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Preface

These are notes for the Phys 622 course, An Introduction to QFT, at Rice University. This is not a com-
prehensive textbook on QFT. Typically, students from high energy physics and condensed matter theory
take this course at Rice. The condensed matter students go on to take many-body physics as a second
course, whereas the high energy physicists take a more Standard Model focused course next. Along with
high energy physics and condensed matter theory, at times some undergrads, cosmologists/astrophysicists,
biophysicists and theoretical chemists also take this course. This diversity of students, and their academic
paths have guided the preparation of these notes — though it is still focussed on relativistic field theory.
My goal is to set up the foundations of QFT, give a flavor for calculations (with sufficient, simplified
examples) but leave the inevitable complications of the real world to later, more specialized courses.

The course is roughly divided into two parts. In the first part, I only deal with scalar field QFT. It
culminates in the derivation of Feynman rules, and a number of calculations of scattering at tree level.
Spin is only introduced in the second half of the semester, where we focus on how symmetries guide
and constrain the nature of different spin fields. In a one semester course, it was possible to introduce,
but not do any calculations in non-Abelian Gauge theories. I include spontaneous symmetry breaking
in the context of Anderson-Higgs mechanism for particle physics and also its relevance, for example, in
superconductivity here as well. Dictated by student interest, I have also included some brief notes on
solitons and topological considerations in field theories.

At the time of posting, only the first half of the course is typeset in LaTeX, the rest of the notes are
handwritten. Next year, I will hopefully typeset the rest as well.
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CHAPTER 1

AN INVITATION

In “Classical” Mechanics, particles are objects localized in space. Their position varies with time ac-
cording to ordinary differential equations. In single particle quantum mechanics, position became an
operator and the notion of a particle became “fuzzier” (think about localized probability density in terms
of wavefunctions, uncertainty principle etc.)

Classical fields on the other hand are extended objects, with values at each point in space. Typically,
partial differential equations govern the time evolution of fields (think of the electromagnetic fields: E(t, x)
and B(t,x) governed by Maxwell’s equations). How can we think about quantum mechanics of fields ?
What is the a connection between fields and particles?

In this course, we will take the view point of the field and particles being part of the same physical
entity. For example, photons are quantized excitations of the electromagnetic field. Equivalently we can
think of the electromagnetic field as a collection of quantized excitations: photons. Similar statements
hold for the electron and the electron field, quarks and a quark field ... you get the idea.

What is this course about?

This course is about learning the rules that govern the behavior of fields and their excitations (parti-
cles), insisting on consistency with Quantum Mechanics and Special Relativity. Symmetries will play an
important role in determining these rules.

For a heuristic conceptual roadmap to QFT, see Fig. . An important aspect of QFT in general is
that we are forced to deal with an infinite number of degrees of freedom. This, as we will see, this will
end up being connected to merging of special relativity and quantum mechanics. These infinite degrees of
freedom will also lead to some glaring difficulties in calculating observables; these difficulties will require
conceptual leaps to overcome them. As always, these rough and somewhat abstract statements will make
more sense when we have done some concrete examples. I hope that the course will allow you to appreciate
(and perhaps even make you uneasy) about some of the heuristic statements made in this introduction.

1.1 Some Highlights from QFT

e QFT is one of the most successful theoretical frameworks we have. In Quantum Electrodynamics
(QED), agreement between theory and experiment for the anamolous muon magnetic moment (g, —

1 Occasionally we will work in the non-relativistic limit, and sometimes only talk about classical fields also. The tools
developed here will remain useful.
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Figure 1.1: A roadmap to Relativistic Quantum Field Theory (adapted from Kuhlmein, “Quantum Field
Theory”, The Stanford Encyclopedia of Philosophy, 2015.)

2)/2 is within one part in 101°.

—2
<g“2> = 0.001 159 652 180 73(28)
exp

(1.1.1)

—2
(9"2> = 0.001 159 652 181 78(77)
th

e All particles of a field are indistinguishable (just excitations of the same field, you cannot label them).
e “particles” = excitations, can be created and destroyed.
e Bose & Fermi Statistics emerge naturally.

e QFT plays a central role in condensed matter as well as atomic and molecular physics. Important
especially for collective dynamics, phase transitions etc.

e Cosmology: QFT important in understanding the origin of density perturbations in our universe, as
well as the hot big bang.

e Big Unsolved Questions: QFT of gravity? Vacuum energy?

Before diving into QFT, we will review (1) Special Relativity (2) Lagrangian and Hamiltonian Mechan-
ics (3) Quantum Mechanics and finally (4) Classical Fields. Putting these together, we will get to QFT;
and before all that, let us begin with units.

1.2  Units

e Note the dimensions of [A] = ML?T~! and [¢] = LTL. In “everyday” units, h = 1.05x10 "3 m% kgs1,
whereas speed of light ¢ = 3 x 108 ms~!. We work in units where i = ¢ = 1. If needed, we will also
set kg = 1. In “usual” units kg ~ 1.38 x 10723 kgm?s 2 K.

e Mass, energy and momentum can be measured with the same unit. We will typically use a GeV as
a unit for these quantities. Note that 1 GeV =~ 1.60 x 10~ kgm?s~2.



e Length and time intervals have the same units. We will typically use GeV ™! as a unit for them.

e examples: mass of proton = 0.938 GeV = 0.938 GeV /c? ~ 10~%7kg), size of a proton ~ 5GeV ™! =
5GeV ! fic ~ 1071° m = 1 fermi).

Exercise 1.2.1: Our universe if filled with blackbody radiation (Cosmic Microwave Background) left over

from the time when the first atoms formed. The present temperature of this radiation is ~ 3K. Using
dimensional analysis, make an order of magnitude estimate of the number of density of photons in the
CMB in units of (i) GeV?® (ii) em~3.

Exercise 1.2.2: (1) If you drop a tomato from a height of ~ 1 meter, what is its kinetic energy just before

it hits the ground in (i) Joules (ii) GeV? (2) At what height would you have to drop an ant (~ 2mg) for
it’s kinetic to be of order a GeV when it hits the ground. (3) What is the typical center of mass energy of
protons at the Large Hadron Collider? (4) What is the ionization energy of a Hydrogen atom ?




CHAPTER 2

RAPID REVIEW

In this chapter I review relevant aspects of Einstein’s Special Theory of Relativity, Lagrangian and Hamil-
tonian Mechanics as well as Quantum Mechanics for a countable (and finite) number of degrees of freedom.
Though you are likely familiar with at least some of this material, some formal aspects such as Poisson
Brackets and time-evolution operators introduced here might not have been covered in earlier courses.

For most of this course we will work in natural units with A = ¢ = 1 where & and ¢ are the Planck’s
constant and speed of light respectively. In this review chapter, I set ¢ = 1 so length and time have the
same units, but do not set 2 = 1 since it helps in seeing quantum aspects more clearly.

2.1 Special Relativity

In two sentences, here is Einstein’s Special Theory of Relativity:
e The laws of physics are the same in all intertial frames.
e The speed of light (in vacuum) ¢ is independent of the reference frame.

Interval and the metric: The inifinitesimal, frame-invariant spacetime interval:
ds® = gdatdz”  with  p,v=0,1,2,3. (2.1.1)

where “0” labels the time co-ordinate. We have adopted the Einstein summation convention, where
repeated upstairs and downstairs indices are summed over. g,, are components of the metric tensor
which (among other responsibilities), determines the interval between events. Think of g, as entires of
a matrix g, that is g(u, ) = g, where the first index labels the row, and the second the column with
w,v =0,1,2,3. In cartesian co-ordinates (and with slight abuse of notation):

1 0 0 0
0 -1 0 0

y = : 2.1.2

In 0 0 -1 0 (2.12)
00 0 -1

Explicity ds? = (dz%)? — §;;dz'dz? = dt* — dx - dx. If the interval corresponding to nearby events
ds? < 0(> 0), then the events are said to be connected by a space-like (time-like) interval. ds? = 0
corresponds to a light-like interval. The same definitions carry over for finite intervals (obtained by joining
together infinitesimal intervals ~ [ ds). One event can influence another only if the interval between them



is not spacelike. All the events along the trajectory of a massive (massless) particle are connected by a
time-like (light-like) interval. This can be visualized as a “light-cone” (see Fig. 2.1).

0

2

Figure 2.1

Lorentz tranformations: A Lorentz transformation allows us to change reference frames. A famil-
iar example is the transformation of co-ordinates from one inertial frame to another moving at a velocity

v along along one of the cartesian axes (see Fig. ).
v 0 0 —vuy
't = At aY where  A¥, = 8 (1) ? 8 , (2.1.3)
—vy 0 0 v

with v = (1 — v2)~!/2 and recall that ¢ = 1 in our units. More generally, the defining property of Lorentz
transformations is
A YN 5900 = Gpo - (2.1.4)

There is a possibility of confusion here when one tries to write this in matrix form. So let me say a few
more words. We have a matrix A whose entry in the p row and v column is given by A(u,v) = A¥,. The
defining property of the Lorentz transformation in matrix form is A”gA = g. To see this, note that in
terms of matrix entries, the left hand side is Zi,uzo AT (p, 1)g(p, )N (v, o) = Zi#:o A, p)g(p, V)N (v, o).
Since we have defined A(p,v) = A*, and g(u, v) = guw, we have A* AY 9, = g, Where now we revert
back to Einstein summation. It is worth noting that for the inverse transformation, A= (u,v) = A, ¥,
whereas the inverse metric g=1(u, v) = ghv.

An immediate consequence of the defining property of the Lorentz transformation is that |detA| = 1.

Hence, 4-volume elements dx are Lorentz invariant: d*z’ = d*z|det A| = d*z.

Exercise 2.1.1: Verify that the Lorentz transformation in eq. ( ) satisfies its defining property ( ).

4-vectors and dot products: component form, a Lorentz four-vector is a 4-component object which
transforms as A’* = A*, A”. Explicitly:

Ar = (A% A) and Ay = guwA = (A% -A), (2.1.5)

where with A = {A!, A2 A3}. In the second equality, note that the metric allows us to raise and lower
indices. We will often use the following shorthand(s)

v =a" = (a%%) = (t.%),

b= b = (K, = (B.K), (219



where in the last line we are thinking of & as the four-momentum of a particle, with E being the energy.
Their dot product is Lorentz invariant (ie. its value does not change under Lorentz transformations)

z-k=guwr'k" =x,k" =2"k, = Et —x -k,

2.1.7
k'k, = E* — |k|*> = m?. @L17)
where m is the rest-mass of the particle.
Some useful differential operators are listed below:
) —i—(a V) and o = (0p,—V)
W Qe STt (2.1.8)
0=09,0"=0}-V?  and D-A=0,A"=9A°+V-A.
Exercise 2.1.2 : Show that f(z) = ¢*® satisfies (O + m?)f(z) = 0 only if k*k, = m>.
Exercise 2.1.3 : Consider two reference frames related by the Lorentz transformation in eq. ( ).

Let z*(P) = (2%,0,0,2%) and 2/(Q) = (x%,&O,x%) be the co-ordinates of two events P and @ in
the “unprimed” frame. The co-ordinates of these events in the “primed” frame are given by z'*(P) =
(2/2,0,0,23) and 2’ (Q) = (m’OQ, 0,0, x/%) Show that if the events are not simultaneous (2% # :rOQ), and
are space-like separated in the unprimed frame (i.e. Az"*Az, < 0 where Az* = z/(P) — z#(Q)), then
there exists a velocity v such that in the primed frame, the events are simultaneous =’y = :vg. Find this
velocity v.

While simultaneity is frame-dependent, intervals are not. That is, Aw’”Am'H = Az"Azx,. Hence the
space-like, time-like and light-like nature of intervals is invariant under Lorentz transformations.

2.2 Classical Mechanics

I am going to go through a quick, formal review of classical mechanics with an eye towards Quantum
Mechanics.

2.2.1 Lagrangian Mechanics

Start with a (given) Lagrangian L(qq, da,t) where g, are the generalized co-ordinate of the system (« =
1,2...N). The equations of motion for ¢, are obtained by extremizing the Action:

te
sz/ dtL(qa, Ga, t) | (2.2.1)
t;

That is g.(t) are such that for g, (t) — ga(t) + 0ga(t) (where dq.(t) are arbitrary apart from dq(t;) =
0q(tf) = 0) we have 65 = 0. For 65 = 0, g, must satisfy (see Appendix ):

d L L
7 <§Qa> = SE Euler-Lagrange equations (2.2.2)

10



For example, for a collection of coupled harmonic oscillators with unit mass and time-independent cou-

plings’ Mg,:
, Y1, L
L(Qaa Qa) = az::l iqa - pz:; iMap daqp | »
4 (oL _ oL (2.2.3)
dt \ 4o )  Oqa -

N
= da"‘ZMapr =0.
p=1

2.2.2 Hamiltonian Mechanics

The Hamiltonian is a Legendre transform of the Lagrangian and contains the same information as the
Lagrangian. In Quantum Mechanics and QFT, the Hamiltonian is often more convenient to work with,
so lets do a quick review:

oL .
Pa = @ conjugate momentum
N
H= Z(paqa) —L Hamiltonian (2.2.4)
a=1
. OH . 0H . , .
o = —, Pa = —— Hamilton’s equations
0pa GQQ

For the coupled harmonic oscillators example,

pa:C]aa

N, &
H= Z §pa + Z §Mozp dadp |
a=1 p=1

(2.2.5)

N
Da = — ZMocp qp -
p=1

2.2.3 Poisson Brackets

The Poisson Bracket is defined as:

N
{f(4a:Pa)s 9(daspa)} = ) <8fag - afag> : (2.2.6)

8(](1 apa 8poz 3qa

where f and g are arbitrary functions on the space of generalized co-ordinates and their conjugate momenta.
The time evolution of f(gqa,pa,t) is given by

da of
o= H (2.2.7)

which you can see immediately by noting that df /dt =" [(0f/0¢a)da + (0f/Opa)pa] + Of /Ot and using
Hamilton’s equations of motion for p, and ¢,. If the function f does not explicitly depend on time, then

df
= = {f.H}. (2.2.8)

ITypically, we consider M, that only couples nearest neighbors.

11



The time evolution of f is generated by H. In particular, for f = ¢, and g = p,, we have

{Q(xapp} = 5ap . (2.2.9)

Similarly, {¢a,qp} = {Pa,pp} = 0. The time evolution equations for ¢, and p, become

dqe dpa

=2 —Jq..H d =2 = Ip,, H}. 2.2.10

o = laa, H}Y, an o = o, H} ( )
The last two equations are equivalent to Hamilton’s equations of motion, and also to the Euler-Lagrange

equations.

Exercise 2.2.1: For the coupled harmonic oscillator example in eq. ( ), evaluate the Poisson Brackets

{Pa, H}, to recover p,, = — Zp Mapqp.

2.3 Quantum Mechanics

I am going to review relevant aspects of Quantum Mechanics; the results here are the most relevant part
of this review chapter.
2.3.1 Canonical Quantization
One route to getting from classical to quantum mechanics is as follows (thanks to Dirac”):
e replace the co-ordinates and momenta by operators (think of them as matrices)
Goiy Pae — Gas Po - (2.3.1)
The functions f and ¢ inherit the operator structure from p and ¢q: f,g — f , -

e Replace the Poisson Bracket by the “Commutator”

T
{f.9y =5 [f.9] - (2:3.2)
Note the appearance of ¢ and Planck’s constant /. The commutator is defined as
/.9 =Fa-af. (2.3.3)

Operators f and ¢ do not necessarily commute. For f = (o and § = p,, we get
[quuﬁp] = ihéozp . (234)

This should look familiar! Also note that [da, ] = [Pa,dp) = 0. One could directly start from these
commutation relations as well, without going through Poisson Brackets.

e The time evolution of f (Gas Do) (no explicit time dependence) is given by

df iTa
= _Z\fHI. 2.3.5
i =i 1] (23
For co-ordinates and momenta,
d(ja i ~ ] d]aa { ~ 2
2o el — ) 2.3.6
dt L {qa’H} oooad n [ “"H} (23.6)

2Dirac, Principles of Quantum Mechanics, Oxford University Press (1982)

12



Comments:

e This above quantization procedure procedure is not a guarantee of finding the correct quantum
theory. Higher order terms in A might be relevant. The above procedure is motivated by recovering
classical physics in the limit “4 — 0”. There also exists an ambiguity in the above procedure
regarding the orderings of operators; which one is correct? ¢>p? — §3p2 or ¢®p? — p?¢>? Ultimately,
you have to check with nature whether you have the correct quantum Hamiltonian.

e Heisenberg Picture : Note that we are working in the “Heisenberg Picture” where the operators
f (o, Por) evolve with time according to

df T o . . ) -
d%‘c - _% {f, H] ; or equivalently  f(t) = ew =t f(4)emwH(t=t0) (2.3.7)
The states |¢) of the system is time-independent. To find the expectation value of an observable
corresponding to the operator f(¢) in a given state |1}, we have to calculate (10| f(t)|¢). Notice that

it is a combination of operators sandwiched between states that appears in the expectation values.

e Schrodinger Picture: A mathematically equivalent way of thinking about time evolution of quan-
tum systems is to think of states [i)(t))s evolving with time, and the operators fs being time-
independent. States evolve according to the Schrodinger equation:

S =~ AW, orcquvalently  [p(t)y = e FTE Dyl (238)

As you can check, by setting |¢(to))s = |[0) and f(to) = fs, the expectation values constructed in
either picture will yield the same answer ¢ (1(t)| fs|t(t))s = (1| f(£)|1). The same argument works for
arbitrary matrix elements: fa, = (a(t)|fs|b(t))s = (a|f(#)|b) (think about transition probabilities),
thus observables will be equal when calculated in either picture.

Exercise 2.3.1 : Verify that f(t) = exH(t—t) f(to)e~#H(=t0) is a solution of df /dt = —(i/h)[f, H]. Be

careful about the fact that H is an operator, not a number. You should interpret e = Yoo o1 /n) A",

2.3.2 Worked Example: Harmonic Oscillators

The career of a young theoretical physicist consists of treating the harmonic oscillator in ever-increasing
levels of abstraction — Sidney Coleman

Let us revert once more to coupled harmonic oscillators with unit mass; see equations ( ) and ( ).
For time-independent couplings M,, there exists C,, such that if G, =) o Caplp, then

i ( Pa+ = L iqi) : (2.3.9)

The “tilde” co-ordinates are the normal-modes of the system. For example, for a collection of 2-masses
and three springs (see Fig. ), the two normal modes would be the modes where the masses oscillate
together (in phase) or with an opposite phase. Normal modes are exceptionally convenient, because they

3We assume that H has no explicit time-dependence for simplicity.
4The familiar wave-function in position space corresponding to the state |a(t))s is obtained via ¥q(t,x) = s(x|a(t))s.
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Figure 2.2: Normal modes for two masses connected by springs.

evolve independently from each other! For our system (dropping the “tilde” now), we have Hamilton’s
equations
Go = Pa s and Do = *Wiqa . (2310)

Equivalently, the Euler-Lagrange equations are:
o+ wWhga =0, (2.3.11)

with the solutions ¢, o et™wat,

Canonical Quantization

Let us turn the crank of quantizing our theory. For the system at hand ga, pa — o, Pa With [Ga, pp] =
thdap. The Hamiltonian and equations of motion are

= dq dp
Z ( pa + w2 di) ; 5 =Par and = 0% (2.3.12)

Exercise 2.3.2 : For the above Hamiltonian, evaluate the commutator [p,, H ] using the commutators for

o and p,. Then use the time evolution equation (d/dt)pa = —(i/h)[pa, H] to recover (d/dt)pa = —wl{s.
It is often useful to remember the following identity for commutators: [ab, é] = ab, & + [a, &b

Next, we introduce the formalism of creation and annihilation operators, which will turn out to be quite
useful when we deal with fields in the next chapter.
Creation and Annihilation Operators

It is convenient to define the “creation” and “annihilation” operators

da(t) = “’“(qcy(t)wﬁ“(t)) and 4l (t) = %<qa(t)ip°‘(t)>. (2.3.13)

2h Wy 2h Wa

Recall that g, and p, are Hermitian because they correspond to observables (i.e. they must have real
eigenvalues). These can be inverted to yield

Ga(t) = \/5— (aa(t) +al (1))  and  pa(t) = —ir) == (aa(t) —al (1)) . (2.3.14)
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The time dependence of d(t) and a!,(t) can be obtained by using our knowledge of dg,/dt and dp, /dt,
which yields (d/dt)q(t) = —iwaqa(t) and (d/dt)al (t) = iweal (t). The solutions are

do(t) = 4o (0)e™™t  and  af (t) = al (0)et™wat. (2.3.15)

Exercise 2.3.3 : Derive (d/dt)iq(t) = —iwaaa(t) and (d/dt)af (t) = iwaal ().

Using eq. ( ), we have the “mode-expansion” of g,:
A h ~ —iwat ~F twat
da(t) = Yo (aa(o)e ot +ql (0)e*“= ) ) (2.3.16)

To reduce clutter, We drop the (0) part in the time-independent creation and annihilation operators, and
simply write
h

Ga(t) =1/ 5~ (Gae™ ™ot + af e™at) | (2.3.17)

From now on, when we refer to a, and a,, we will always mean the time-independent ones. The corre-
sponding expression for p, is
Awe,

Pa(t) = —i 5 (daeiiwat — &Leiwat) . (2.3.18)

Why are a, and af useful? It is worth reminding ourselves of the important properties of G, and a,:

[da; d;f)] = 5oz,o )

o, a,] = [al . al] =0,
P arp

ﬁ:Z(aganr;)hwa.

(2.3.19)

Exercise 2.3.4 : Derive the above expressions using the commutators for the co-ordinates and momenta,

the Hamiltonian in eq. ( ) as well as the mode expansions above.

Why the name “creation” and “annihilation” operators? Note another property (that you should verify):
{Ha} = fweda,  and [Hafl} = Fwaal, . (2.3.20)

The last line tells us about creation and annihilation of quanta. To see this, note that if |1} is an eigenstate
of the H with energy E, then a! |¢)) has an energy E + hwq:

Hal |[v) = (E + hwa)al, |v) . (2.3.21)
That is, af, raises the energy by hw,; it “creates” a quantum hw,. Similarly,

Haa ) = (B — hwa)al) (2.3.22)

That is, a, lowers the energy by hw,; it “annihilates” a quantum Aw,. The vacuum state is defined as the
state that is annihilated by any a:

|0) =10,0...0), where 4n]0) =0. (2.3.23)
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Each “slot” in ]0,0...0) corresponds to different & = 1,... N. We can build normalized eigenstates of
energy by repeatedly acting on the vacuum state using our creation operators

o)™
\nl,ng...nN>:J;[1 - 0), (2.3.24)

where n, are the number of quanta (occupation number) with energy fhw, is this state. Note that
alan|ni,na...nn) = na|ni,na...ny). The total energy of this state

N N
1
Eiot = E E, = g <no, + 2) hwe . (2.3.25)
a=1 e}

=1

Even if there are no quanta n, = 0 for all a, we still have vacuum energy Eync = Zi\;l(l /2)hwe. This is
important when absolute values of energy matter (e.g. when gravity is involved (“Cosmological Constant”
problem)) or when dealing with non-trivial boundary conditions (“Casimir effect”). In this course we can
ignore this vacuum contribution; for us only differences in energy matter.

Exercise 2.3.5: Evaluate (0|(ao, + af,)*|0) using the commutation relations for a, and a, as well as their

action on the vacuum.

2.4 Special Relativity and Single-Particle Quantum Mechanics

For simplicity of expressions, let i = ¢ = 1. Consider a relativistic particle with a Hamiltonian such
that H|k) = vkZ + m2[k) for a particle with mass m in its momentum eigenstate. Let us calculate the
“amplitude” A (where the probability oc |AJ?) of a localized particle moving from (o = 0,%g) to (¢,x).
That is, we take a localized state |xg), time evolve it: e’iﬁ(t*to)\xo>