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synopsis

- theoretical tools for calculating particle production in sufficiently 
complex models of inflation and reheating

- hints of universality

reheating

inflation

�n
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motivation



Planck 2015

anisotropies: 
cosmic microwave background 

�T/T ⇠ 10�5



~ gaussian almost scale invariant

seemingly “acausal” ~ adiabatic



inflation: a simple explanation?

a ⇠ eHt

a ⇠ eHt

• “acausal”
• almost gaussian
• scale invariant
• adiabatic

quantum
fluctuations

Guth, Linde, Starobinsky, Steinhardt, Albrecht, Mukhanov 



• what is the physics of inflation ?

• how did the universe get populated with particles after inflation ? 
(reheating)

a ⇠ eHt

physics of inflation and reheating?

inflation

reheating
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inflation

TeV

reheating
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two approaches

credit: Wayne Hu

SIMPLE enough COMPLEX enough



theory : its complicated (probably)

a ⇠ eHt

• inflation

• reheating after inflation



• observations: early universe is simple

• theory: not so much …

• coarse grained view ? 

• calculational tools ?

a coarse grained approach?

for related motivation, also see: 
“EFT of inflation” (Cheung et. al 2007)  &
“Towards EFT approach to reheating” (Giblin et. al 2016/17)



inspiration from disordered wires

MA & Baumann 2015



the framework



• inflation/reheating: many interacting fields

• fluctuations: coupled, non-perturbative

multifield inflation/reheating

reheating

inflation �

�n



multifield inflation/reheating

reheating

inflation �

�n

4 Generalization to Multiple Fields

Ultimately, one of our motivations is to describe the complex multi-field dynamics that may have

occurred in the early universe. This also has a direct analog in the theory of disordered wires.

So far, we have ignored the finite thickness of the wire. Taking the thickness into account leads

to a finite number of transverse excitations in the electron wavefunction. This then gives rise

to coupled, longitudinal ‘conduction channels’. In this section, we will develop the framework

of stochastic particle production with multiple fields and its correspondence to multi-channel

conduction.

4.1 Preliminaries
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. The linearized equation of motion for the field fluctuations can be

written in the following from (see e.g. [23])
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The ellipses in (4.3) stand for a complicated set of terms arising, for instance, from a nontrivial
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17The assumption Gab = �ab can also be justified from an e↵ective field theory perspective [25]: in cases of strong

disorder in the mass term, the corrections to Gab are often irrelevant in the technical sense.
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focus on perturbations

reheating

inflation

�n
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focus on perturbations

reheating

inflation

�n

mode functions in Fourier space

the explicit numerical algorithm used for calculating the particle production rate. Finally, in

Appendix A.4 we discuss technical details of the Haar measure for the transfer matrices.

Notation and Conventions

Throughout, we will use natural units, c = ~ ⌘ 1. The time variable will be ⌧ , and overdots will

denote derivatives with respect to ⌧ . We will use a bold sans-serif font for matrices, e.g. M, n,�.

The indices a, b, . . . will be used for field indices. We use the +��� metric convention.

2 The Model
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and couplings m

s
ab(⌧). Here a, b = 1, 2, . . . , Nf . The quadratic action for these fields is taken to

be

S

(2) =

Z
d

4
xL =

Z
d

4
x

NfX

a,b=1

✓
1

2
�ab@µ�

a
@�

b � 1

2
Mab(⌧)�

a
�

b

◆
,

Mab(⌧) = m

2
a�ab +m

s
ab(⌧) .

(2.1)

The above action is to be interpreted as the action for perturbations around a complicated time

dependent background due to the presence of many fields. The equations of motion for the fields
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where we have used the symbol �a for the Fourier transform of the fields as well as the fields

themselves. We will be explicitly dealing with Fourier space quantities from now on. To reduce

clutter, the dependence of the fields and !a on the wavenumber k will be suppressed.

The time dependence of ms
ab(⌧) can be quite complex. For example, ms

ab(⌧) can consist of a

series of well separated “hills” and “valleys”, uniformly distributed in time. Between these hills

and valleys, the fields are assumed to be free and uncoupled (see fig. 1).
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complexity in the  
“effective mass”/ interactions
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simplified version!



complexity in the  
“effective mass”/ interactions
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 particle production as “scattering”
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chaining transfer matrices
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where M � MNs · · · M2M1|�k(Ns)i = M|�k(0)i
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• details not known

• “typical” behavior ?

ntyp?

typical behavior 
 in spite of ignorance of details ?



“brownian motion” of the 
occupation number
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a drifted random walk 
 different realizations
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probability distribution ? 
typical occupation number ? 
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Fokker Planck eq: heuristic derivationFigure 3. (DB: Mustafa, please add caption; explain input of simulation; units)

Figure 4. A time interval of length ⌧ and total transfer matrixM1 is followed by an infinitesimal interval �⌧
with transfer matrix M2. The transfer matrix of the combined system is M = M1M2.
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This will become the FP equation after an appropriate parametrization of the transfer matrices,

which we turn to next.

It will be convenient to write the transfer matrix (2.5) in polar form (cf. §A.1):
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7In words, the probability of being here at a given time is equal to the probability of being somewhere else a

bit earlier multiplied by the probability of making the transition from somewhere else to here (integrated over all

places from which one can transition to here). Note that this part is not restricted to the single-field case (see

Appendix A).
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M = M2 ·M1

P (M, ⌧ + �⌧) =
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dµ(M1) dµ(M2)P (M1, ⌧)P (M2, �⌧) �(M�M2M1)
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these needs to be calculated (usually possible)

M = M2 ·M1

P (M, ⌧ + �⌧) =

Z
dµ(M1) dµ(M2)P (M1, ⌧)P (M2, �⌧) �(M�M2M1)

weak scattering assumption
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“local” mean particle production rate
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solution: “universal” distributions
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Here, we have made use of the fact that ✓

1

= ✓ + �✓, with �✓ independent of ✓. We apologize

for the somewhat ambiguous notation: the P ’s without the arguments ✓ should be understood

as the original P ’s integrated over ✓. Substituting (3.6) into (3.11), we get

P (n; ⌧ + �⌧) = hP (n+ �n; ⌧)i
�⌧

.

(3.12)

Taylor expanding the left-hand side with respect to �⌧ and the right-hand side with respect to �n,

we find

@

⌧

P (n; ⌧) =
@

@n

P (n; ⌧)
h�ni

�⌧

�⌧

+
1

2

@

2

@n

2

P (n; ⌧)
h(�n)2i

�⌧

�⌧

+ · · · ,

(3.13)

where, using (3.8), we have

h�ni
�⌧

= (µ�⌧)(1 + 2n) ,

h(�n)2i
�⌧

= (µ�⌧)2n(1 + n) + O[(µ�⌧)2] .
(3.14)

This being an expansion in µ�⌧ = hn
2

i
�⌧

means that we are restricting to cases where the local

particle production rate is always small. This is the most limiting assumption of this derivation

and should be kept in mind while applying our framework.

Putting everything together, we arrive at the final form of the Fokker-Planck equation

1

µ

k

@

@⌧

P (n; ⌧) = (1 + 2n)
@

@n

P (n; ⌧)
| {z }

drift

+ n(1 + n)
@

2

@n

2

P (n; ⌧)
| {z }

di↵usion

, (3.15)

where we have restored the momentum dependence in the mean particle production rate, µ
k

⌘
�

k

/�⌧ , but left it implicit in the number density, n = n

k

.

We find it useful to write the FP equation in the following form

1

µ

k

@

@⌧

P (n; ⌧) =
@

@n

✓

n(n+ 1)
@P

@n

◆

. (3.16)

(MA: Figure and histogram) It is also instructive to consider the asymptotic limit, n � 1, of

the FP equation. In that case n

2 + n ! n

2 in (3.16) and it is easy to show that the solution is

the log-normal distribution

P (n; ⌧)dn =
1p

4⇡µ
k

⌧

exp

"

�
�

lnn � µ

k

⌧

�

2

4µ
k

⌧

#

d lnn . (3.17)

This shouldn’t be surprising. In §2.3, we saw that the phase-average of lnn is the sum of the log’s

of the particle densities produced at each scattering. The central limit theorem then suggests

that lnn is Gaussian distributed (and n obeys a log-normal distribution). This is true, except

for deviations at small n. These deviations arise because the total transmission probability is

bounded by 1 (and n is bounded by 0). For n ⌧ 1, we have n2+n ! n in (3.16) and the solution

becomes

P (n; ⌧) =
1

µ

k

⌧

exp



� n

µ

k

⌧

�

. (3.18)

In fact, the FP equation (3.16) can be solved exactly [18] for all n, although the integral form

of the solution isn’t very instructive. We will find it more useful to study the moments of the

density directly.
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ln(1 + hni)

ln(1 + ntyp)



moments: Fokker Planck equation

Var(n)

�n�2
µk��1������� e2µk�

�n� =
1

2

�
e2µk� � 1

� hln(1 + n)i = µk⌧

Var[ln(1 + n)]

hln(1 + n)i2 �! 2

µk⌧

The most probable value of the occupation number

ntyp ⌘ exphln(1 + n)i = eµk⌧



ntyp ⌘ exphln(1 + n)i = eµk⌧

the typical occupation number
lo
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MA & Baumann (2015)

ln
(1

+
n
)

P (n, ⌧)



what is the connection to wires?

�n



electron wave function: disordered wires

impurites

electron waves

location along the wire x !



Anderson localization !

 

00(x) +
⇥
k

2 � V (x)
⇤
 (x) = 0

Anderson 1957

 � x

 (x) = e

�x/2⇠



universal behavior

impurites

electron waves res
ista

nce
 • impurities increase resistance exponentially

location along the wire x !

at low temperatures,  one dimensional wires are insulators



complexity in time 
cosmology

 � x

�V (x)

 

00(x) +
⇥
k

2 � V (x)
⇤
 (x) = 0

⌧ �!

m2
e↵(⌧)

�̈k(⌧) +
⇥
k2 +m2

e↵(⌧)
⇤
�k(⌧) = 0  !

complexity in space 
wires

simplified version!

exponential growth in occupation number Anderson localization

for periodic case with noise see Zanchin et. al 1998, Brandenburger & Craig 2008



dictionary

Time-dependent “Klein-Gordon” Time-independent Schrödinger

resistanceoccupation number

mean free path(local) particle production rate

multiple channelsmultiple fields

�̈k(⌧) +
⇥
k2 +m2

e↵(⌧)
⇤
�k(⌧) = 0



multifield dynamics

�n



many fields

early universe: multiple interacting fields:


d2

d⌧2
+ !2

a(k)

�
�a(⌧, k) +

NfX

b=1

ms
ab(⌧)�

b(⌧, k) = 0



many fields

early universe: multiple fields:

For the second-order change in f, eq. (3.22a) yields for the o↵-diagonal components

(u†�u(1))ab =
g

(1)
ab

fb � fa
, (a 6= b) . (3.24)

In turn, this expression can be substituted into eq. (3.22b) to obtain the diagonal entries, which

correspond to

�f

(2)
a = g

(2)
aa +

X

c 6=a

g

(1)
ac g

(1)
ca

fa � fc
. (3.25)

The first-order corrections for the entries of u can be obtained from the o↵-diagonal components

of eq. (3.22a), and from the diagonal entries of eq. (3.22c). These lead to the relations eq. (3.24)

and

(u†�u(1))aa =
g̃

(1)
aa

2f̃a
� fa

2f̃2
a

�fa . (3.26)

These two equations form a linear system for the perturbations of u, which can be solved explicitly

as

�u

(1)
ab =

X

c 6=b

uacg
(1)
cb

fb � fc
+

uab

2f̃2
b

⇣
f̃bg̃

(1)
bb � fbg

(1)
bb

⌘
. (3.27)

Analogously, one can solve for the second-order corrections for u components, which are given by

�u

(2)
ab =

X

c 6=b

uac

fb � fc

h
g

(2)
cb + g

(1)
cd (u†�u(1))db � g

(1)
bb (u†�u(1))cb

i

+
uab

2f̃b

h
g̃

(2)
bb � �f̃

(2)
b � g̃

(1)
bd (u†�u(1))⇤db � �f̃

(1)
b (u†�u(1))bb � f̃b(�u

(1)†
�u

(1))bb
i
. (3.28)

To make further progress, we need an explicit form of mj . Below we will choose Dirac-delta

scatterers. Once the form of mj is specified, we can solve, in principle, for the increments in the

parameters of ��(i)
a for arbitrary Nf . In practice this is a non-trivial calculation made particularly

onerous by the large number of parameters (Nf
2) in u and (Nf) in f.

3.5 Dirac Delta Scatterers

The general formalism we have presented is independent of the precise form of the scatterers (mj),

but having a concrete simple example in mind makes things simpler to present and also allows

for explicit calculations. With this in mind, as long as we restrict ourselves to wavenumbers

k ⌧ w

�1, we approximate m

s
ab(⌧) as follows:

m

s
ab(⌧) = 2

p
!a!b

NsX

j=1

⇤ab(⌧j)�(⌧ � ⌧j) , (3.29)

where Ns is the number of events, ⌧j are uniformly distributed, and �(⌧ � ⌧j) are Dirac Delta

functions. For each ⌧j , the Nf ⇥ Nf elements of ⇤ab(⌧j) which characterize the strength of the

scatterers are drawn from some distribution. We assume that the distributions are identical and
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
d2

d⌧2
+ !2

a(k)

�
�a(⌧, k) +

NfX

b=1

ms
ab(⌧)�

b(⌧, k) = 0

“thin” scatterers



early universe: multiple fields:

For the second-order change in f, eq. (3.22a) yields for the o↵-diagonal components

(u†�u(1))ab =
g

(1)
ab

fb � fa
, (a 6= b) . (3.24)

In turn, this expression can be substituted into eq. (3.22b) to obtain the diagonal entries, which

correspond to

�f

(2)
a = g

(2)
aa +

X

c 6=a

g

(1)
ac g

(1)
ca

fa � fc
. (3.25)

The first-order corrections for the entries of u can be obtained from the o↵-diagonal components

of eq. (3.22a), and from the diagonal entries of eq. (3.22c). These lead to the relations eq. (3.24)

and

(u†�u(1))aa =
g̃

(1)
aa

2f̃a
� fa

2f̃2
a

�fa . (3.26)

These two equations form a linear system for the perturbations of u, which can be solved explicitly

as

�u

(1)
ab =

X

c 6=b

uacg
(1)
cb

fb � fc
+

uab

2f̃2
b

⇣
f̃bg̃

(1)
bb � fbg

(1)
bb

⌘
. (3.27)

Analogously, one can solve for the second-order corrections for u components, which are given by

�u

(2)
ab =

X

c 6=b

uac

fb � fc

h
g

(2)
cb + g

(1)
cd (u†�u(1))db � g

(1)
bb (u†�u(1))cb

i

+
uab

2f̃b

h
g̃

(2)
bb � �f̃

(2)
b � g̃

(1)
bd (u†�u(1))⇤db � �f̃

(1)
b (u†�u(1))bb � f̃b(�u

(1)†
�u

(1))bb
i
. (3.28)

To make further progress, we need an explicit form of mj . Below we will choose Dirac-delta

scatterers. Once the form of mj is specified, we can solve, in principle, for the increments in the

parameters of ��(i)
a for arbitrary Nf . In practice this is a non-trivial calculation made particularly

onerous by the large number of parameters (Nf
2) in u and (Nf) in f.

3.5 Dirac Delta Scatterers

The general formalism we have presented is independent of the precise form of the scatterers (mj),

but having a concrete simple example in mind makes things simpler to present and also allows

for explicit calculations. With this in mind, as long as we restrict ourselves to wavenumbers

k ⌧ w

�1, we approximate m

s
ab(⌧) as follows:

m

s
ab(⌧) = 2

p
!a!b

NsX

j=1

⇤ab(⌧j)�(⌧ � ⌧j) , (3.29)

where Ns is the number of events, ⌧j are uniformly distributed, and �(⌧ � ⌧j) are Dirac Delta

functions. For each ⌧j , the Nf ⇥ Nf elements of ⇤ab(⌧j) which characterize the strength of the

scatterers are drawn from some distribution. We assume that the distributions are identical and
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Figure 3: The dependence of the

self/cross-coupling variances �

2
ab /

⇥
(k2 +m

2
a)(k

2 +m

2
b)
⇤�1/2

on the wavenum-

ber k.

independent for all ⌧j . Note that the elements

of ⇤ab(⌧j) must be symmetric with respect to

a and b. The scaling with 2
p
!a!b is for future

convenience. We will assume that for each ⌧j

h⇤ab(⌧j)i = 0 ,

h⇤ab⇤cdi = �

2
ab(�ac�bd + �ad�bc) .

(3.30)

With the parametrization (3.29), the scatte-

ring strength variances �2
ab are functions of the

wavenumber k and the corresponding scalar

field masses (see fig. 3).

By imposing appropriate junction condi-

tions on �

a at ⌧ = ⌧j , the 2Nf ⇥ 2Nf trans-

fer matrix at Mj for the Dirac delta function

scatterers evaluates to

Mj =

 
p

⇤
j 0

0 pj

! 
1 + i⇤j i⇤j

�i⇤j 1 � i⇤j

! 
pj 0

0 p

⇤
j

!
= 1 + i

 
p

⇤
j 0

0 pj

! 
⇤j ⇤j

�⇤j �⇤j

! 
pj 0

0 p

⇤
j

!

| {z }
mj

, (3.31)

where

pj ⌘

0

BBBB@

e

i!1⌧j 0 . . . 0

0 e

i!2⌧j
. . . 0

...
...

. . .
...

0 0 . . . e

i!Nf
⌧j

1

CCCCA
, and [⇤j ]ab = ⇤ab(⌧j) . (3.32)

The right hand sides of eqns. (3.22a)-(3.22d) for the delta function scatterers can be written as

g

(1) ⌘ [�, f] + [⌃, f̃] + f̃(⌃+ ⌃⇤) ,

g

(2) ⌘ ��f�+ �f̃⌃⇤ � ⌃f̃�+ ⌃f⌃⇤
,

g̃

(1) ⌘ �f̃ + ⌃f + f⌃� f̃�⇤
,

g̃

(2) ⌘ �f⌃� �f̃�⇤ + ⌃f̃⌃� ⌃f�⇤
,

(3.33)

where we have defined for the j + 1-th scatterer

⌃ ⌘ iu

†
p

†
j+1⇤j+1p

⇤
j+1u

⇤
, and � ⌘ iu

†
p

†
j+1⇤j+1pj+1u . (3.34)

Note that u is evaluated at j rather than j + 1.

With the explicit form of the local transfer matrix at hand, we can immediately calculate

the disorder-averaged quantities that appear in the expression for the typical occupation number

defined in eq. (3.15), for any number of fields. Namely, for the coe�cients that depend on the

first-order correction to f, we can rewrite eq. (3.23) in terms of the matrix g

(1) given in eq. (3.33).
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many fields


d2

d⌧2
+ !2

a(k)

�
�a(⌧, k) +

NfX

b=1

ms
ab(⌧)�

b(⌧, k) = 0



many coupled fields

current conduction: multiple channels.
real wires are not one-dimensional.

early universe: multiple interacting fields:

For the second-order change in f, eq. (3.22a) yields for the o↵-diagonal components

(u†�u(1))ab =
g

(1)
ab

fb � fa
, (a 6= b) . (3.24)

In turn, this expression can be substituted into eq. (3.22b) to obtain the diagonal entries, which

correspond to

�f

(2)
a = g

(2)
aa +

X

c 6=a

g

(1)
ac g

(1)
ca

fa � fc
. (3.25)

The first-order corrections for the entries of u can be obtained from the o↵-diagonal components

of eq. (3.22a), and from the diagonal entries of eq. (3.22c). These lead to the relations eq. (3.24)

and

(u†�u(1))aa =
g̃

(1)
aa

2f̃a
� fa

2f̃2
a

�fa . (3.26)

These two equations form a linear system for the perturbations of u, which can be solved explicitly

as

�u

(1)
ab =

X

c 6=b

uacg
(1)
cb

fb � fc
+

uab

2f̃2
b

⇣
f̃bg̃

(1)
bb � fbg

(1)
bb

⌘
. (3.27)

Analogously, one can solve for the second-order corrections for u components, which are given by

�u

(2)
ab =

X

c 6=b

uac

fb � fc

h
g

(2)
cb + g

(1)
cd (u†�u(1))db � g

(1)
bb (u†�u(1))cb

i

+
uab

2f̃b

h
g̃

(2)
bb � �f̃

(2)
b � g̃

(1)
bd (u†�u(1))⇤db � �f̃

(1)
b (u†�u(1))bb � f̃b(�u

(1)†
�u

(1))bb
i
. (3.28)

To make further progress, we need an explicit form of mj . Below we will choose Dirac-delta

scatterers. Once the form of mj is specified, we can solve, in principle, for the increments in the

parameters of ��(i)
a for arbitrary Nf . In practice this is a non-trivial calculation made particularly

onerous by the large number of parameters (Nf
2) in u and (Nf) in f.

3.5 Dirac Delta Scatterers

The general formalism we have presented is independent of the precise form of the scatterers (mj),

but having a concrete simple example in mind makes things simpler to present and also allows

for explicit calculations. With this in mind, as long as we restrict ourselves to wavenumbers

k ⌧ w

�1, we approximate m

s
ab(⌧) as follows:

m

s
ab(⌧) = 2

p
!a!b

NsX

j=1

⇤ab(⌧j)�(⌧ � ⌧j) , (3.29)

where Ns is the number of events, ⌧j are uniformly distributed, and �(⌧ � ⌧j) are Dirac Delta

functions. For each ⌧j , the Nf ⇥ Nf elements of ⇤ab(⌧j) which characterize the strength of the

scatterers are drawn from some distribution. We assume that the distributions are identical and
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�
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multifield particle production 
as scattering

2Nf � 2NfM1 M2 MNs

|��(Ns)�|��(0)�

|��(Ns)� = M |��(0)� where M � MNs · · · M2M1



multifield particle production 
as scattering

2Nf � 2NfM1 M2 MNs

|��(Ns)�|��(0)�

|��(Ns)� = M |��(0)� where M � MNs · · · M2M1

total occupation number of fields:

n ⇠ Tr(MM†)



multi-dimensional Fokker Planck Eq.

|��(Ns)� = M |��(0)� where M � MNs · · · M2M1

Figure 3. (DB: Mustafa, please add caption; explain input of simulation; units)

Figure 4. A time interval of length ⌧ and total transfer matrixM1 is followed by an infinitesimal interval �⌧
with transfer matrix M2. The transfer matrix of the combined system is M = M1M2.

where M

1

= MM

�1

2

. The above equation only relies on the assumption that the process is

Markovian;7 it is called the Smoluchowski equation. Writing M

1

= M + �M(M,M

2

), eq. (3.1)

implies

@

⌧

P (M; ⌧) =
h�MiM2

�⌧

@MP (M; ⌧) +
h�M�MiM2

�⌧

@M@MP (M; ⌧) + · · · .

(3.2)

This will become the FP equation after an appropriate parametrization of the transfer matrices,

which we turn to next.

It will be convenient to write the transfer matrix (2.5) in polar form (cf. §A.1):

M =

 

e

i✓

p
1 + n e

i(2��✓)

p
n

e

�i(2��✓)

p
n e

�i✓

p
1 + n

!

, (3.3)

where we defined
t = Te

i✓

,

r = �(1 � T )e2i(✓��)

,

n = T

�1 � 1 .

(3.4)

7In words, the probability of being here at a given time is equal to the probability of being somewhere else a

bit earlier multiplied by the probability of making the transition from somewhere else to here (integrated over all

places from which one can transition to here). Note that this part is not restricted to the single-field case (see

Appendix A).
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Fokker Planck Equation:



exponential growth in  
typical occupation number

|��(Ns)� = M |��(0)� where M � MNs · · · M2M1

Figure 3. (DB: Mustafa, please add caption; explain input of simulation; units)

Figure 4. A time interval of length ⌧ and total transfer matrixM1 is followed by an infinitesimal interval �⌧
with transfer matrix M2. The transfer matrix of the combined system is M = M1M2.

where M

1

= MM

�1

2

. The above equation only relies on the assumption that the process is

Markovian;7 it is called the Smoluchowski equation. Writing M

1

= M + �M(M,M

2

), eq. (3.1)

implies

@

⌧

P (M; ⌧) =
h�MiM2

�⌧

@MP (M; ⌧) +
h�M�MiM2

�⌧

@M@MP (M; ⌧) + · · · .

(3.2)

This will become the FP equation after an appropriate parametrization of the transfer matrices,

which we turn to next.

It will be convenient to write the transfer matrix (2.5) in polar form (cf. §A.1):

M =

 

e

i✓

p
1 + n e

i(2��✓)

p
n

e

�i(2��✓)

p
n e

�i✓

p
1 + n

!

, (3.3)

where we defined
t = Te

i✓

,

r = �(1 � T )e2i(✓��)

,

n = T

�1 � 1 .

(3.4)

7In words, the probability of being here at a given time is equal to the probability of being somewhere else a

bit earlier multiplied by the probability of making the transition from somewhere else to here (integrated over all

places from which one can transition to here). Note that this part is not restricted to the single-field case (see

Appendix A).
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Fokker Planck Equation:

total occupation number of fields: n ⇠ Tr(MM†)

ntyp ⇠ exp


2

1 +Nf
hTr⇤2i ⌧

�

MA, Garcia, Xie & Wen (2017)



• simple Trace formula for estimating particle production rate when 
the number of fields is large (without being statistically similar)

• 𝝠 contains all the information about the strengths of interactions

robust results in large Nf  limit

ntyp ⇠ exp


2

1 +Nf
hTr⇤2i ⌧

�

MA, Garcia, Xie & Wen (2017)



ntyp?

ln
(1

+
n
)

• repeated non-perturbative particle production (ignoring expansion)

1. typical occupation number grows exponentially with time 

2. the distribution of occupation numbers is log-normal

summary so far

ntyp ⇠ eµk⌧

µk

k !

P (lnn, ⌧)



• repeated non-perturbative particle production (ignoring expansion)

1. typical occupation number grows exponentially with time 

2. the distribution of occupation numbers is log-normal

• effect of expansion ?

• applications to inflation and reheating ?

next up



expansion effects ?



stochastic particle production in 
expanding spacetime

m2
e↵(t) = m2 +m2

s (t)

m2
s (t) =

NsX

j=1

mj�(t� tj) hm2
j i ⌘ �2

s

• competition between growth from particle production and dilution due to 
expansion

• Useful parameter: Ns
�2
s

H2

# of scatters per Hubble time

�̈(t, k) + 3H�̇(t, k) +


k2

a2
+m2

e↵(t)

�
�(t, k) = 0



stochastic particle production in 
expanding spacetime

m2
e↵(t) = m2 +m2

s (t)

m2
s (t) =

NsX

j=1

mj�(t� tj) hm2
j i ⌘ �2

s

• competition between growth from particle production and dilution due to 
expansion

• Useful parameter: Ns
�2
s

H2

# of scatters per Hubble time

�̈(t, k) + 3H�̇(t, k) +


k2

a2
+m2

e↵(t)

�
�(t, k) = 0
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field evolution in deSitter 
conformal case:

SINGLE REALIZATION

weak scattering strong scattering I strong scattering II

ns(�/H)2 = 10�3 ns(�/H)2 = 102 ns(�/H)2 = 103

•        decreases as        sub-horizon 

• Super-horizon the rate depends on                , and interactions can slow down the 
decay. If scattering is strong enough, the field can grow exponentially
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0 5 10 15 20 25 30 35 40
H�t

10�30

10�20

10�10

100

|�
|2

5 10 15 20 25 30 35 40
H�t

10�21

10�16

10�11

10�6

10�1

5 10 15 20 25 30 35 40
H�t

10�7

103

1013

1023

1033

Ns(�
2
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2) = 10�2 Ns(�
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s /H

2) = 102 Ns(�
2
s /H

2) = 103

• in absence of interactions the field amplitude decays inside and outside the 
horizon 

• interaction (depending on their strength and frequency) can arrest, and 
reverse this dilution.

horizon crossing

m2 = 2H2

* better to deal with fields rather than occupation numbers of superhorizon scales

ln
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|2



SINGLE REALIZATION

weak scattering strong scattering I strong scattering II

ns(�/H)2 = 10�3 ns(�/H)2 = 102 ns(�/H)2 = 103

•        decreases as        sub-horizon 

• Super-horizon the rate depends on                . If scattering is weak, the amplitude 
freezes. If scattering is strong, the field grows exponentially fast.
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field evolution in deSitter 
massless case:

Ns(�
2
s /H

2) = 10�2 Ns(�
2
s /H

2) = 102 Ns(�
2
s /H

2) = 103

• in absence of interactions the field amplitude decays inside the horizon, and 
is constant outside

• interaction (depending on their strength and frequency) can arrest, and 
reverse this dilution. 

horizon crossing

m2 = 0
ln

|�
|2



typical superhorizon behavior of field amplitude
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log-normal distribution
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geometric random walk & universality
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On superhorizon scales the behavior of the fields is that of a geometric random walk:

the shape is universal (up to known/calculable scalings)

hZk(t)Zk0(t0)i / ✓(t� t0) where

/ (t� tc)



caveat



• weak scattering ?

• exponential growth: linearity/ backreaction ? 

caveats



assumptions

Fokker Planck equation relied on weak scattering assumption 

Figure 3. (DB: Mustafa, please add caption; explain input of simulation; units)

Figure 4. A time interval of length ⌧ and total transfer matrixM1 is followed by an infinitesimal interval �⌧
with transfer matrix M2. The transfer matrix of the combined system is M = M1M2.

where M

1

= MM

�1

2

. The above equation only relies on the assumption that the process is

Markovian;7 it is called the Smoluchowski equation. Writing M

1

= M + �M(M,M

2

), eq. (3.1)

implies

@

⌧

P (M; ⌧) =
h�MiM2

�⌧

@MP (M; ⌧) +
h�M�MiM2

�⌧

@M@MP (M; ⌧) + · · · .

(3.2)

This will become the FP equation after an appropriate parametrization of the transfer matrices,

which we turn to next.

It will be convenient to write the transfer matrix (2.5) in polar form (cf. §A.1):

M =

 

e

i✓

p
1 + n e

i(2��✓)

p
n

e

�i(2��✓)

p
n e

�i✓

p
1 + n

!

, (3.3)

where we defined
t = Te

i✓

,

r = �(1 � T )e2i(✓��)

,

n = T

�1 � 1 .

(3.4)

7In words, the probability of being here at a given time is equal to the probability of being somewhere else a

bit earlier multiplied by the probability of making the transition from somewhere else to here (integrated over all

places from which one can transition to here). Note that this part is not restricted to the single-field case (see

Appendix A).
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possible resolution: 
Random Matrix Theory 

M =
Ns�

j=1

Mj

two large N’s to make life easier: 

• large number of fields: 

Nf

• large number of scatterings: 

Ns

from RMT: • eigenvalue spectrum of • non-random limit of Mj

prediction for exponential behavior in time 

non-random behavior of the exponent

	 .	 A. Crisanti, G. Paladin, and A. Vulpiani (1993).  

FP equation relied on weak scattering per interaction, RMT does not! 



• weak scattering ?

• exponential growth — nonlinearity ? 

- nonlinearity/backreaction can be avoided for sufficiently weak 
scattering or finite duration of scattering

- however, for reheating, eventual lattice simulations will likely 
needed [another talk]

caveats



applications

inflation

reheating



applications: inflation

background dynamics particle production curvature fluctuations

h⇣k1⇣k2 . . .i

MA, Baumann, Carlsten, Garcia & Green 
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reheating

inflation �

�n

also see: Dias, Fraser & Marsh (2015)

h�k1�k2 . . .i



background dynamics particle production curvature fluctuations

h⇣k1⇣k2 . . .i

MA, Baumann, Carlsten, Garcia & Green  (in progress)
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• Curvature Perturbations with Dissipation and Driving : In this part of the project, the
overall goal is to exploit an e↵ective field theory (EFT) with dissipation and a driving
term [26] calculated from stochastic, non-perturbative particle production. The main
appeal of an EFT approach is that the form of the equation governing curvature pertur-
bations is determined by the breaking of time translation symmetry of the background.
In this language, the Goldstone mode ⇡

k

(which is related to long wavelength curvature
perturbation via ⇣

k

= �H⇡
k

) satisfies

⇡̈
k

+ [3H + O
d

] ⇡
k

+
k2

a2
⇡
k

= O
s

(h�� . . .i
k

) . (4)

The symbolic terms O
s

and O
d

are the driving and dissipation e↵ects due to the
stochastic particle production. These terms generally involve correlation functions of
the stochastically produced fields and the background evolution. The power spectrum
of inflationary perturbations can be calculated for a given realization of the stochastic
couplings. The statistical ensemble of the observable curvature power spectra can then
be directly related to the statistical properties of the stochastic couplings.1

• Comparison with Existing Works: Random potentials in the context of inflation have
been discussed in earlier works (see a recent example, see [27, 28, 29]). Rapid turns in
inflaton trajectories at the background level acts as a non-adiabatic, time-dependent
e↵ective mass. It might also be possible to understand the e↵ect of many heavy fields
during inflation [30, 31]. The statistical framework described in this proposal is readily
applicable to these scenarios, and a direct comparison to existing results will be possible.
These scenarios will serve as an excellent test case for the formalism in a realistic setting.

The main output from the proposed calculations is an ensemble of power spectra of curvature
fluctuations based on di↵erent realizations of the stochastic couplings. The moments of the
statistical ensemble are expected to be calculable within our framework from the statistical
properties of the stochastic couplings. For our observed universe, the calculations will provide
potentially non-trivial distributions and correlations of for the a

lm

’s characterizing the CMB
power spectra. These features in the a

lm

’s can be used as a discriminator of theories of infla-
tion with and without significant underlying complexity. Along with the CMB anisotropies,
similar calculations and predictions can be made for stochastic gravitational waves [32, 33, 34].

1c. Application to Reheating

The theoretical framework developed for calculating particle production in scenarios with
large number of non-adiabatic interactions and large number of unknown components is
ideal for reheating. Given the complexity of the dynamics, most of the literature on reheat-
ing include only a few components with simple interactions. For example, the seminal papers
on the subject [5, 6] dealt with how a single daughter field produced during reheating reacts
to non-adiabatic changes in a single field driven background. In earlier work by Zanchin et.
al [35, 36], the influence of perturbatively added noise on parametric resonance was explored.
Particle production in a quasi-periodic background was explored in [37], whereas a simplified

1Though the relationship need not be linear or even perturbative in the couplings.

9

• Curvature Perturbations with Dissipation and Driving : In this part of the project, the
overall goal is to exploit an e↵ective field theory (EFT) with dissipation and a driving
term [26] calculated from stochastic, non-perturbative particle production. The main
appeal of an EFT approach is that the form of the equation governing curvature pertur-
bations is determined by the breaking of time translation symmetry of the background.
In this language, the Goldstone mode ⇡

k

(which is related to long wavelength curvature
perturbation via ⇣

k

= �H⇡
k

) satisfies

⇡̈
k

+ [3H + O
d

] ⇡
k

+
k2

a2
⇡
k

= O
s

(h�� . . .i
k

) . (4)

The symbolic terms O
s

and O
d

are the driving and dissipation e↵ects due to the
stochastic particle production. These terms generally involve correlation functions of
the stochastically produced fields and the background evolution. The power spectrum
of inflationary perturbations can be calculated for a given realization of the stochastic
couplings. The statistical ensemble of the observable curvature power spectra can then
be directly related to the statistical properties of the stochastic couplings.1

• Comparison with Existing Works: Random potentials in the context of inflation have
been discussed in earlier works (see a recent example, see [27, 28, 29]). Rapid turns in
inflaton trajectories at the background level acts as a non-adiabatic, time-dependent
e↵ective mass. It might also be possible to understand the e↵ect of many heavy fields
during inflation [30, 31]. The statistical framework described in this proposal is readily
applicable to these scenarios, and a direct comparison to existing results will be possible.
These scenarios will serve as an excellent test case for the formalism in a realistic setting.

The main output from the proposed calculations is an ensemble of power spectra of curvature
fluctuations based on di↵erent realizations of the stochastic couplings. The moments of the
statistical ensemble are expected to be calculable within our framework from the statistical
properties of the stochastic couplings. For our observed universe, the calculations will provide
potentially non-trivial distributions and correlations of for the a

lm

’s characterizing the CMB
power spectra. These features in the a

lm

’s can be used as a discriminator of theories of infla-
tion with and without significant underlying complexity. Along with the CMB anisotropies,
similar calculations and predictions can be made for stochastic gravitational waves [32, 33, 34].

1c. Application to Reheating

The theoretical framework developed for calculating particle production in scenarios with
large number of non-adiabatic interactions and large number of unknown components is
ideal for reheating. Given the complexity of the dynamics, most of the literature on reheat-
ing include only a few components with simple interactions. For example, the seminal papers
on the subject [5, 6] dealt with how a single daughter field produced during reheating reacts
to non-adiabatic changes in a single field driven background. In earlier work by Zanchin et.
al [35, 36], the influence of perturbatively added noise on parametric resonance was explored.
Particle production in a quasi-periodic background was explored in [37], whereas a simplified

1Though the relationship need not be linear or even perturbative in the couplings.

9

effects on curvature perturbations ?

dissipation driving

Green, Horn, Senatore, and Silverstein (2009)

Nacir, Porto, Senatore, and Zaldarriaga (2012)

Flauger, Mirbabayi, Senatore, Silverstein (2016)

h�k1�k2 . . .i
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effects on curvature perturbations ?
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Figure 4: Correction to the Power spectrum due to scattering. The correction has a blue spectrum, with
an amplitude which is highly sensitive to xf/x0 for Ns�

2/H2 & 10. For Ns�
2/H2 . 10, the spectrum

is red. In the above plot k? is the typical wavenumber observed by the CMB. It is worth noting that
� = 3 corresponds to Ns�

2/H2 ⇡ 6.78 and ↵ + � = 10 corresponds to Ns�
2/H2 ⇡ 9.21. Finally, ↵ = 7

corresponds to Ns�
2/H2 ⇡ 10.65.

but, now with an improved appreciation for which part contributes most (INCOMPLETE).

While our result is exciting, it leads us to worry about backreaction issues. If the ⇣ power

spectrum sourced by scattering is becoming comparable to the vacuum one, it is likely that the

energy density of � field is becoming comparable to m2

pl

H2.
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MA, Baumann, Carlsten, Garcia & Green  (in progress)



background dynamics particle production curvature fluctuations

h⇣k1⇣k2 . . .i
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Power Spectrum

h�k1�k2 . . .i

MA, Baumann, Carlsten, Garcia & Green  (in progress)
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background dynamics particle production curvature fluctuations

h⇣k1⇣k2 . . .i
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Higher n-point functions ?

h�k1�k2 . . .i

from log normality

MA, Baumann, Carlsten, Garcia & Green  (in progress)

n � 1

h⇣ni ⇠ h⇣ni�=0 + h⇣2in�=0 ⇥ exp


n2

2

F

✓
Ns

�2
s

H2

◆�



background dynamics particle production curvature fluctuations

h⇣k1⇣k2 . . .i
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Large Higher n-point Functions ?

h�k1�k2 . . .i

• how to measure ?

• increased probability of rare events ?



background dynamics particle production gravitational waves?
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application to gravitational waves?

h�k1�k2 . . .i hhk1hk2 . . .i

breaking the inflationary energy scale - r relation
Peloso & Sorbo, Silverstein et. al, Mirabayi et. al etc



applications : reheating

new !

model-insensitive description of a 
complicated reheating process.

Kofman, Linde & Starobinsky (1997)
Traschen & Brandenberger    (1997) 
Zanchin et. al (1998) & Bassett (1998) [with noise]

    Giblin, Nesbit, Ozsoy, Sengor & Watson (2016-17)
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multichannel — multifield — statistical
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simplicity from stochasticity
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periodic stochastic

see hints in: Bassett (1998), Barnaby, Kofman & Braden et. al 2010 
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- statistical tools for theoretical complexity 

- hints of universality 

- observed simplicity in spite of underlying 
complexity + hints in higher point correlations?

summary


