Stochastic Particle Production in the Early Universe

synopsis

- theoretical tools for calculating particle production in sufficiently complex models of inflation and reheating
- hints of universality

work in progress

based on

- MA \& Baumann, Wires to Cosmology (2016)
- MA, Garcia, Xie \& Wen, Multifield Stochastic Particle Production (2017)
+ ongoing work with Garcia, Carleston, Chia, Baumann \& Green

related work:

condensed matter \& cosmology

Anderson

Absence of diffusion in certain random lattices (1957)

Mello, Pereyra Kumar
Macroscopic approach to multichannel disordered wires (1987)
C. Beenakker,

Random matrix theory of quantum transport (1997)
C. Muller and D. Delande,

Disorder and interference: localization phenomena (2010)

Brandenburger \& Taschen
(1990)

Kofman, Linde \& Starobinsky (1994, 1997)

Traschen and Brandenberger (1995)

Zanchin, Maia, Craig \& Brandenberger (1998)

Bassett
(1998)

Green
(2015)

motivation

anisotropies:
 cosmic microwave background

seemingly "acausal"
~ adiabatic

inflation: a simple explanation?

$$
a \sim e^{H t}
$$

- "acausal"
- almost gaussian
- scale invariant
- adiabatic

physics of inflation and reheating?

- what is the physics of inflation?
- how did the universe get populated with particles after inflation ? (reheating)

two approaches

SIMPLE enough
COMPLEX enough

theory : its complicated (probably)

- inflation
- reheating after inflation

a coarse grained approach?

- observations: early universe is simple
- theory: not so much ...
- coarse grained view ?
- calculational tools ?
for related motivation, also see:
"EFT of inflation" (Cheung et.al 2007) \&
"Towards EFT approach to reheating" (Giblin et.al 20I6/I7)

inspiration from disordered wires

MA \& Baumann 2015

the framework

multifield inflation/reheating

- inflation/reheating: many interacting fields
- fluctuations: coupled, non-perturbative

multifield inflation/reheating

$$
S=\int \mathrm{d}^{4} x \sqrt{-g}\left[\frac{M_{\mathrm{pl}}^{2}}{2} R-\frac{1}{2} G_{a b}\left(\phi^{c}\right) \partial^{\mu} \phi^{a} \partial_{\mu} \phi^{b}-V\left(\phi^{c}\right)+\cdots\right]
$$

focus on perturbations

$$
S^{(2)}=\int d^{4} x \sqrt{-g}\left(\frac{1}{2} \delta_{a b} \partial \chi^{a} \partial \chi^{b}-\frac{1}{2} \mathcal{M}_{a b}(\tau) \chi^{a} \chi^{b}\right)
$$

$$
\mathcal{M}_{a b}(\tau)=a^{2}(\tau)\left[m_{a}^{2} \delta_{a b}+m_{a b}^{\mathrm{s}}(\tau)\right]
$$

focus on perturbations

mode functions in Fourier space

$$
\begin{aligned}
& {\left[\frac{d^{2}}{d \tau^{2}}+2 \frac{\dot{a}(\tau)}{a(\tau)} \frac{d}{d \tau}+a^{2}(\tau) \omega_{a}^{2}(k)\right] \chi^{a}(\tau, k)+a^{2}(\tau) \sum_{b=1}^{N_{f}} m_{a b}^{\mathrm{s}}(\tau) \chi^{b}(\tau, k)=0} \\
& \omega_{a}^{2}(k)=k^{2}+m_{a}^{2}
\end{aligned}
$$

complexity in the "effective mass"/ interactions

simplified version!

$$
\begin{aligned}
& \ddot{\chi}_{k}(\tau)+\left[k^{2}+m_{\mathrm{eff}}^{2}(\tau)\right] \chi_{k}(\tau)=0 \\
& m_{\mathrm{eff}}^{2}(\tau)=-\frac{\ddot{a}(\tau)}{a(\tau)}+a^{2}(\tau) m_{\varphi}^{2}+a^{2}(\tau) g^{2}\left(\phi(\tau)-\phi_{*}\right)^{2}+\ldots
\end{aligned}
$$

$m_{\text {eff }}^{2}(\tau)$

complexity in the "effective mass"/ interactions

simplified version!

$$
\begin{aligned}
\ddot{\chi}_{k}(\tau)+ & {\left[k^{2}+m_{\text {eff }}^{2}(\tau)\right] \chi_{k}(\tau)=0 } \\
m_{\text {eff }}^{2}(\tau) & =-\frac{\ddot{a}(\tau)}{a(\tau)}+a^{2}(\tau) m_{\varphi}^{2}+a^{2}(\tau) g^{2}\left(\phi(\tau)-\phi_{*}\right)^{2}+\ldots \\
0 & \downarrow
\end{aligned}
$$

$$
m_{\mathrm{eff}}^{2}(\tau)
$$

particle production as "scattering"

$e^{-i k \tau}$
MMW
occupation number per mode
$n(k, \tau)=\frac{1}{2 \omega_{k}}\left(\left|\dot{\chi}_{k}\right|^{2}+\omega_{k}^{2}\left|\chi_{k}\right|^{2}\right)$

$$
\left.\mid \chi_{k}(\text { after })\right\rangle \left.=\underbrace{\left(\begin{array}{cc}
1 / t_{j}^{*} & -r_{j}^{*} / t_{j}^{*} \\
-r_{j} / t_{j} & 1 / t_{j}
\end{array}\right)}_{\mathbf{M}_{j}} \right\rvert\, \chi_{k}(\text { before })\rangle
$$

$$
T_{j}=\left|t_{j}\right|^{2} \quad n_{j} \equiv \frac{\left|r_{j}\right|^{2}}{\left|t_{j}\right|^{2}}=T_{j}^{-1}-1
$$

chaining transfer matrices

$$
\left|\chi_{k}\left(N_{\mathrm{s}}\right)\right\rangle=\mathrm{M}\left|\chi_{k}(0)\right\rangle \quad \text { where } \quad \mathrm{M} \equiv \mathrm{M}_{N_{\mathrm{s}}} \cdots \mathrm{M}_{2} \mathrm{M}_{1}
$$

typical behavior in spite of ignorance of details ?

- details not known
- "typical" behavior ?

$$
n_{\text {typ }} ?
$$

"brownian motion" of the occupation number

occupation number performs a drifted random walk

$$
n(k, \tau)=\frac{1}{2 \omega_{k}}\left(\left|\dot{\chi}_{k}\right|^{2}+\omega_{k}^{2}\left|\chi_{k}\right|^{2}\right)
$$

a drifted random walk different realizations

$$
n(k, \tau)=\frac{1}{2 \omega_{k}}\left(\left|\dot{\chi}_{k}\right|^{2}+\omega_{k}^{2}\left|\chi_{k}\right|^{2}\right)
$$

probability distribution ? typical occupation number?

a Fokker Planck equation

$$
\frac{1}{\mu_{k}} \frac{\partial}{\partial \tau} P(n, \tau)=\frac{\partial}{\partial n}\left[n(1+n) \frac{\partial}{\partial n} P(n, \tau)\right]
$$

MA \& Baumann (2015)

Fokker Planck eq: heuristic derivation

Fokker Planck eq: heuristic derivation

Fokker Planck eq: heuristic derivation

$$
\partial_{\tau} P(\mathrm{M} ; \tau)=\frac{\langle\delta \mathrm{M}\rangle_{\mathrm{M}_{2}}}{\delta \tau} \partial_{\mathrm{M}} P(\mathrm{M} ; \tau)+\frac{\langle\delta \mathrm{M} \delta \mathrm{M}\rangle_{\mathrm{M}_{2}}}{\delta \tau} \partial_{\mathrm{M}} \partial_{\mathrm{M}} P(\mathrm{M} ; \tau)+\cdots
$$

"local" mean particle production rate

$$
\frac{1}{\mu_{k}} \frac{\partial}{\partial \tau} P(n, \tau)=\frac{\partial}{\partial n}\left[n(1+n) \frac{\partial}{\partial n} P(n, \tau)\right]
$$

μ_{k} local mean particle production rate

$$
\mu_{k}=\frac{\langle n\rangle_{\delta \tau}}{\delta \tau}
$$

"local" mean particle production rate

$$
\frac{1}{\mu_{k}} \frac{\partial}{\partial \tau} P(n, \tau)=\frac{\partial}{\partial n}\left[n(1+n) \frac{\partial}{\partial n} P(n, \tau)\right]
$$

$\mu_{k} \quad$ local mean particle production rate

solution: "universal" distributions

moments: Fokker Planck equation

$$
\langle n\rangle=\frac{1}{2}\left(e^{2 \mu_{k} \tau}-1\right)
$$

$$
\langle\ln (1+n)\rangle=\mu_{k} \tau
$$

$\frac{\operatorname{Var}(n)}{\langle n\rangle^{2}} \xrightarrow{\mu_{k} \tau \gg 1} e^{2 \mu_{k} \tau}$

$$
\frac{\operatorname{Var}[\ln (1+n)]}{\langle\ln (1+n)\rangle^{2}} \longrightarrow \frac{2}{\mu_{k} \tau}
$$

The most probable value of the occupation number

$$
n_{\text {typ }} \equiv \exp \langle\ln (1+n)\rangle=e^{\mu_{k} \tau}
$$

the typical occupation number

$$
n_{\mathrm{typ}} \equiv \exp \langle\ln (1+n)\rangle=e^{\mu_{k} \tau}
$$

MA \& Baumann (20|5)

what is the connection to wires?

electron wave function: disordered wires

Anderson localization!

$$
\psi^{\prime \prime}(x)+\left[k^{2}-V(x)\right] \psi(x)=0
$$

Anderson 1957

universal behavior

- impurities increase resistance exponentially

location along the wire $\quad x \rightarrow$

at low temperatures, one dimensional wires are insulators

complexity in time cosmology

complexity in space wires

Anderson localization

$$
\ddot{\chi}_{k}(\tau)+\left[k^{2}+m_{\mathrm{eff}}^{2}(\tau)\right] \chi_{k}(\tau)=0 \longleftrightarrow \psi^{\prime \prime}(x)+\left[k^{2}-V(x)\right] \psi(x)=0
$$

$m_{\mathrm{eff}}^{2}(\tau)$

dictionary

Time-dependent "Klein-Gordon"

$$
\ddot{\chi}_{k}(\tau)+\left[k^{2}+m_{\mathrm{eff}}^{2}(\tau)\right] \chi_{k}(\tau)=0 \quad \vdots \quad \frac{d^{2} \psi}{d x^{2}}+(E-V(x)) \psi=0
$$

Time-independent Schrödinger
(local) particle production rate
mean free path

multifield dynamics

many fields

early universe: multiple interacting fields:

$$
\left[\frac{d^{2}}{d \tau^{2}}+\omega_{a}^{2}(k)\right] \chi^{a}(\tau, k)+\sum_{b=1}^{N_{\mathrm{f}}} m_{a b}^{\mathrm{s}}(\tau) \chi^{b}(\tau, k)=0
$$

many fields

early universe: multiple fields:

$$
\left[\frac{d^{2}}{d \tau^{2}}+\omega_{a}^{2}(k)\right] \chi^{a}(\tau, k)+\sum_{b=1}^{N_{\mathrm{f}}} m_{a b}^{\mathrm{s}}(\tau) \chi^{b}(\tau, k)=0
$$

$$
m_{a b}^{\mathrm{s}}(\tau)=2 \sqrt{\omega_{a} \omega_{b}} \sum_{j=1}^{N_{\mathrm{s}}} \Lambda_{a b}\left(\tau_{j}\right) \delta\left(\tau-\tau_{j}\right)
$$

many fields

early universe: multiple fields:

$$
\begin{aligned}
& {\left[\frac{d^{2}}{d \tau^{2}}+\omega_{a}^{2}(k)\right] \chi^{a}(\tau, k)+\sum_{b=1}^{N_{\mathrm{f}}} m_{a b}^{\mathrm{s}}(\tau) \chi^{b}(\tau, k)=0} \\
& m_{a b}^{\mathrm{s}}(\tau)=2 \sqrt{\omega_{a} \omega_{b}} \sum_{j=1}^{N_{\mathrm{s}}} \Lambda_{a b}\left(\tau_{j}\right) \delta\left(\tau-\tau_{j}\right)
\end{aligned}
$$

$$
\left\langle\Lambda_{a b}\left(\tau_{j}\right)\right\rangle=0
$$

$$
\left\langle\Lambda_{a b} \Lambda_{c d}\right\rangle=\sigma_{a b}^{2}\left(\delta_{a c} \delta_{b d}+\delta_{a d} \delta_{b c}\right)
$$

many coupled fields

early universe: multiple interacting fields:

$$
\begin{aligned}
& {\left[\frac{d^{2}}{d \tau^{2}}+\omega_{a}^{2}(k)\right] \chi^{a}(\tau, k)+\sum_{b=1}^{N_{\mathrm{f}}} m_{a b}^{\mathrm{s}}(\tau) \chi^{b}(\tau, k)=0} \\
& m_{a b}^{\mathrm{s}}(\tau)=2 \sqrt{\omega_{a} \omega_{b}} \sum_{j=1}^{N_{\mathrm{s}}} \Lambda_{a b}\left(\tau_{j}\right) \delta\left(\tau-\tau_{j}\right)
\end{aligned}
$$

real wires are not one-dimensional. current conduction: multiple channels.

multifield particle production as scattering

$$
\left|\vec{\chi}\left(N_{\mathrm{s}}\right)\right\rangle=\mathrm{M}|\vec{\chi}(0)\rangle \quad \text { where } \quad \mathrm{M} \equiv \mathrm{M}_{N_{\mathrm{s}}} \cdots \mathrm{M}_{2} \mathrm{M}_{1}
$$

multifield particle production as scattering

$$
\left|\vec{\chi}\left(N_{\mathrm{s}}\right)\right\rangle=\mathrm{M}|\vec{\chi}(0)\rangle \quad \text { where } \quad \mathrm{M} \equiv \mathrm{M}_{N_{\mathrm{s}}} \cdots \mathrm{M}_{2} \mathrm{M}_{1}
$$

total occupation number of fields:

$$
n \sim \operatorname{Tr}\left(\mathrm{MM}^{\dagger}\right)
$$

multi-dimensional Fokker Planck Eq.

$$
\left|\vec{\chi}\left(N_{\mathrm{s}}\right)\right\rangle=\mathrm{M}|\vec{\chi}(0)\rangle \quad \text { where } \quad \mathrm{M} \equiv \mathrm{M}_{N_{\mathrm{s}}} \cdots \mathrm{M}_{2} \mathrm{M}_{1}
$$

Fokker Planck Equation:
$\partial_{\tau} P(\mathrm{M} ; \tau)=\frac{\langle\delta \mathrm{M}\rangle_{\mathrm{M}_{2}}}{\delta \tau} \partial_{\mathrm{M}} P(\mathrm{M} ; \tau)+\frac{\langle\delta \mathrm{M} \delta \mathrm{M}\rangle_{\mathrm{M}_{2}}}{\delta \tau} \partial_{\mathrm{M}} \partial_{\mathrm{M}} P(\mathrm{M} ; \tau)$

exponential growth in typical occupation number

$$
\left|\vec{\chi}\left(N_{\mathrm{s}}\right)\right\rangle=\mathrm{M}|\vec{\chi}(0)\rangle \quad \text { where } \quad \mathrm{M} \equiv \mathrm{M}_{N_{\mathrm{s}}} \cdots \mathrm{M}_{2} \mathrm{M}_{1}
$$

Fokker Planck Equation:

$$
\partial_{\tau} P(\mathrm{M} ; \tau)=\frac{\langle\delta \mathrm{M}\rangle_{\mathrm{M}_{2}}}{\delta \tau} \partial_{\mathrm{M}} P(\mathrm{M} ; \tau)+\frac{\langle\delta \mathrm{M} \delta \mathrm{M}\rangle_{\mathrm{M}_{2}}}{\delta \tau} \partial_{\mathrm{M}} \partial_{\mathrm{M}} P(\mathrm{M} ; \tau)
$$

total occupation number of fields: $n \sim \operatorname{Tr}\left(\mathrm{MM}^{\dagger}\right)$

$$
n_{\text {typ }} \sim \exp \left[\frac{2}{1+N_{\mathrm{f}}}\left\langle\operatorname{Tr} \Lambda^{2}\right\rangle \tau\right]
$$

MA, Garcia, Xie \&Wen (2017)

robust results in large N_{f} limit

MA, Garcia, Xie \& Wen (2017)

- simple Trace formula for estimating particle production rate when the number of fields is large (without being statistically similar)

$$
n_{\text {typ }} \sim \exp \left[\frac{2}{1+N_{\mathrm{f}}}\left\langle\operatorname{Tr} \Lambda^{2}\right\rangle \tau\right]
$$

- Λ contains all the information about the strengths of interactions

summary so far

- repeated non-perturbative particle production (ignoring expansion)
I. typical occupation number grows exponentially with time

2. the distribution of occupation numbers is log-normal

next up

- repeated non-perturbative particle production (ignoring expansion)
I. typical occupation number grows exponentially with time

2. the distribution of occupation numbers is log-normal

- effect of expansion ?
- applications to inflation and reheating ?

expansion effects ?

stochastic particle production in expanding spacetime

$$
\begin{array}{ll}
\ddot{\chi}(t, k)+3 H \dot{\chi}(t, k)+\left[\frac{k^{2}}{a^{2}}+m_{\mathrm{eff}}^{2}(t)\right] \chi(t, k)=0 \\
m_{\mathrm{eff}}^{2}(t)=m^{2}+m_{\mathrm{s}}^{2}(t) & \\
m_{\mathrm{s}}^{2}(t)=\sum_{j=1}^{N_{\mathrm{s}}} m_{j} \delta\left(t-t_{j}\right) & \left\langle m_{j}^{2}\right\rangle \equiv \sigma_{\mathrm{s}}^{2}
\end{array}
$$

- competition between growth from particle production and dilution due to expansion
- Useful parameter: $\quad \mathcal{N}_{s} \frac{\sigma_{\mathrm{s}}^{2}}{H^{2}}$
\# of scatters per Hubble time

stochastic particle production in expanding spacetime

$$
\begin{array}{ll}
\ddot{\chi}(t, k)+3 H \dot{\chi}(t, k)+\left[\frac{k^{2}}{a^{2}}+m_{\mathrm{eff}}^{2}(t)\right] & \chi(t, k)=0 \\
m_{\mathrm{eff}}^{2}(t)=m^{2}+m_{\mathrm{s}}^{2}(t) & \\
m_{\mathrm{s}}^{2}(t)=\sum_{j=1}^{N_{\mathrm{s}}} m_{j} \delta\left(t-t_{j}\right) & \left\langle m_{j}^{2}\right\rangle \equiv \sigma_{\mathrm{s}}^{2}
\end{array}
$$

- competition between growth from particle production and dilution due to expansion
- Useful parameter: $\quad \mathcal{N}_{s} \frac{\sigma_{\mathrm{s}}^{2}}{H^{2}}$
\# of scatters per Hubble time

field evolution in deSitter conformal case: $m^{2}=2 H^{2}$

$$
\mathcal{N}_{s}\left(\sigma_{\mathrm{s}}^{2} / H^{2}\right)=10^{2}
$$

$\mathcal{N}_{s}\left(\sigma_{\mathrm{s}}^{2} / H^{2}\right)=10^{3}$

- in absence of interactions the field amplitude decays inside and outside the horizon
- interaction (depending on their strength and frequency) can arrest, and reverse this dilution.

field evolution in deSitter massless case: $m^{2}=0$

$$
\mathcal{N}_{s}\left(\sigma_{\mathrm{s}}^{2} / H^{2}\right)=10^{3}
$$

- in absence of interactions the field amplitude decays inside the horizon, and is constant outside
- interaction (depending on their strength and frequency) can arrest, and reverse this dilution.

typical superhorizon behavior of field amplitude

log-normal distribution

Mean
$\left.\left.\langle\ln | \chi\right|^{2}\right\rangle \propto\left(t-t_{\star}\right)$

Variance
$\operatorname{Var}\left[\ln |\chi|^{2}\right] \propto\left(t-t_{\star}\right)$

geometric random walk \& universality

On superhorizon scales the behavior of the fields is that of a geometric random walk:

$$
\left.\left\langle Z_{\mathbf{k}}(t) Z_{\mathbf{k}_{0}}\left(t_{0}\right)\right\rangle \propto \theta\left(t-t_{0}\right) \quad \text { where } \quad Z_{\mathbf{k}}(t)=\ln |\chi|^{2}-\left.\langle\ln | \chi\right|^{2}\right\rangle
$$

the shape is universal (up to known/calculable scalings)

$$
\begin{aligned}
& \triangle \mathbb{\Delta}^{\Delta} \\
& \mathbb{\Delta}^{\Delta} .
\end{aligned}
$$

caveats

- weak scattering ?
- exponential growth: linearity/ backreaction ?

assumptions

Fokker Planck equation relied on weak scattering assumption

$$
\partial_{\tau} P(\mathrm{M} ; \tau)=\frac{\langle\delta \mathrm{M}\rangle_{\mathrm{M}_{2}}}{\delta \tau} \partial_{\mathrm{M}} P(\mathrm{M} ; \tau)+\frac{\langle\delta \mathrm{M} \delta \mathrm{M}\rangle_{\mathrm{M}_{2}}}{\delta \tau} \partial_{\mathrm{M}} \partial_{\mathrm{M}} P(\mathrm{M} ; \tau)+\cdots
$$

possible resolution: Random Matrix Theory

two large N's to make life easier:

- large number of fields:
$N_{\text {f }}$

- eigenvalue spectrum of M_{j}
- large number of scatterings:

- non-random limit of $\mathrm{M}=\prod_{j=1}^{N_{\mathrm{s}}} \mathrm{M}_{j}$
A. Crisanti, G. Paladin, and A. Vulpiani (1993). prediction for exponential behavior in time
non-random behavior of the exponent

FP equation relied on weak scattering per interaction, RMT does not!

caveats

- weak scattering ?
- exponential growth - nonlinearity?
- nonlinearity/backreaction can be avoided for sufficiently weak scattering or finite duration of scattering
- however, for reheating, eventual lattice simulations will likely needed [another talk]

applications

applications: inflation

MA, Baumann, Carlsten, Garcia \& Green
background dynamics \longrightarrow particle production \leftrightarrow curvature fluctuations

$$
\left\langle\chi_{k_{1}} \chi_{k_{2}} \ldots\right\rangle \quad\left\langle\zeta_{k_{1}} \zeta_{k_{2}} \ldots\right\rangle
$$

also see: Dias, Fraser \& Marsh (20|5)

effects on curvature perturbations ?

background dynamics \longrightarrow particle production

$$
\left\langle\chi_{k_{1}} \chi_{k_{2}} \ldots\right\rangle
$$

curvature fluctuations

$$
\left\langle\zeta_{k_{1}} \zeta_{k_{2}} \ldots\right\rangle
$$

$$
\begin{gathered}
\ddot{\pi}_{k}+\left[3 H+\mathcal{O}_{\mathrm{d}}\right] \pi_{k}+\frac{k^{2}}{a^{2}} \pi_{k}=\mathcal{O}_{\mathrm{s}}\left(\langle\chi \chi \ldots\rangle_{k}\right) \quad \zeta_{k}=-H \pi_{k} \\
\text { dissipation }
\end{gathered}
$$

effects on curvature perturbations ?

$\left(k / k_{\star}\right)=1,10,10^{2}, 10^{3} \quad-k_{\star} \tau_{0}=10, \tau_{0} / \tau_{\mathrm{f}}=e^{15}$

$\mathcal{N}_{s} \sigma^{2} / H^{2}=1,15 \quad-k_{*} \tau_{0}=10, \tau_{0} / \tau_{\mathrm{f}}=e^{15}$

Power Spectrum

Higher n-point functions ?

background dynamics \rightarrow particle production

$$
\left\langle\chi_{k_{1}} \chi_{k_{2}} \ldots\right\rangle
$$

$$
\left\langle\zeta_{k_{1}} \zeta_{k_{2}} \ldots\right\rangle
$$

$$
\left\langle\zeta^{n}\right\rangle \sim\left\langle\zeta^{n}\right\rangle_{\chi=0}+\left\langle\zeta^{2}\right\rangle_{\chi=0}^{n} \times \exp \left[\frac{n^{2}}{2} F\left(\mathcal{N}_{\mathrm{s}} \frac{\sigma_{\mathrm{s}}^{2}}{H^{2}}\right)\right]
$$

Large Higher n-point Functions ?

background dynamics \rightarrow particle production

$$
\left\langle\chi_{k_{1}} \chi_{k_{2}} \ldots\right\rangle
$$

curvature fluctuations

$$
\left\langle\zeta_{k_{1}} \zeta_{k_{2}} \ldots\right\rangle
$$

- how to measure ?
- increased probability of rare events ?

application to gravitational waves?

background dynamics \longrightarrow particle production

$$
\left\langle\chi_{k_{1}} \chi_{k_{2}} \ldots\right\rangle
$$

gravitational waves?
$\left\langle h_{k_{1}} h_{k_{2}} \ldots\right\rangle$

applications : reheating

Kofman, Linde \& Starobinsky (1997)
Traschen \& Brandenberger (1997)
Zanchin et. al (I998) \& Bassett (1998) [with noise]
Giblin, Nesbit, Ozsoy, Sengor \& Watson (2016-I7)

model-insensitive description of a complicated reheating process.

simplicity from stochasticity

summary

- statistical tools for theoretical complexity
- hints of uniyersality
- observed simplicity in spite of underlying complexity + hints in higher point correlations?

