can arise with M2 ⇠
m2

soft

as explained in § S4 2. We consider the hierarchy
|m2

h; e↵

(0)| ⌧ m2

� . M2 ⌧ f2. Terms we have neglected,

such as (m2

�/f2)�4 or 1

f2

�2@µ�@µ�, could have important

e↵ects on the dynamics (such as oscillon formation [10–
14]). We assume that the field � stays far from singular
points in field space for all relevant times. For now we
have omitted all modulus self-interactions for simplicity.

III Non-linear Dynamics In a tuned universe, the
modulus-Higgs field system can undergo explosive, non-
perturbative field dynamics leading to fragmentation of
the fields on short time scales (t ⌧ H�1), and yield a
non-trivial equation of state for a number of e-folds of
expansion following the fragmentation.

For � � 1, the e↵ective Higgs mass term oscillates
between very large positive and negative values due to
the oscillation of �. One expects such oscillations to

FIG. 2. The ratio of the spatially averaged energy density
in the Higgs and modulus fields as a function of time ob-
tained from our lattice simulations. This dynamics of energy
transfer between the modulus and Higgs fields is represen-
tative of the case where the modulus fragments, i.e. when
b ⌘ M4/2�f2m2

� ! 1. For the above plot we have chosen
b = 1, M2/m2

� = 102 and M/f = 10�12. The interaction
term is not included in the above energy densities.

lead to non-adiabatic, out-of-equilibrium production of
the Higgs particles. By considering tachyonic resonance
[15], and for f ⇠ �

in

⇠ m
pl

, the e�ciency of such particle
production is controlled by q ⌘ M2/m2

�. In particular,
q � 1 (as we assume) should lead to a broad range of
physical momenta for the produced Higgs particles (see
Fig. S3 in § S1).

E�cient transfer of energy from the modulus to the
Higgs field is countered by the Higgs self-interaction �.
Large self-interactions block Higgs production, whereas
at small � the Higgs field will be su�ciently populated
in non-zero momentum modes to backreact on the mod-
ulus, yielding a spatially inhomogeneous modulus (frag-
mentation). A more detailed view of the dynamics of the
modulus-Higgs system can be seen in Fig. S2 in § S1.

A Does the modulus fragment? The Higgs field
must be significantly populated in order to backreact on
the modulus and cause its fragmentation. Large q fa-
vors tachyonic resonance whereas large � limits the Higgs
field occupation numbers. We define the fragmentation
e�ciency parameter

b ⌘ M4

2�f2m2

�

, (4)

which incorporates both e↵ects to determine whether the
modulus field fragments. Note that b  1 from the
constraint that the combined modulus-Higgs potential is
positive definite. From detailed numerical simulations

time �!

m
o
d
u
l
u
s
:
�

H
ig
gs

:
h

non-trivial eq. of state : 1/4 . w . 1/3
stochastic gravitational waves

MA, J. Fan, K. Lozanov & M. Reece (2018) [1802.00444]

M4

2�f2m2
�

! 1 , rapid fragmentation

fine tuning , �0

f
⌧ 1



end of inflation & dark matter abundance?

Yes, If:

inflaton �! radiation  ! dark matter

* radiation is SM particles 

Can the abundance of dark matter depend on the non-thermal 
conditions at the end of inflation ?

* assuming only gravitational strength couplings between inflaton to dark matter

�(s) / sn n > 2

 arXiv:1806.01865

Garcia & MA (2018)
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inflation

hot thermal soup 
with nuclei

few minutes

There is a lot to learn here  
— theoretical progress and upcoming observations. 

CMB

400,000 years

14 billion years

?

106eV

10�1 eV



eV

MeV

TeV

inflation

1016 GeV

• inflation ends 
• populate the universe 

(reheating — Standard Model) ?
• matter-antimatter asymmetry ?
• dark matter ?
• EW symmetry breaking
• QCD phase transition 



generality & novel connections

๏ Axionic dark matter [Jens Neimeyer’s talk on Monday]

๏ Hubble tension ? [seeTristan Smith’s talk on Monday]

๏ Condensed matter solitons 

๏ Stochastic particle production (and connection to 
Anderson localization)

Reheating !
after inflation

Inflation

universe gets!
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for example:
Peccei & Quinn (1977)
Hogan & Reece (1988)
Kolb & Tkachev (1994) 
Hu, Barkana & Gruzinov (2000)
Marsh & Silk (2014)
Niemeyer & Engels (2016)
Hui et. al (2016)
Arvanitaki et. al (2009/19)

dark matter: 
axion-like fields

NATURE PHYSICS DOI: 10.1038/NPHYS2996 LETTERS

200 kpc 50 kpc

5 kpc

Core

101

103

105

Figure 2 | A slice of the density field of the  DM simulation on various
scales at z=0.1. This scaled sequence (each of thickness 60 pc) shows
how quantum interference patterns can be clearly seen everywhere from
the large-scale filaments, tangential fringes near the virial boundaries, to
the granular structure inside the haloes. Distinct solitonic cores with radii
⇠0.3–1.6kpc are found within collapsed haloes (which have virial masses
Mvir ⇠ 109˘1011 M�). The density shown here spans over nine orders of
magnitude, from 10�1 to 108 (normalized to the cosmic mean density). The
colour map scales logarithmically, with cyan corresponding to density .10.

giving rise to a co-moving Jeans length, �J / (1+z)1/4m�1/2
B , during

the matter-dominated epoch17. The insensitivity of �J to redshift, z ,
generates a sharp cuto�mass belowwhich structures are suppressed.
Cosmological simulations in this context turn out to be much
more challenging than standard N-body simulations, as the highest
frequency oscillations, !, given approximately by the matter wave
dispersion relation, ! /m�1

B �
�2, where � is the wavelength, occur

on the smallest scales, requiring very fine temporal resolution even
formoderate spatial resolution (Supplementary Fig. 1). In this work,
we optimize an adaptive-mesh-refinement (AMR) scheme, with
graphic processing unit acceleration, improving performance by
almost two orders of magnitude22 (see Supplementary Section 1
for details).

Figure 1 demonstrates that despite the completely di�erent
calculations employed, the pattern of filaments and voids generated
by a conventional N-body particle3CDM simulation is remarkably
indistinguishable from the wavelike 3 DM for the same linear
power spectrum (Supplementary Fig. 3). Here 3 represents the
cosmological constant. This agreement is desirable given the
success of standard 3CDM in describing the statistics of large-scale
structure. To examine the wave nature that distinguishes DM from
CDM on small scales, we re-simulate with a very high maximum
resolution of 60 pc for a 2 Mpc co-moving box, so that the densest
objects formed of &300 pc size are well resolved with ⇠103 grids. A
slice through this box is shown in Fig. 2, revealing fine interference
fringes defining long filaments, with tangential fringes near the
boundaries of virialized objects, where the de Broglie wavelengths
depend on the local velocity of matter. An unexpected feature of
our DMsimulations is the generation of prominent dense coherent
standing waves of dark matter in the centre of every gravitational
bound object, forming a flat core with a sharp boundary (Figs 2
and 3). These dark matter cores grow as material is accreted and
are surrounded by virialized haloes of material with fine-scale,
large-amplitude cellular interference, which continuously fluctuate
in density and velocity, generating quantum and turbulent pressure
support against gravity.

The central density profiles of all our collapsed cores fit well
the stable soliton solution of the Schrödinger–Poisson equation, as
shown in Fig. 3 (see also Supplementary Section 2 and Figs 2 and 4).
On the other hand, except for the lightest halo, which has just formed
and is not yet virialized, the outer profiles of other haloes possess a
steepening logarithmic slope, similar to the Navarro–Frenk–White
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〈
〉

106
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NFW

10−1 100
105

100 101 102
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108
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ρ
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Figure 3 | Radial density profiles of haloes formed in the  DMmodel.
Dashed lines with various symbols show six examples of the halo profiles
normalized to the cosmic mean density. All haloes are found to possess a
distinct inner core fitted extremely well by the soliton solution (solid lines).
A detailed soliton fit for the largest halo is inset, where the error is the root-
mean-square scatter of density in each radial bin. A Navarro–Frenk–White
(NFW) profile representing standard CDM is also shown for comparison
(black dot-dashed line, with a very large scale radius of 10kpc), which fits
well the profiles outside the cores. The yellow hatched area indicates the
⇢300 of the dSph satellites around the Milky Way3,24, which is consistent
with the majority of galaxy haloes formed in the  DM simulations.

(NFW) profile23 of standard CDM. These solitonic cores, which are
gravitationally self-bound and appear as additional mass clumps
superposed on the NFW profile, are clearly distinct from the cores
formed by WDM and collisional CDM, which truncate the NFW
cuspy inner profile at lower values and require an external halo for
confinement. The radius of the soliton scales inversely with mass,
such that the widest cores are the least massive and are hosted by the
least massive galaxies. Eighty percent of the haloes in the simulation
have an average density within 300 pc (defined as ⇢300) in the range
5.3⇥ 10�3–6.1⇥ 10�1 M�/pc3, consistent with the dSph satellites
around the Milky Way3,24, and objects like these are resilient to
close interaction with massive galaxies. By contrast, the very lowest
mass objects in our simulation have ⇢300 ⇠ 4.0⇥ 10�4 M�/pc3 and
Mvir ⇠108 M�, but exist only briefly as they are vulnerable to tidal
disruption by large galaxies in our simulations. Together with the
cuto� in the power spectrum at the Jeans scale (Supplementary
Fig. 3), this leads to a marked suppression of substructure below
a few times 108 M� relative to the prediction of standard CDM
(refs 8,9). A quantitative evaluation of the mass function of satellite
galaxies predicted by  DM with larger simulations is thus another
crucial test to be addressed.

The prominent solitonic cores uncovered in our simulations
provide an opportunity to estimate the boson mass, mB, by
comparison with observations, particularly for dSph galaxies where
dark matter dominates. The local Fornax dSph galaxy is the best
studied case, with thousands of stellar velocity measurements,
allowing a detailed comparison with our soliton mass profile.
We perform a Jeans analysis for the dominant intermediate
metallicity stellar population, which exhibits a nearly uniform
projected velocity dispersion (�k; ref. 25). We simultaneously

NATURE PHYSICS | VOL 10 | JULY 2014 | www.nature.com/naturephysics 497
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(a)  DM (b) CDM

Schive et. al (2014) 

Mocz et. al (2019)



strong interactions
structure formation with light 
scalar fields
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(a) box              (b) projection                            (c) slice

dm

gas

stars

subhalos

caustics

interference1 10 M10
×

1.5 Mpc                                                           0.5 Mpc

5 10 M 9
×

5 10 M 9
× 2 10 M 7

×

FIG. 1. Anatomy of a cosmic filament. We show, for CDM, WDM, and FDM cosmologies: (a) the projected dark matter
distribution in the simulation domain at redshift z = 5.5; (b) projections of dark matter, gas, and stars in a filament; and (c)
slices of the dark matter through a filament. In CDM the dark matter fragments into subhalos on all scales. WDM exhibits
rich caustic structures. FDM has interference patterns at the scales of the de Broglie wavelength, which regularize caustic
singularities. These di↵erences in small-scale structure will help constrain the elusive nature of dark matter.

(WDM), which is often associated with fermionic dark
matter

:::::::
fermions

:
of particle mass of a few keV (typi-

cally treated as collisionless), Peccei-Quinn axions [28]
which are bosons of mass ⇠ 10�5–10�3 eV, and the ul-
tralight FDM of mass m ⇠ 10�22 eV, which is described
by a classical scalar field and exhibits wave phenomena
on scales of the de Broglie wavelength �

dB

of a few kpc
[18–21, 29, 30]. FDM may be axions expected in string
theory, which suggests the existence of a plenitude of
particles with masses over a broad range 10�33–10�10 eV
[29].

::::::::::::::
�
dB

⇠ few ⇥ kpc
::::::::::::::
[18–21, 29, 30].

:
WDM and FDM

both yield smoother structures than CDM on scales be-
low few kpc, due to either thermal motion (WDM) [23]
or quantum pressure (FDM)

:::
[18]. The existence of dwarf

galaxies in dark matter halos with masses of ⇠ 109 times
the mass of the sun (M�) in the local Universe, as well as
measurements of the ‘lumpiness’ of the dark matter dis-
tribution, constrain WDM and FDM theories, favoring

particle masses above m
WDM

⇠ 3 keV and m ⇠ 10�22 eV
respectively [31]

:::::::
[31, 32]. However, for FDM these con-

straints can only be used as guidelines, being based on
simulations that ignore the impact of wave e↵ects on
baryons.
The first objects in the Universe o↵er a unique way

to tighten the observational constraints. Compared to
the local Universe, in which galaxies in

:::::::
1011 M�:

dark
matter halos of 1011 M� are typical, an early CDM uni-
verse (at redshift z ⇠ 30when the Universe is

:
,
::::
i.e.,

108 years old
::::
after

:::
the

::::
Big

:::::
Bang) is populated by much

smaller nearly-spherical halos of ⇠ 105�107 M� in which
proto-galaxies are born [33]. In contrast, the

:::::
WDM

:
first

star-forming structures in WDM form later and are fila-
mentary due to the initial suppression of the dark matter
power spectrum by particle free-streaming [34, 35]. Com-
pared to WDM, wavelike FDM additionally features in-
terference patterns and soliton coreson kpc scales, as is

Mocz, +MA, et. al (2019)

“usual” cold  
dark matter

warm  
dark matter

“fuzzy” 
dark matter

implications 



“Hubble Tension” resolution  
— some novel implications

resonant growth
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Also see: Karwal & Kamionkowski (2016), Poulin et. al (2018),  Agrawal et. al (2019). 



Reheating !
after inflation

Inflation

universe gets!
populated 
with particles

C
osm

ology@
 

inflation

few minutes

A Novel Connections 

14 billion years

?

106eV

cold-atom  
Bose-Einstein Condensates



related solitons in BECs

Nguyen, Luo & Hulet (2017)

nonlinear Klein Gordon  — nonlinear Schrodinger eq. 

@2
t �� c2r2�+ @�V (�) = 0

i@t =


� 1

2m
r2 + U 0(| |2)

�
 @2

t '� c2sr2'+ @'V(') = 0

relative phase between different condensates non-relativistic 



(Stochastic) Particle Production in Cosmology 

• Wires to Cosmology 
(w/ Baumann 1512.02637)

• Multifield Stochastic Particle Production 
(w/ Garcia, Wen & Xie 1706.02319)

• Stochastic Particle Production in deSitter Space 
(w/ Garcia, Carlsten & Green 1902.06736)

• Curvature Perturbations from Stochastic Particle Production 
(in progress)

appropriate for sufficiently complex models of inflation

And related works by Brandenberger & B, Basset
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curvature perturbations  
from particle production
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Figure 14: Relative position of the observable co-moving momentum band relative to the domain spanned
by the stochastically sourced power spectrum. Here k

?

denotes the (Planck) pivot scale, k
0

= |⌧
0

|�1 and
k
f

= |⌧
f

|�1. (MA: Include plot with only jagged peaks, from a particular realization for the middle panel,
where most of the spectrum is below threshold.)

spectrum on small scales occurs only by chance. In this sense, indirect observations of the power

spectrum may still yield dramatic surprises, even if inflation itself made no e↵ort to hide these e↵ects.

(MA: Dan, can you fill this part in – even a rough sketch will help getting this to move along.)

6.2 Backreaction constraints

(MG: Needs discussion)

Fig. 15 shows the region of parameter space excluded by backreaction due to the population of

the X modes. Here we have defined

⌦� ⌘ ⇢�
3H2M2

P

, (6.1)

and we have made use of Eq. (3.38) with H = 1013 GeV. The light blue exclusion region corresponds

to the backreaction constraint for the linear mean of the � energy density, while the dark blue one

is excluded in the µ
2

! 0 limit. Note that the later exclusion is only important for very strong

scattering, for which the perturbativity assumption on the power spectrum is already badly violated.
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Garcia, MA, Green, Baumann &Chia (in progress)
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Figure 16: Relative position of the observable co-moving momentum band relative to the domain spanned
by the stochastically sourced power spectrum, in the case ��2

⇣

' �2

⇣,0

. Here k
?

denotes the (Planck) pivot
scale, k

0

= |⌧
0

|�1 and k
f

= |⌧
f

|�1. The tilt of the vacuum contribution �2

⇣,0

has been omitted for clarity.

the underlying physics is time translation invariant. In particular, the probability distribution for

the stochastic masses is independent of time and thus a large change to the power spectrum on small

scales occurs only by chance. In this sense, indirect observations of the power spectrum may still

yield dramatic surprises, even if inflation itself made no e↵ort to hide these e↵ects.

Fig. 16 depicts what could be the most surprising and interesting possibility. For it particle

production would occur when the observed modes crossed the horizon, but for the particular real-

ization of stochastic masses, the amplitude of the e↵ect is only large on scales that are not directly

observed. For k ⇠ k? we have here ��2

⇣ ' �2

⇣,0 ' �2

⇣,Planck. It is worth emphasizing that finding

such a realization is not the result of a fine tunning of the model parameters. This scenario can

occur naturally given the large variation in the size of the stochastic enhancement on di↵erent scales,

as illustrated e.g. in Fig. 7. Although we do not elaborate on the details of their production, this

scenario is also of relevance for primordial black hole population models.

7 Conclusions

In this paper we have studied the imprints on the primordial curvature power spectrum that are the

consequence of the non-adiabatic, stochastic excitation of a spectator field in a de Sitter (inflating)

background. To simplify the analysis we have considered a conformally massive spectator field,

and we have studied the sourcing of the power spectrum in the perturbative regime, disregarding

dissipation and backreaction e↵ects. The framework developed in this work is applicable in the

limit of substantial disorder, Ns � 1, where Ns denotes the number of non-adiabatic events per

Hubble time. In this limit the power spectrum amplitude depends only on the scattering parameter

Ns(�/H)2, where � characterized the strength of individual scatterers, and on the duration of the

particle production epoch measured in e-folds, N
tot

.

Our mathematical approach followed two strategies. We first carried out detailed numerical

calculations for a wide range of parameters, including strong and weak scattering, using the transfer

matrix approach to follow the evolution of the sourcing spectator field. In order to solve for the

curvature perturbation we made use of a numerical integration strategy inspired by the fact that

the bulk of the fluctuation is sourced by super-horizon modes. Central to our methods was the

adiabatic subtraction regularization scheme, which allowed us to neglect the unphysical UV divergent

41
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Also see: Flauger, Mirbabayi, Senatore, Silverstein (2016)



Nonlinear Dynamics 
of Cosmological Fields (and novel connections)

3 theoretical/numerical results 3 obs. implications

1. instability in oscillating fields

2. formation of solitons

3. eq. of state

1. gravitational waves

2. structure formation

3. expansion history
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