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Synopsis

- theoretical tools for calculating particle production in sufficiently
complex models of inflation and reheating

- hints of universality
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work in progress

i

WORK IN PROGRESS

based on

MA & Baumann, Wires to Cosmology (2016)
MA, Garcia, Xie & Wen, Multifield Stochastic Particle Production (2017)

+ ongoing work with Garcia, Carleston, Chia, Baumann & Green




related work:

condensed matter & cosmology

Brandenburger & Taschen

Anderson
Absence of diffusion in certain random lattices (1990)
(1957) Kofman, Linde & Starobinsky
Mello, Pereyra Kumar ' (1994,1597)
Macroscopic approach to multichannel disordered wires Traschen and Brandenberger
(1987) : (1995)
C. Beenakker, Zanchin, Maia, Craig & Brandenberger
Random matrix theory of quantum transport 5 (1998)
(1997) :
: Bassett
C. Muller and D. Delande, (1998)
Disorder and interference: localization phenomena :
(2010) Green
' (2015)

+ many works on particle production during and after inflation.



motivation




anisotropies:
cosmic microwave background

Planck 2015



t

Invarian

almost scale

~ gaussian

~ adiabatic

ly “acausal”

seeming



CLNth

I”

e “acausa
* almost gaussian
e scale invariant

e adiabatic

s quantum
?%:3‘ fluctuations

4

echt, MURRanov

Guth, Linde, SEaRPbing



physics of inflation and reheating?

* what is the physics of inflation ?

* how did the universe get populated with particles after inflation ?
(reheating)
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two approaches

. SIMPLE enough

COMPLEX enough




theory : its complicated (probably)

e inflation -

* reheating after inflation
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a coarse grained approach?

* observations: early universe is simple

* theory: not so much ...

e coarse grained view !

e calculational tools?

for related motivation, also see:
“EFT of inflation” (Cheung et.al 2007) &

“Towards EFT approach to reheating” (Giblin et.al 2016/17)



inspiration from disordered wires

MA & Baumann 2015
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multifield inflation/reheating

* inflation/reheating: many interacting fields

* fluctuations: coupled, non-perturbative

inflation gb “17/ ~




multifield inflation/reheating

S = [dtay=g | PR = JCu(¢)0" 600" ~ V(6% + -

inflation ¢ “:7/




focus on perturbations

1 a 1 a.b
00 = [ 3 (Lo~ L)

Map(T) = a’ (7) [mgéab T mZb(T)]

W

inflation “:7/




focus on perturbations

mode functions in Fourier space

[% + ZZE:; dci' + az(T)w?L(k)] (1, k) + a* Zmab =0

it O /' Do .

inflation “:7/ ~




complexity in the

“‘effective mass’’/ interactions

simplified version!

T —>




complexity in the

“‘effective mass’’/ interactions

simplified version!

T —>




particle production as ‘“‘scattering”

| . occupation number per mode
> T .

i 1
n(k,T) 2 (IXxl” + wilxal?)

T. — 2 _|Irj|2_ —1

Kofman, Linde & Starobinsky 1997



chaining transfer matrices

Xk(Ns)) = M|xx(0)) where M = My, --- MaM;y
A M1 M2 |\/|NS
/N YA N\
MWW MWW MV AMAVVAP MV
VWWWWW A AV AV

T |



typical behavior

in spite of ignhorance of details ?

e details not known

* “typical”’ behavior !
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“brownian motion’ of the

occupation number




occupation humber performs
a drifted random walk

I A

10}

log(occupation number)
In(1+ n)




log(occupation number)

In(1+ n)

a drifted random walk
different realizations
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probability distribution ?

typical occupation number ?

log(occupation number)
In(1+n)

0 200 400 600 800 1000
T MA & Baumann (2015)




a Fokker Planck equation

In(1 4+ n)

log(occupation number)
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T MA & Baumann (2015)




Fokker Planck eq: heuristic derivation

M= My - My

PM, 74 61) = /d,u(l\/ll)d,u(l\/lg) P(M1,7)P(M3,07)6(M — MaMy)

Smoluchowski eq.

oM)
0T

(6MOM)
0T

“formal” Fokker Planck eq.

0, P(M; 7) = MM 5 b 7) - M o O P(M:T) 4 -



Fokker Planck eq: heuristic derivation

M= My - My

PM, 74 61) = /d,u(l\/ll)d,u(l\/lg) P(M1,7)P(M3,07)6(M — MaMy)

Smoluchowski eq.

llllllllllllllllllllllllllllllllllllllll

llllllllllllllllllllllllllllllllllllllll

these needs to be calculated (usually possible) weak scattering assumption



Fokker Planck eq: heuristic derivation

M= My - My

PM, 74 61) = /d,u(l\/ll)d,u(l\/lg) P(M1,7)P(M3,07)6(M — MaMy)

Smoluchowski eq.

lllllllllllllll

oM)
0T

0,P(M; 1) = ( M OmP(M; 7) A

lllllllllllllll

weak scattering assumption



“local”” mean particle production rate




“local”” mean particle production rate
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distributions

solution: ‘“‘universa
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moments: Fokker Planck equation

M=z -y W)=
Var(n)  ur>1 . 2HKT Var[ln(1+n)] = 2
(n)? (1 +n)? "

The most probable value of the occupation humber

Niyp = exp(In(l + n)) = e!*”




the typical occupation number

Neyp = exp(In(l +n)) = e#*7
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electron wave function: disordered wires

electron waves

location along the wire T —



Anderson localization !




universal behavior

* impurities increase resistance exponentially

A . /
N
electron waves @
Impurites l yd

AV NS | NS> b o | ]\\ MV

— l WWVW\ | _ . AVAVAVATAYL™=_ ] WWV\ i’ | W
\ \__~— T _ | ~~———

>

location along the wire = —

at low temperatures, one dimensional wires are insulators



complexity in time complexity in space

cosmology wires

exponential growth in occupation number Anderson localization

simplified version!

e |

— X

for periodic case with noise see Zanchin et.al 1998, Brandenburger & Craig 2008



dictionary

Time-dependent “Klein-Gordon” Time-independent Schrodinger
. kg 2 o d2¢
X () + [k7 + meg (7)) xu(7) =0 5+ (E-V(2))$ =0

E X
h
AMANW AM/WW
/\J Ny
occupation number ; resistance
(local) particle production rate mean free path

multiple fields multiple channels






many fields
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many fields
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early universe: multiple fields o
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many fields
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early universe: multiple fields: o
d2 al
s+ )] XK+ Y mey (N () =

Ny
mS, (T) = 2/wawy Z Agy(5)6(T — 1)

(Aap(75)) =0,
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many coupled fields

o ®
v
.__.—"'/W.
o >
early universe: multiple interacting fields: o .
2 Nt
s )| )+ Y )
b=1
Ns
miy (1) = 2v/@awp ¥ Aap(75)0(1 — 7)
j=1

real wires are not one-dimensional.
current conduction: multiple channels.



multifield particle production
as scattering




multifield particle production
as scattering

total occupation number of fields:

n ~ Tr(MMT)



multi-dimensional Fokker Planck Eq.

Fokker Planck Equation:
(OM)
0T

0-P(M;T) = "2 mP(M; 7)



exponential growth in
typical occupation number

MA, Garcia, Xie & Wen (2017)



robust results in large Nr limit

MA, Garcia, Xie & Wen (2017)

* simple Trace formula for estimating particle production rate when
the number of fields is large (without being statistically similar)

2

_1—|—Nf

(Tr A% T

* A contains all the information about the strengths of interactions



summary so far

repeated non-perturbative particle production (ignoring expansion)
|. typical occupation number grows exponentially with time

2. the distribution of occupation numbers is log-normal

» P(lnn, )

A

Mk

In(1+n)

>
L -

0 200 400 600 800 1000




* repeated non-perturbative particle production (ignhoring expansion)

|. typical occupation humber grows exponentially with time
2. the distribution of occupation numbers is log-normal
* effect of expansion !

* applications to inflation and reheating ?



expansion effects ?




stochastic particle production in

expanding spacetime

X(t, k) + 3H (1, k)4

e m2e(®)| (k) =0

N,
mZ(t) = ij5(t—tj) (m?) = o

- competition between growth from particle production and dilution due to

expansion

2
S

2

O

* Useful parameter: N

l

# of scatters per Hubble time



stochastic particle production in

expanding spacetime

X(t, k) + 3H (1, k)4

N,
mZ(t) = ij5(t—tj) (m?) = o

- competition between growth from particle production and dilution due to

expansion

2
S

2

O

* Useful parameter: N

l

# of scatters per Hubble time




field evolution in deSitter
conformal case: m° = 2H?

0 510 15 20 25 30 35 40 o} 10 15 20 25 30 35 40 5 10 15 20 25 30 35 40
HAt HAt HAt

- in absence of interactions the field amplitude decays inside and outside the
horizon

- interaction (depending on their strength and frequency) can arrest, and
reverse this dilution.

* better to deal with fields rather than occupation numbers of superhorizon scales



field evolution in deSitter

2
massless case: m~ = 0

5 10 15 20 25 30 35 40 0 5 10 15 20 25 30 35 40 o 10 15 20 25 30 35 40
HAt HAt HAt

- in absence of interactions the field amplitude decays inside the horizon, and
is constant outside

- interaction (depending on their strength and frequency) can arrest, and
reverse this dilution.



typical superhorizon behavior of field amplitude

L L I S e B | L S

- IxlEyp ~ exp [NeH(A/;USQ/éHQ)(t —1,)]
40+ ?

20}

In | x|*
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20

In | x|*

9ol

log-normal distribution

x5y ~ exp [pesr (Nsol /H?) (t — t4)]
40

P(ln |x|?, )

Mean

(In [x|*) oc (t — t.)

Variance

Var[ln |x|?] o< (t — t,)



geometric random walk & universality

(Zx(t) Zio (t0))

HAt P(In|x|?t)

On superhorizon scales the behavior of the fields is that of a geometric random walk:
(Zic(t) Zaeg (to)) o O(t — to) where Zae(t) = In [x]* = (In[x|?)

the shape is universal (up to known/calculable scalings)






caveats

* weak scattering !

* exponential growth: linearity/ backreaction ?



assumptions

Fokker Planck equation relied on weak scattering assumption

lllllllllll

(M) 2 OO P(M: 7)o+ - -

0T
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M2 omP(M; 1) 5

0, P(M;7) =
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possible resolution:

Random Matrix Theory

two large N’s to make life easier:

® |large number of fields: ® large number of scatterings:

Nf Ns

T T

from RMT: e cigenvalue spectrum of Mjé ® non-random limit of M = H M;
. ol

1
.............................................................. d e e e s s s s e e e e e e e E R R R R EEEEEEEEEEEEEEEE®E®E®:S®S®:S:S::

A. Crisanti, G. Paladin, and A. Vulpiani (1993).
prediction for exponential behavior in time

non-random behavior of the exponent

FP equation relied on weak scattering per interaction, RMT does not!



caveats

* weak scattering !

* exponential growth — nonlinearity ?

- nonlinearity/backreaction can be avoided for sufficiently weak
scattering or finite duration of scattering

- however, for reheating, eventual lattice simulations will likely
needed [another talk]



inflation

reheating

applications




applications: inflation

MA, Baumann, Carlsten, Garcia & Green

background dynamics —3 particle production €-» curvature fluctuations

<X/€1Xk2 - > <<k1 Ck2 .. >

also see: Dias, Fraser & Marsh (2015)



effects on curvature perturbations ?

background dynamics —3 particle production €-» curvature fluctuations

<X/€1Xk2 - > <<k1 Ck2 .. >

L2 Cr = —Hmy,

dissipation driving

Green, Horn, Senatore, and Silverstein (2009)
Nacir, Porto, Senatore, and Zaldarriaga (2012)
Flauger, Mirbabayi, Senatore, Silverstein (2016) MA, Baumann, Carlsten, Garcia & Green (in progress)



effects on curvature perturbations ?

(k/ky) =1,10,10%,10%  — kyry = 10,79 /7 = €' N?/H? =115 — k=10, 7/ = €
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MA, Baumann, Carlsten, Garcia & Green (in progress)



Power Spectrum

(k/ky) =1,10,10%,10*  — k.7 = 10, 79/7 = €% Nyo?/H> = 1,15 — ko =10,79/71 = €'
1_
1000.00"
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2 2
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MA, Baumann, Carlsten, Garcia & Green (in progress)



Higher n-point functions ?

background dynamics —3» particle production €—» curvature fluctuations

<X/€1Xk2 - > <<k1 CkQ .. >

from log normality

v

v, )« -
(C") ~ (") x=0 + <C2>;=0 X exp %F (Afs 22)_

n>1

MA, Baumann, Carlsten, Garcia & Green (in progress)



Large Higher n-point Functions ?

background dynamics —3» particle production €—» curvature fluctuations

<X/€1Xk2 - > <<k1 Ckz .. >

- how to measure ?

* increased probability of rare events !



application to gravitational waves!?

background dynamics —3» particle production €-»  gravitational waves!

<Xk1 ng .. > <hk1 th .. >

breaking the inflationary energy scale - r relation
Peloso & Sorbo, Silverstein et. al, Mirabayi et. al etc



applications : reheating

multichannel — multifield — statistical

/I\

Kofman, Linde & Starobinsky (1997) model-insensitive description of a
Traschen & Brandenberger (1997)

Zanchin et.al (1998) & Bassett (1998) [with noise]
Giblin, Nesbit, Ozsoy, Sengor & Watson (2016-17)

complicated reheating process.



simplicity from stochasticity

periodic stochastic
+ AN - N
E]
S x k2
3

see hints in: Bassett (1998), Barnaby, Kofman & Braden et.al 2010



= inflation
reheating
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- statistical tools¥for theoretical complexity

- hints of uni

/-ob;et_' icity.in spite of underlying
complexity + hints in higher point correlations?




