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Planck collaboration: CMB power spectra & likelihood
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Figure 37. The 2013 Planck CMB temperature angular power spectrum. The error bars include cosmic variance, whose magnitude
is indicated by the green shaded area around the best fit model. The low-` values are plotted at 2, 3, 4, 5, 6, 7, 8, 9.5, 11.5, 13.5, 16,
19, 22.5, 27, 34.5, and 44.5.

Table 8. Constraints on the basic six-parameter ⇤CDM model using Planck data. The top section contains constraints on the six
primary parameters included directly in the estimation process, and the bottom section contains constraints on derived parameters.

Planck Planck+WP

Parameter Best fit 68% limits Best fit 68% limits

⌦bh2 . . . . . . . . . 0.022068 0.02207 ± 0.00033 0.022032 0.02205 ± 0.00028

⌦ch2 . . . . . . . . . 0.12029 0.1196 ± 0.0031 0.12038 0.1199 ± 0.0027
100✓MC . . . . . . . 1.04122 1.04132 ± 0.00068 1.04119 1.04131 ± 0.00063

⌧ . . . . . . . . . . . . 0.0925 0.097 ± 0.038 0.0925 0.089+0.012
�0.014

ns . . . . . . . . . . . 0.9624 0.9616 ± 0.0094 0.9619 0.9603 ± 0.0073

ln(1010As) . . . . . 3.098 3.103 ± 0.072 3.0980 3.089+0.024
�0.027

⌦⇤ . . . . . . . . . . 0.6825 0.686 ± 0.020 0.6817 0.685+0.018
�0.016

⌦m . . . . . . . . . . 0.3175 0.314 ± 0.020 0.3183 0.315+0.016
�0.018

�8 . . . . . . . . . . . 0.8344 0.834 ± 0.027 0.8347 0.829 ± 0.012

zre . . . . . . . . . . . 11.35 11.4+4.0
�2.8 11.37 11.1 ± 1.1

H0 . . . . . . . . . . 67.11 67.4 ± 1.4 67.04 67.3 ± 1.2

109As . . . . . . . . 2.215 2.23 ± 0.16 2.215 2.196+0.051
�0.060

⌦mh2 . . . . . . . . . 0.14300 0.1423 ± 0.0029 0.14305 0.1426 ± 0.0025
Age/Gyr . . . . . . 13.819 13.813 ± 0.058 13.8242 13.817 ± 0.048
z⇤ . . . . . . . . . . . 1090.43 1090.37 ± 0.65 1090.48 1090.43 ± 0.54
100✓⇤ . . . . . . . . 1.04139 1.04148 ± 0.00066 1.04136 1.04147 ± 0.00062
zeq . . . . . . . . . . . 3402 3386 ± 69 3403 3391 ± 60
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Fig. 2. Planck TT (top), high-` T E (centre), and high-` EE (bot-
tom) angular power spectra. HereD` ⌘ `(` + 1)C`/(2⇡).

tion mask the union of the WMAP P06 and Planck lowP polar-
ization masks and keeping 74 % of the sky. The polarization part
of the combined low-multipole likelihood is called lowP+WP.
This combined low-multipole likelihood gives ⌧ = 0.071+0.011

�0.013
(Planck Collaboration XI, 2015).

Planck high-` likelihood

Following Planck Collaboration XV (2014), and Planck
Collaboration XI (2015) for polarization, we use a Gaussian
approximation for the high-` part of the likelihood (30 < ` <
2500), so that

� logL
⇣

Ĉ|C(✓)
⌘

=
1
2

⇣

Ĉ �C(✓)
⌘TM�1

⇣

Ĉ �C(✓)
⌘

, (12)

where a constant offset has been discarded. Here Ĉ is the data
vector, C(✓) is the model prediction for the parameter value vec-
tor ✓, and M is the covariance matrix. For the data vector, we
use 100 GHz, 143 GHz, and 217 GHz half-mission cross-power
spectra, avoiding the Galactic plane as well as the brightest point

sources and the regions where the CO emission is the strongest.
We retain 66 % of the sky for 100 GHz, 57 % for 143 GHz, and
47 % for 217 GHz for the T masks, and respectively 70 %, 50 %,
and 41 % for the Q, U masks. Following Planck Collaboration
XXX (2014), we do not mask for any other Galactic polarized
emission. All the spectra are corrected for the beam and pixel
window functions using the same beam for temperature and po-
larization. (For details see Planck Collaboration XI (2015).)

The model for the cross-spectra can be written as

Cµ,⌫(✓) =
Ccmb(✓) +Cfg

µ,⌫(✓)pcµc⌫
, (13)

where Ccmb(✓) is the CMB power spectrum, which is indepen-
dent of the frequency, Cfg

µ,⌫(✓) is the foreground model contribu-
tion for the cross-frequency spectrum µ ⇥ ⌫, and cµ is the cal-
ibration factor for the µ ⇥ µ spectrum. The model for the fore-
ground residuals includes the following components: Galactic
dust, clustered CIB, tSZ, kSZ, tSZ correlations with CIB, and
point sources, for the TT foreground modeling; and for polar-
ization, only dust is included. All the components are modelled
by smooth C` templates with free amplitudes, which are deter-
mined along with the cosmological parameters as the likelihood
is explored. The tSZ and kSZ models are the same as in 2013
(see Planck Collaboration XV, 2014), while the CIB and tSZ-
CIB correlation models use the updated CIB models described
in Planck Collaboration XXX (2014). The point source contam-
ination is modelled as Poisson noise with an independent am-
plitude for each frequency pair. Finally, the dust contribution
uses an effective smooth model measured from high frequency
maps. Details of our dust and noise modelling can be found in
Planck Collaboration XI (2015). The dust is the dominant fore-
ground component for TT at ` < 500, while the point source
component, and for 217⇥217 also the CIB component, dom-
inate at high `. The other foreground components are poorly
determined by Planck. Finally, our treatment of the calibration
factors and beam uncertainties and mismatch are described in
Planck Collaboration XI (2015).

The covariance matrix accounts for the correlation due to
the mask and is computed following the equations in Planck
Collaboration XV (2014), extended to polarization in Planck
Collaboration XI (2015) and references therein. The fiducial
model used to compute the covariance is based on a joint fit of
base ⇤CDM and nuisance parameters obtained with a previous
version of the matrix. We iterate the process until the parame-
ters stop changing. For more details, see Planck Collaboration
XI (2015).

The joint unbinned covariance matrix is approximately of
size 23 000⇥ 23 000. The memory and speed requirements for
dealing with such a huge matrix are significant, so to reduce its
size, we bin the data and the covariance matrix to compress the
data vector size by a factor of 10. The binning uses varying bin
width with �` = 5 for 29 < ` < 100, �` = 9 for 99 < ` < 2014,
and �` = 33 for 2013 < ` < 2509, and a weighting in `(` + 1)
to flatten the spectrum. Where a higher resolution is desirable,
we also use a more finely binned version (“bin3”, unbinned up
to ` = 80 and �` = 3 beyond that) as well as a completely
unbinned version (“bin1”). We use odd bin sizes, since for an
azimuthally symmetric mask, the correlation between a multi-
pole and its neighbours is symmetric, oscillating between posi-
tive and negative values. Using the base ⇤CDM model and sin-
gle parameter classical extensions, we confirmed that the cos-
mological and nuisance parameter fits with or without binning
are indistinguishable.

inflation consistent  
with observations

Planck 2015

l(
l
+
1)
C

l/
(2
⇡
)



what drives inflation ?

Guth 1980

a ⇠ eHt

ä > 0

se
pa

ra
tio

n

ä > 0

quantum jitter 
in space-time



simplest:  
single scalar field driven inflation 

�(t,x)

x

y



simplest:  
single scalar field driven inflation 

Lagrangian: L =
1

2
(@�)2 � V (�)

kinetic & gradient energy density

�(t,x)

x

y



simplest:  
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scalar field driven inflation
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slowly “rolling” field 
= accelerated expansion 

inflation
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constraints from observations
Planck Collaboration: Cosmological parameters
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Fig. 21. Left: Constraints on the tensor-to-scalar ratio r0.002 in the ⇤CDM model, using Planck TT+lowP and Planck
TT+lowP+lensing+BAO+JLA+H0 (red and blue, respectively) assuming negligible running and the inflationary consistency rela-
tion. The result is model-dependent; for example, the grey contours show how the results change if there were additional relativistic
degrees of freedom with �Ne↵ = 0.39 (disfavoured, but not excluded, by Planck). Dotted lines show loci of approximately con-
stant e-folding number N, assuming simple V / (�/mPl)p single-field inflation. Solid lines show the approximate ns–r relation for
quadratic and linear potentials to first order in slow roll; red lines show the approximate allowed range assuming 50 < N < 60 and
a power-law potential for the duration of inflation. The solid black line (corresponding to a linear potential) separates concave and
convex potentials. Right: Equivalent constraints in the ⇤CDM model when adding B-mode polarization results corresponding to the
default configuration of the BICEP2/Keck Array+Planck (BKP) likelihood. These exclude the quadratic potential at a higher level
of significance compared to the Planck-alone constraints.

limited by cosmic variance of the dominant scalar anisotropies,
and it is also model dependent. In polarization, in addition to B-
modes, the EE and T E spectra also contain a signal from tensor
modes coming from reionization and last scattering. However,
in this release the addition of Planck polarization constraints at
` � 30 do not significantly change the results from temperature
and low-` polarization (see Table 5).

Figure 21 shows the 2015 Planck constraint in the ns–r plane,
adding r as a one-parameter extension to base ⇤CDM. Note that
for base ⇤CDM (r = 0), the value of ns is

ns = 0.9655 ± 0.0062, Planck TT+lowP. (38)

We highlight this number here since ns, a key parameter for in-
flationary cosmology, shows one of the largest shifts of any pa-
rameter in base ⇤CDM between the Planck 2013 and Planck
2015 analyses (about 0.7�). As explained in Sect. 3.1, part of
this shift was caused by the ` ⇡ 1800 systematic in the nominal-
mission 217 ⇥ 217 spectrum used in PCP13.

The red contours in Fig. 21 show the constraints from Planck
TT+lowP. These are similar to the constraints shown in Fig. 23
of PCP13, but with ns shifted to slightly higher values. The ad-
dition of BAO or the Planck lensing data to Planck TT+lowP
lowers the value of ⌦ch2, which at fixed ✓⇤ increases the small-
scale CMB power. To maintain the fit to the Planck tempera-
ture power spectrum for models with r = 0, these parameter
shifts are compensated by a change in amplitude As and the tilt
ns (by about 0.4�). The increase in ns to match the observed
power on small scales leads to a decrease in the scalar power
on large scales, allowing room for a slightly larger contribution

from tensor modes. The constraints shown by the blue contours
in Fig. 21, which add Planck lensing, BAO, and other astrophys-
ical data, are therefore tighter in the ns direction and shifted to
slightly higher values, but marginally weaker in the r-direction.
The 95 % limits on r0.002 are

r0.002 < 0.10, Planck TT+lowP, (39a)
r0.002 < 0.11, Planck TT+lowP+lensing+ext, (39b)

consistent with the results reported in PCP13. Note that we as-
sume the second-order slow-roll consistency relation for the ten-
sor spectral index. The result in Eqs. (39a) and (39b) are mildly
scale dependent, with equivalent limits on r0.05 being weaker by
about 5 %.

PCP13 noted a mismatch between the best-fit base ⇤CDM
model and the temperature power spectrum at multipoles ` <⇠ 40,
partly driven by the dip in the multipole range 20 <⇠ ` <⇠ 30. If
this mismatch is simply a statistical fluctuation of the ⇤CDM
model (and there is no compelling evidence to think otherwise),
the strong Planck limit (compared to forecasts) is the result of
chance low levels of scalar mode confusion. On the other hand if
the dip represents a failure of the ⇤CDM model, the 95 % limits
of Eqs. (39a) and (39b) may be underestimates. These issues are
considered at greater length in Planck Collaboration XX (2015)
and will not be discussed further in this paper.

As mentioned above, the Planck temperature constraints on
r are model-dependent and extensions to ⇤CDM can give sig-
nificantly di↵erent results. For example, extra relativistic de-
grees of freedom increase the small-scale damping of the CMB
anisotropies at a fixed angular scale, which can be compensated

34
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Silverstein & Westhpal (2008)
McAllister et. al (2014)
Kallosh & Linde (2014)
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• Standard Model ? 
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• inflation ends 
• populate the universe 

(Standard Model) ?
• matter-antimatter asymmetry ?
• dark matter ?
• EW symmetry breaking
• QCD phase transition 
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detailed dynamics ?

�, �

• shape of the potential (self couplings)

• couplings to other fields

Traschen & Brandenburger (1990)
Kofman, Linde & Starobinsky (1994)
Shtanov, Traschen & Brandenberger (1995)
Kofman, Linde & Starobinsky (1997)
review: MA, Kaiser, Karouby & Hertzberg (2014)



end of inflation in “simple” models
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• shape of the potential (self couplings) 

• couplings to other fields
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dynamics after inflation
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dynamics after inflation
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dynamics after inflation



now in 3D:  
(iso-density surfaces)

MA, Easther, Finkel, Flaugher & Hertzberg (2011) 

0.25H�1
end



condition for rapid fragmentation ?

          MA (2010)
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insensitive to initial conditions

simulation of  “quasi-thermal” example in Farhi et. al 2008



insensitive to initial conditions

simulation of  “quasi-thermal” example in Farhi et. al 2008



lumps ?

(1) oscillatory (2) spatially localized (3) very long lived

Bogolubsky & Makhankov (1976), Gleiser (1994), Copeland, Gleiser and Mueller et al. (1995) …

osci
llon!

existence and stability:  
MA (2013)
MA & Shirokoff (2010)
Hertzberg (2011)
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oscillons and friends 
 - late universe
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Figure 2 | A slice of the density field of the  DM simulation on various
scales at z=0.1. This scaled sequence (each of thickness 60 pc) shows
how quantum interference patterns can be clearly seen everywhere from
the large-scale filaments, tangential fringes near the virial boundaries, to
the granular structure inside the haloes. Distinct solitonic cores with radii
⇠0.3–1.6kpc are found within collapsed haloes (which have virial masses
Mvir ⇠ 109˘1011 M�). The density shown here spans over nine orders of
magnitude, from 10�1 to 108 (normalized to the cosmic mean density). The
colour map scales logarithmically, with cyan corresponding to density .10.

giving rise to a co-moving Jeans length, �J / (1+z)1/4m�1/2
B , during

the matter-dominated epoch17. The insensitivity of �J to redshift, z ,
generates a sharp cuto�mass belowwhich structures are suppressed.
Cosmological simulations in this context turn out to be much
more challenging than standard N-body simulations, as the highest
frequency oscillations, !, given approximately by the matter wave
dispersion relation, ! /m�1

B �
�2, where � is the wavelength, occur

on the smallest scales, requiring very fine temporal resolution even
formoderate spatial resolution (Supplementary Fig. 1). In this work,
we optimize an adaptive-mesh-refinement (AMR) scheme, with
graphic processing unit acceleration, improving performance by
almost two orders of magnitude22 (see Supplementary Section 1
for details).

Figure 1 demonstrates that despite the completely di�erent
calculations employed, the pattern of filaments and voids generated
by a conventional N-body particle3CDM simulation is remarkably
indistinguishable from the wavelike 3 DM for the same linear
power spectrum (Supplementary Fig. 3). Here 3 represents the
cosmological constant. This agreement is desirable given the
success of standard 3CDM in describing the statistics of large-scale
structure. To examine the wave nature that distinguishes DM from
CDM on small scales, we re-simulate with a very high maximum
resolution of 60 pc for a 2 Mpc co-moving box, so that the densest
objects formed of &300 pc size are well resolved with ⇠103 grids. A
slice through this box is shown in Fig. 2, revealing fine interference
fringes defining long filaments, with tangential fringes near the
boundaries of virialized objects, where the de Broglie wavelengths
depend on the local velocity of matter. An unexpected feature of
our DMsimulations is the generation of prominent dense coherent
standing waves of dark matter in the centre of every gravitational
bound object, forming a flat core with a sharp boundary (Figs 2
and 3). These dark matter cores grow as material is accreted and
are surrounded by virialized haloes of material with fine-scale,
large-amplitude cellular interference, which continuously fluctuate
in density and velocity, generating quantum and turbulent pressure
support against gravity.

The central density profiles of all our collapsed cores fit well
the stable soliton solution of the Schrödinger–Poisson equation, as
shown in Fig. 3 (see also Supplementary Section 2 and Figs 2 and 4).
On the other hand, except for the lightest halo, which has just formed
and is not yet virialized, the outer profiles of other haloes possess a
steepening logarithmic slope, similar to the Navarro–Frenk–White
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Figure 3 | Radial density profiles of haloes formed in the  DMmodel.
Dashed lines with various symbols show six examples of the halo profiles
normalized to the cosmic mean density. All haloes are found to possess a
distinct inner core fitted extremely well by the soliton solution (solid lines).
A detailed soliton fit for the largest halo is inset, where the error is the root-
mean-square scatter of density in each radial bin. A Navarro–Frenk–White
(NFW) profile representing standard CDM is also shown for comparison
(black dot-dashed line, with a very large scale radius of 10kpc), which fits
well the profiles outside the cores. The yellow hatched area indicates the
⇢300 of the dSph satellites around the Milky Way3,24, which is consistent
with the majority of galaxy haloes formed in the  DM simulations.

(NFW) profile23 of standard CDM. These solitonic cores, which are
gravitationally self-bound and appear as additional mass clumps
superposed on the NFW profile, are clearly distinct from the cores
formed by WDM and collisional CDM, which truncate the NFW
cuspy inner profile at lower values and require an external halo for
confinement. The radius of the soliton scales inversely with mass,
such that the widest cores are the least massive and are hosted by the
least massive galaxies. Eighty percent of the haloes in the simulation
have an average density within 300 pc (defined as ⇢300) in the range
5.3⇥ 10�3–6.1⇥ 10�1 M�/pc3, consistent with the dSph satellites
around the Milky Way3,24, and objects like these are resilient to
close interaction with massive galaxies. By contrast, the very lowest
mass objects in our simulation have ⇢300 ⇠ 4.0⇥ 10�4 M�/pc3 and
Mvir ⇠108 M�, but exist only briefly as they are vulnerable to tidal
disruption by large galaxies in our simulations. Together with the
cuto� in the power spectrum at the Jeans scale (Supplementary
Fig. 3), this leads to a marked suppression of substructure below
a few times 108 M� relative to the prediction of standard CDM
(refs 8,9). A quantitative evaluation of the mass function of satellite
galaxies predicted by  DM with larger simulations is thus another
crucial test to be addressed.

The prominent solitonic cores uncovered in our simulations
provide an opportunity to estimate the boson mass, mB, by
comparison with observations, particularly for dSph galaxies where
dark matter dominates. The local Fornax dSph galaxy is the best
studied case, with thousands of stellar velocity measurements,
allowing a detailed comparison with our soliton mass profile.
We perform a Jeans analysis for the dominant intermediate
metallicity stellar population, which exhibits a nearly uniform
projected velocity dispersion (�k; ref. 25). We simultaneously
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(a)  DM (b) CDM

Schive et. al (2014) 

Nguyen, Luo & Hulet (2017)
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gravitational waves from oscillaton collisions 
* critical case  
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end of inflation in “simple” models

� , �

• shape of the potential (self couplings) 

• couplings to other fields
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Figure 3. The equation of state parameter obtained from the numerical simulations is shown for di↵erent values of
n and M . The orange curve and green curves correspond to initially e�cient (M ⇡ 7.75⇥ 10�3mPl) and ine�cient
resonance (M ⇡ 2.45mPl), with M ⇠ 2.5 ⇥ 10�2mPl separating the two regimes. The horizontal axes show the
number of e-folds after the end of inflation for e�cient (orange, bottom axis) and ine�cient (green, top axis)
resonance. The dashed line is drawn at w = 1/3 and the dotted line denotes the homogeneous equation of state.

complete fragmentation. The above statements
are quite general; however, n = 1 is special. In this
case, the higher order bands become too narrow
to allow for significant particle production at late
times, thus arresting further fragmentation.

Lattice simulations — The presence of linear
instabilities eventually leads to significant non-
linear dynamics of the fields. To study these
non-linear dynamics we solve the equations of
motion ⇤� + @�V = 0 and the Friedmann equa-
tion numerically using a parallelized version of
LatticeEasy [26]. We initialize the simulations
around the end of inflation with a homogeneous
condensate + vacuum fluctuations and evolve
them for a few�10 e-folds of expansion after this
instant. We ran di↵erent simulations (depending
on parameters) with N = 1283, 2563, 5123, and/or
10243 lattices, with the initial size of the simu-
lation volumes L ⇠ (few � 0.1)H�1

inf

. We always
terminated the simulations before resolution
e↵ects became important. Conservatively, the
lattice simulation results should be trusted for
the number of e-folds shown in Fig. 3. We also
verified that our results are independent of the
initial power spectra of field fluctuations on scales
which are not resonantly excited during the linear
stage. The details of the numerical checks and the
evolution of the power spectra will be presented
elsewhere.

The Equation of State — We now turn our
attention to the equation of state parameter
defined as

w ⌘ hpi
s

h⇢i
s

=
h�̇2/2� (r�)2/6a2 � V i

s

h�̇2/2 + (r�)2/2a2 + V i
s

. (3)

Here, p and ⇢ are the energy density and pressure
of the inflaton field respectively. The symbol h. . .i

s

stands for spatial average. The equation of state is
often rapidly oscillating compared to the expansion
time scales; a time average over many oscillations
should be assumed when we refer to w unless other-
wise stated. Note that if the spatially and tempo-
rally averaged gradient and kinetic energy densities
are equal to each other and dominate over the po-
tential energy density, we get w = 1/3.

We find the following results for the equation of
state at su�ciently late times:

w !
(
0 if n = 1 ,

1/3 if n > 1 ,
(4)

and independent of M . mPl. We explain the in-
dependence from M , the special nature of n = 1,
and the generic behavior for n > 1 below.

For e�cient initial resonance (M .
2.5 ⇥ 10�2mPl) the linear fluctuations grow
rapidly and backreact on the condensate. For
n = 1, meta-stable pseudo solitons (oscillons, see
for e.g. [27, 28]) are copiously produced within 1
e-fold of expansion. They behave as pressureless
dust, w = 0, and can lead to a long period of
matter dominated expansion. See the leftmost
panel in Fig. 3. For the n > 1 case, we still form
highly overdense field configurations that dominate
the energy density, but they are transients, lasting
for about an e-fold of expansion. Shortly after
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Figure 3. The equation of state parameter obtained from the numerical simulations is shown for di↵erent values of
n and M . The orange curve and green curves correspond to initially e�cient (M ⇡ 7.75⇥ 10�3mPl) and ine�cient
resonance (M ⇡ 2.45mPl), with M ⇠ 2.5 ⇥ 10�2mPl separating the two regimes. The horizontal axes show the
number of e-folds after the end of inflation for e�cient (orange, bottom axis) and ine�cient (green, top axis)
resonance. The dashed line is drawn at w = 1/3 and the dotted line denotes the homogeneous equation of state.

complete fragmentation. The above statements
are quite general; however, n = 1 is special. In this
case, the higher order bands become too narrow
to allow for significant particle production at late
times, thus arresting further fragmentation.

Lattice simulations — The presence of linear
instabilities eventually leads to significant non-
linear dynamics of the fields. To study these
non-linear dynamics we solve the equations of
motion ⇤� + @�V = 0 and the Friedmann equa-
tion numerically using a parallelized version of
LatticeEasy [26]. We initialize the simulations
around the end of inflation with a homogeneous
condensate + vacuum fluctuations and evolve
them for a few�10 e-folds of expansion after this
instant. We ran di↵erent simulations (depending
on parameters) with N = 1283, 2563, 5123, and/or
10243 lattices, with the initial size of the simu-
lation volumes L ⇠ (few � 0.1)H�1

inf

. We always
terminated the simulations before resolution
e↵ects became important. Conservatively, the
lattice simulation results should be trusted for
the number of e-folds shown in Fig. 3. We also
verified that our results are independent of the
initial power spectra of field fluctuations on scales
which are not resonantly excited during the linear
stage. The details of the numerical checks and the
evolution of the power spectra will be presented
elsewhere.

The Equation of State — We now turn our
attention to the equation of state parameter
defined as

w ⌘ hpi
s

h⇢i
s

=
h�̇2/2 � (r�)2/6a2 � V i

s

h�̇2/2 + (r�)2/2a2 + V i
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. (3)

Here, p and ⇢ are the energy density and pressure
of the inflaton field respectively. The symbol h. . .i

s

stands for spatial average. The equation of state is
often rapidly oscillating compared to the expansion
time scales; a time average over many oscillations
should be assumed when we refer to w unless other-
wise stated. Note that if the spatially and tempo-
rally averaged gradient and kinetic energy densities
are equal to each other and dominate over the po-
tential energy density, we get w = 1/3.

We find the following results for the equation of
state at su�ciently late times:

w !
(
0 if n = 1 ,

1/3 if n > 1 ,
(4)

and independent of M . mPl. We explain the in-
dependence from M , the special nature of n = 1,
and the generic behavior for n > 1 below.

For e�cient initial resonance (M .
2.5 ⇥ 10�2mPl) the linear fluctuations grow
rapidly and backreact on the condensate. For
n = 1, meta-stable pseudo solitons (oscillons, see
for e.g. [27, 28]) are copiously produced within 1
e-fold of expansion. They behave as pressureless
dust, w = 0, and can lead to a long period of
matter dominated expansion. See the leftmost
panel in Fig. 3. For the n > 1 case, we still form
highly overdense field configurations that dominate
the energy density, but they are transients, lasting
for about an e-fold of expansion. Shortly after
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Figure 4. A summary for the asymptotic equation of
state without coupling to additional fields. The nu-
merical results from lattice simulations are shown as
green circles for M ⇡ 2.45mPl, and orange squares for
M ⇡ 7.75 ⇥ 10�3mPl. The dotted blue line is the ex-
pectation from a homogeneous, oscillating condensate.

the transients decay, the inflaton is completely
fragmented with almost no energy remaining in the
homogeneous condensate. The field configuration
now evolves freely in a turbulent manner (as
discussed for n = 2 in [29]). Numerically, we find
that the kinetic and gradient energies are approxi-
mately equal to each other and much greater than
the potential energy, implying w ! 1/3 (cf. Fig.
3), and that the field is virialized in the sense that
h�̇2/2i

s,t

= h(r�)2/2a2i
s,t

+ nhV i
s,t

holds. We
can then get an estimate of the deviation of w

from 1/3: w � 1/3 ! (2/3)(n � 2)⇥ the fraction
of energy density in the potential energy. For
ine�cient initial resonance M & 2.5⇥10�2mPl and
n = 1, we observe initially some small excitations
of the modes near k = 0 due to the broad band
which is eventually shut o↵ by expansion. The
condensate energy is redshifted as a�3, slower than
the gradient energy (a�4). Hence, the fluctuations
become ever smaller, and the oscillating condensate
determines the equation of state, yielding w = 0.
For n > 1, after initial particle production is shut
o↵ the condensate energy decays as a�6n/(n+1),
whereas the gradient energy stored in field fluctu-
ations decays as a�4 (i.e. like radiation) until the
first narrow resonance band becomes important
and particles are again produced. This second
phase of particle production in a narrow k band is
expected from our Floquet analysis and confirmed
by our lattice simulations. Subsequent evolution
includes a shifting of this peak towards higher

(n < 2) or lower (n > 2) co-moving momenta as
expected from the flow lines in the Floquet anal-
ysis. This is followed by the generation of a series
of secondary peaks from nonlinear scattering (for
n = 2, see [30]). Eventually the growth is shut o↵
by backreaction. All the peaks smear out, whereas
the remnant condensate continues to oscillate with
slowly decaying amplitude, continuing its particle
production. After su�ciently long times, we find
that the kinetic and gradient energies are approxi-
mately equal and much greater than the potential
energy with the field again virialized. This yields
an equation of state parameter w ⇡ 1/3. Note that
the n = 2 case would yield w = 1/3 for the homo-
geneous and inhomogeneous field. A summary of
the asymptotic equation of state is shown in Fig. 4.

e-folds to Radiation Domination — Our linear
analysis of the instabilities allows us to estimate
the number of e-folds after inflation required to
reach radiation domination, �N

rad

⌘ R arad

aend
d ln a,

by calculating the time of backreaction of the fluc-
tuations. First, note that for n = 2, �N

rad

⌧ 1
since in this case w ! 1/3 with and without
fragmentation. For all other n & 1, the universe
becomes radiation dominated within

�N
rad

⇠
8
<

:

1 M . 10�2mPl ,
n+ 1

3
ln

✓


�

10M

m
Pl

◆
M & 10�2mPl .

(5)
Here, �/ ⇠ 10�2 is the fractional width of the
first k 6= 0 narrow resonance band (cf. Fig. 2).
Note that �/ becomes vanishingly small as n !
1 (and n � 2), leading to �N

rad

� 1. These
estimates are confirmed by our lattice simulations
(see Fig. 3).

We emphasize that w ! 1/3 can be achieved
without coupling to other fields for all n & 1.
When coupling to other massless fields is included,
�N

rad

is reduced further. Thus the above calcu-
lated �N

rad

should be taken as an upper bound on
�N

rad

. Using these results, we can calculate the
expected values of the tensor-to-scalar ratio r and
the spectral index n

s

for di↵erent values of M and
n, even including the uncertainty from couplings
to additional light fields (see Fig. 5, we use a pivot
scale k? = 0.002Mpc�1). The solid black lines use
�N

rad

calculated above, whereas the width of the

n > 1
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Figure 4. A summary for the asymptotic equation of
state without coupling to additional fields. The nu-
merical results from lattice simulations are shown as
green circles for M ⇡ 2.45mPl, and orange squares for
M ⇡ 7.75 ⇥ 10�3mPl. The dotted blue line is the ex-
pectation from a homogeneous, oscillating condensate.

the transients decay, the inflaton is completely
fragmented with almost no energy remaining in the
homogeneous condensate. The field configuration
now evolves freely in a turbulent manner (as
discussed for n = 2 in [29]). Numerically, we find
that the kinetic and gradient energies are approxi-
mately equal to each other and much greater than
the potential energy, implying w ! 1/3 (cf. Fig.
3), and that the field is virialized in the sense that
h�̇2/2i

s,t

= h(r�)2/2a2i
s,t

+ nhV i
s,t

holds. We
can then get an estimate of the deviation of w

from 1/3: w � 1/3 ! (2/3)(n � 2)⇥ the fraction
of energy density in the potential energy. For
ine�cient initial resonance M & 2.5⇥10�2mPl and
n = 1, we observe initially some small excitations
of the modes near k = 0 due to the broad band
which is eventually shut o↵ by expansion. The
condensate energy is redshifted as a�3, slower than
the gradient energy (a�4). Hence, the fluctuations
become ever smaller, and the oscillating condensate
determines the equation of state, yielding w = 0.
For n > 1, after initial particle production is shut
o↵ the condensate energy decays as a�6n/(n+1),
whereas the gradient energy stored in field fluctu-
ations decays as a�4 (i.e. like radiation) until the
first narrow resonance band becomes important
and particles are again produced. This second
phase of particle production in a narrow k band is
expected from our Floquet analysis and confirmed
by our lattice simulations. Subsequent evolution
includes a shifting of this peak towards higher

(n < 2) or lower (n > 2) co-moving momenta as
expected from the flow lines in the Floquet anal-
ysis. This is followed by the generation of a series
of secondary peaks from nonlinear scattering (for
n = 2, see [30]). Eventually the growth is shut o↵
by backreaction. All the peaks smear out, whereas
the remnant condensate continues to oscillate with
slowly decaying amplitude, continuing its particle
production. After su�ciently long times, we find
that the kinetic and gradient energies are approxi-
mately equal and much greater than the potential
energy with the field again virialized. This yields
an equation of state parameter w ⇡ 1/3. Note that
the n = 2 case would yield w = 1/3 for the homo-
geneous and inhomogeneous field. A summary of
the asymptotic equation of state is shown in Fig. 4.

e-folds to Radiation Domination — Our linear
analysis of the instabilities allows us to estimate
the number of e-folds after inflation required to
reach radiation domination, �N

rad
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d ln a,

by calculating the time of backreaction of the fluc-
tuations. First, note that for n = 2, �N
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Here, �/ ⇠ 10�2 is the fractional width of the
first k 6= 0 narrow resonance band (cf. Fig. 2).
Note that �/ becomes vanishingly small as n !
1 (and n � 2), leading to �N

rad

� 1. These
estimates are confirmed by our lattice simulations
(see Fig. 3).

We emphasize that w ! 1/3 can be achieved
without coupling to other fields for all n & 1.
When coupling to other massless fields is included,
�N

rad

is reduced further. Thus the above calcu-
lated �N

rad

should be taken as an upper bound on
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rad

. Using these results, we can calculate the
expected values of the tensor-to-scalar ratio r and
the spectral index n
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for di↵erent values of M and
n, even including the uncertainty from couplings
to additional light fields (see Fig. 5, we use a pivot
scale k? = 0.002Mpc�1). The solid black lines use
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Figure 4. A summary for the asymptotic equation of
state without coupling to additional fields. The nu-
merical results from lattice simulations are shown as
green circles for M ⇡ 2.45mPl, and orange squares for
M ⇡ 7.75 ⇥ 10�3mPl. The dotted blue line is the ex-
pectation from a homogeneous, oscillating condensate.

the transients decay, the inflaton is completely
fragmented with almost no energy remaining in the
homogeneous condensate. The field configuration
now evolves freely in a turbulent manner (as
discussed for n = 2 in [29]). Numerically, we find
that the kinetic and gradient energies are approxi-
mately equal to each other and much greater than
the potential energy, implying w ! 1/3 (cf. Fig.
3), and that the field is virialized in the sense that
h�̇2/2i

s,t

= h(r�)2/2a2i
s,t

+ nhV i
s,t

holds. We
can then get an estimate of the deviation of w

from 1/3: w � 1/3 ! (2/3)(n � 2)⇥ the fraction
of energy density in the potential energy. For
ine�cient initial resonance M & 2.5⇥10�2mPl and
n = 1, we observe initially some small excitations
of the modes near k = 0 due to the broad band
which is eventually shut o↵ by expansion. The
condensate energy is redshifted as a�3, slower than
the gradient energy (a�4). Hence, the fluctuations
become ever smaller, and the oscillating condensate
determines the equation of state, yielding w = 0.
For n > 1, after initial particle production is shut
o↵ the condensate energy decays as a�6n/(n+1),
whereas the gradient energy stored in field fluctu-
ations decays as a�4 (i.e. like radiation) until the
first narrow resonance band becomes important
and particles are again produced. This second
phase of particle production in a narrow k band is
expected from our Floquet analysis and confirmed
by our lattice simulations. Subsequent evolution
includes a shifting of this peak towards higher

(n < 2) or lower (n > 2) co-moving momenta as
expected from the flow lines in the Floquet anal-
ysis. This is followed by the generation of a series
of secondary peaks from nonlinear scattering (for
n = 2, see [30]). Eventually the growth is shut o↵
by backreaction. All the peaks smear out, whereas
the remnant condensate continues to oscillate with
slowly decaying amplitude, continuing its particle
production. After su�ciently long times, we find
that the kinetic and gradient energies are approxi-
mately equal and much greater than the potential
energy with the field again virialized. This yields
an equation of state parameter w ⇡ 1/3. Note that
the n = 2 case would yield w = 1/3 for the homo-
geneous and inhomogeneous field. A summary of
the asymptotic equation of state is shown in Fig. 4.

e-folds to Radiation Domination — Our linear
analysis of the instabilities allows us to estimate
the number of e-folds after inflation required to
reach radiation domination, �N
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Here, �/ ⇠ 10�2 is the fractional width of the
first k 6= 0 narrow resonance band (cf. Fig. 2).
Note that �/ becomes vanishingly small as n !
1 (and n � 2), leading to �N
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� 1. These
estimates are confirmed by our lattice simulations
(see Fig. 3).

We emphasize that w ! 1/3 can be achieved
without coupling to other fields for all n & 1.
When coupling to other massless fields is included,
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rad

is reduced further. Thus the above calcu-
lated �N

rad

should be taken as an upper bound on
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. Using these results, we can calculate the
expected values of the tensor-to-scalar ratio r and
the spectral index n
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for di↵erent values of M and
n, even including the uncertainty from couplings
to additional light fields (see Fig. 5, we use a pivot
scale k? = 0.002Mpc�1). The solid black lines use
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theory : its complicated (probably)
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• inflation

• reheating after inflation



a statistical approach?

• observations: early universe is simple

• theory: not so much …

• coarse grained view ? 

• calculational tools ?
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4 Generalization to Multiple Fields

Ultimately, one of our motivations is to describe the complex multi-field dynamics that may have

occurred in the early universe. This also has a direct analog in the theory of disordered wires.

So far, we have ignored the finite thickness of the wire. Taking the thickness into account leads

to a finite number of transverse excitations in the electron wavefunction. This then gives rise

to coupled, longitudinal ‘conduction channels’. In this section, we will develop the framework

of stochastic particle production with multiple fields and its correspondence to multi-channel

conduction.

4.1 Preliminaries

Consider the action of N
f

coupled scalar fields �a,

S =

Z

d4x
p
�g

"

M

2

pl

2
R� 1

2
G

ab

(�c)@µ

�

a

@

µ

�

b � V (�c) + · · ·
#

, (4.1)

where a, b, c = 1, . . . , N
f

. The linearized equation of motion for the field fluctuations can be

written in the following from (see e.g. [23])
⇥

1 (@2

⌧

+ k

2) + p(k, ⌧)@
⌧

+m(k, ⌧)
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| {z }

⌘ w(k, ⌧)

· �~�
k

= 0 , (4.2)

where �~� is a vector made out of the fluctuations of the fields �a. The coe�cient functions p(k, ⌧)

and m(k, ⌧) are matrices, with

(p)a
b

= 2H�

a

b

+ · · · , (m)a
b

= a

2

G

ac

V

,cb

+ · · · . (4.3)

The ellipses in (4.3) stand for a complicated set of terms arising, for instance, from a nontrivial

field space metric G

ab

6= �

ab

. The precise form of (4.2) will not be important. All we care about

here is that it defines a linear map describing the unitary evolution of �~�
k

(⌧). For simplicity

and concreteness, we will assume that17 G

ab

= �

ab

, and ignore the Hubble expansion for the

remainder of this section, i.e. we set (p)a
b

= 0 and (m)a
b

= �

ac

V

,cb

. We will refer to m as the

mass matrix.

We assume that the evolution of the field fluctuations contains localized non-adiabatic events

at random intervals around ⌧ = ⌧

j

, and that the fields are otherwise free. After the j-th event,

the evolution of the fields is given by
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) on k to reduce clutter. The

Bogoliubov coe�cients before and after the non-adiabatic event are related by
 

~

�

j

~↵

j

!

=

 

(t†
j

)�1 �(t†
j

)�1r†
j

�(tT
j

)�1r
j

(tT
j

)�1

!

| {z }

M
j

 

~

�

j�1

~↵

j�1

!

. (4.5)

17The assumption Gab = �ab can also be justified from an e↵ective field theory perspective [25]: in cases of strong

disorder in the mass term, the corrections to Gab are often irrelevant in the technical sense.
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focus on perturbations

reheating

inflation
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mode functions in Fourier space
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complexity in the  
“effective mass”/ interactions

⌧ �!

m2
e↵(⌧)

�̈k(⌧) +
⇥
k2 +m2

e↵(⌧)
⇤
�k(⌧) = 0

m2
e↵(⌧) = � ä(⌧)
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similar problem seen before …

simplified version!
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complexity in time 
cosmology
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solve using scattering matrices !

simplified version!

see also: Zanchin et. al 1998, Basset 1998, Brandenberger & Craig 2008 
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d2�

dx2
+
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k2 � V (x)

�
� = 0

• position along wire

• resistance

• impurities in wires

d2�k

d�2
+
�
k2 + m2(�)

�
�k = 0

spatial  
complexity

temporal  
complexity

• time

• number of particles

• complicated temporal behavior 

MA & Baumann (2015)
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universal behavior: Anderson Localization!

impurites

res
ista

nce
 • impurities increase resistance exponentially

location along the wire
x !

at low temperatures,  one dimensional wires are insulators
Anderson 1957

V (x)

Anderson 1957



universal behavior:  
exponential increase in occupation number
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 • complicated effective mass increase occupation number

time

understood in terms of Bose enhancement
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occupation number performs  
a drifted random walk 
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multifield Fokker Planck equation
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joint probability for occupation numbers satisfies the a Fokker Planck-like 
equation:

For more general results in 
beyond statistical isotropy, see
MA, Garcia, Xie and Wen 2017

MA & Baumann 2015

Dokhorov, Mello, Pereyra & Kumar = DMPK eq.



solution: “universal” distributions
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Here, we have made use of the fact that ✓

1

= ✓ + �✓, with �✓ independent of ✓. We apologize

for the somewhat ambiguous notation: the P ’s without the arguments ✓ should be understood

as the original P ’s integrated over ✓. Substituting (3.6) into (3.11), we get

P (n; ⌧ + �⌧) = hP (n+ �n; ⌧)i
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.

(3.12)

Taylor expanding the left-hand side with respect to �⌧ and the right-hand side with respect to �n,

we find
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where, using (3.8), we have
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(3.14)

This being an expansion in µ�⌧ = hn
2

i
�⌧

means that we are restricting to cases where the local

particle production rate is always small. This is the most limiting assumption of this derivation

and should be kept in mind while applying our framework.

Putting everything together, we arrive at the final form of the Fokker-Planck equation
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where we have restored the momentum dependence in the mean particle production rate, µ
k
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/�⌧ , but left it implicit in the number density, n = n

k

.

We find it useful to write the FP equation in the following form
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(MA: Figure and histogram) It is also instructive to consider the asymptotic limit, n � 1, of

the FP equation. In that case n

2 + n ! n

2 in (3.16) and it is easy to show that the solution is

the log-normal distribution
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This shouldn’t be surprising. In §2.3, we saw that the phase-average of lnn is the sum of the log’s

of the particle densities produced at each scattering. The central limit theorem then suggests

that lnn is Gaussian distributed (and n obeys a log-normal distribution). This is true, except

for deviations at small n. These deviations arise because the total transmission probability is

bounded by 1 (and n is bounded by 0). For n ⌧ 1, we have n2+n ! n in (3.16) and the solution

becomes
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. (3.18)

In fact, the FP equation (3.16) can be solved exactly [18] for all n, although the integral form

of the solution isn’t very instructive. We will find it more useful to study the moments of the

density directly.
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more general results in 
MA, Garcia, Xie and Wen 2017

MA & Baumann 2015

MA, Carlsten, Garcia, Green, Baumann … for superhorizon scales, use field amplitude rather than occupation number
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background dynamics particle production curvature fluctuations
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• Curvature Perturbations with Dissipation and Driving : In this part of the project, the
overall goal is to exploit an e↵ective field theory (EFT) with dissipation and a driving
term [26] calculated from stochastic, non-perturbative particle production. The main
appeal of an EFT approach is that the form of the equation governing curvature pertur-
bations is determined by the breaking of time translation symmetry of the background.
In this language, the Goldstone mode ⇡

k

(which is related to long wavelength curvature
perturbation via ⇣

k

= �H⇡
k

) satisfies

⇡̈
k

+ [3H +O
d

] ⇡
k

+
k2

a2
⇡
k

= O
s

(h�� . . .i
k

) . (4)

The symbolic terms O
s

and O
d

are the driving and dissipation e↵ects due to the
stochastic particle production. These terms generally involve correlation functions of
the stochastically produced fields and the background evolution. The power spectrum
of inflationary perturbations can be calculated for a given realization of the stochastic
couplings. The statistical ensemble of the observable curvature power spectra can then
be directly related to the statistical properties of the stochastic couplings.1

• Comparison with Existing Works: Random potentials in the context of inflation have
been discussed in earlier works (see a recent example, see [27, 28, 29]). Rapid turns in
inflaton trajectories at the background level acts as a non-adiabatic, time-dependent
e↵ective mass. It might also be possible to understand the e↵ect of many heavy fields
during inflation [30, 31]. The statistical framework described in this proposal is readily
applicable to these scenarios, and a direct comparison to existing results will be possible.
These scenarios will serve as an excellent test case for the formalism in a realistic setting.

The main output from the proposed calculations is an ensemble of power spectra of curvature
fluctuations based on di↵erent realizations of the stochastic couplings. The moments of the
statistical ensemble are expected to be calculable within our framework from the statistical
properties of the stochastic couplings. For our observed universe, the calculations will provide
potentially non-trivial distributions and correlations of for the a

lm

’s characterizing the CMB
power spectra. These features in the a

lm

’s can be used as a discriminator of theories of infla-
tion with and without significant underlying complexity. Along with the CMB anisotropies,
similar calculations and predictions can be made for stochastic gravitational waves [32, 33, 34].

1c. Application to Reheating

The theoretical framework developed for calculating particle production in scenarios with
large number of non-adiabatic interactions and large number of unknown components is
ideal for reheating. Given the complexity of the dynamics, most of the literature on reheat-
ing include only a few components with simple interactions. For example, the seminal papers
on the subject [5, 6] dealt with how a single daughter field produced during reheating reacts
to non-adiabatic changes in a single field driven background. In earlier work by Zanchin et.
al [35, 36], the influence of perturbatively added noise on parametric resonance was explored.
Particle production in a quasi-periodic background was explored in [37], whereas a simplified

1Though the relationship need not be linear or even perturbative in the couplings.
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combine particle production 
with driving and dissipation

dissipation driving

Green, Horn, Senatore, and Silverstein (2009), 
Nacir, Porto, Senatore, and Zaldarriaga (2012), 
Flauger, Mirbabayi, Senatore, Silverstein (2016), 
Chen, Namjoo and Wang (2015,16), Dias, Fraser 
& Marsh (2016, 17)



applications : reheating

new !

model-insensitive description of a 
complicated reheating process.

for example: 
Shtanov, Traschen & Brandenberger (1995)
Kofman, Linde & Starobinsky (1997)
Zanchin et. al (1998) & Bassett (1998) [with noise]
Barnaby, Kofman & Braden et. al 2010 [quasiperiodic] 

    Giblin, Nesbit, Ozsoy, Sengor & Watson (2016-17)
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multichannel — multifield — statistical

MA, Garcia & Shen 



end of inflation

credit: Wayne Hu

SIMPLE

COMPLEX

≈detailed models

- single field
- non-trivial dynamics
- eq. of state + gravitational waves

- universal dynamics independent of details
- Fokker-Plank/random matrix theory
- statistical properties of correlation functions
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COMPLEX

- single field
- non-trivial dynamics
- eq. of state + gravitational waves

- universal dynamics independent of details
- Fokker-Plank/random matrix theory
- statistical properties of correlation functions

detailed models



non-perturbative dynamics  
to solve problems 

credit: Wayne Hu

• Higgs vacuum stability and inflation [East, Kearny, Shakya, Yoo, Zurek]

• Higgs fine tuning problem ? [MA, Fan, Lozanov, Reece (in progress)]

• matter-antimatter asymmetry ? [Lozanov & MA 2014, Hertzberg & 
Karouby 2014]

• primordial seeds for cosmological magnetic fields ? [MA & 
Lozanov 2016]

• primordial black holes ? [MA & Lozanov (in progress)]



credit: Wayne Hu

• Higgs vacuum stability and inflation [East, Kearny, Shakya, Yoo, Zurek]

• Higgs fine tuning problem [MA, Fan, Lozanov, Reece (in progress)]

• matter-antimatter asymmetry ? [Lozanov & MA 2014, Hertzberg & 
Karouby 2014]

• primordial seeds for cosmological magnetic fields ? [MA & 
Lozanov 2016]

• primordial black holes ? [MA & Lozanov (in progress)]

non-perturbative dynamics can lead to 
model specific observational signatures



inflaton (modulus) - Higgs system

credit: Wayne Hu

b ⌘ M4

2�m2
�f

2
 1

arrange the potentials to yield 
small Higgs masses at the global minimum

for positive definiteness of potential

• MA, Fan, Lozanov, Reece (in progress)

V (�,H) = �µ2H†H + �(H†H)2 +
M2

f
�(H†H � v2)



implications?

b ⌘ M4

2�m2
�f2

! 1

• inhomogeneous fragmentation of Higgs-
modulus system with 

• generation of stochastic g-waves

• non-trivial equation of state

back-reaction 
efficiency parameter

b ⌘ M4

2�m2
�f

2
 1 for positive definiteness of potential

⇢H ⇠ ⇢�

V (�,H) = �µ2H†H + �(H†H)2 +
M2

f
�(H†H � v2)



end of inflation

credit: Wayne Hu

SIMPLE

COMPLEX

- single field
- non-trivial dynamics
- eq. of state + gravitational waves

- universal dynamics independent of details
- Fokker-Plank/Random Matrix theory
- statistical properties of correlation functions

detailed models
- hierarchy problem
- matter-antimatter asymmetry
- primordial magnetic fields 



Reheating !
after inflation

Inflation

universe gets!
populated 
with particles
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inflation

hot thermal soup 
with nuclei

few minutes

What ’s Next ? — upcoming observations

CMB
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14 billion years
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significant improvement expected
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Space based experiments

Stage−I − ≈ 100 detectors

Stage−II − ≈ 1,000 detectors

Stage−III − ≈ 10,000 detectors

Stage−IV − ≈ 100,000 detectors

Figure 2. Plot illustrating the evolution of the raw sensitivity of CMB experiments, which scales as
the total number of bolometers. Ground-based CMB experiments are classified into Stages with Stage II
experiments having O(1000) detectors, Stage III experiments having O(10,000) detectors, and a Stage IV
experiment (such as CMB-S4) having O(100,000) detectors. Figure from Snowmass CF5 Neutrino planning
document.

1.2.1 Raw sensitivity considerations and detector count

The sensitivity of CMB measurements has increased enormously since Penzias and Wilson’s discovery in
1965, following a Moore’s Law like scaling, doubling every roughly 2.3 years. Fig. 2 shows the sensitivity of
recent experiments, expectations for upcoming Stage-3 experiments, characterized by order 10,000 detectors
on the sky, and the projection for a Stage 4 experiment with order 100,000 detectors. To obtain many of the
CMB-S4 science goals requires of order 1 µK arcminute sensitivity over roughly half of the sky, which for a
four-year survey requires of order 500,000 CMB-sensitive detectors.

To maintain the Moore’s Law-like scaling requires a major leap forward, a phase change in the mode of
operation of the ground based CMB program. Two constraints drive the change: 1) CMB detectors are
background-limited, so more pixels are needed on the sky to increase sensitivity; and 2) the pixel count for
existing CMB telescopes are nearing saturation. Even using multichroic pixels and wide field of view optics,
these CMB telescopes are expected to field only tens of thousands of polarization detectors, far fewer than
needed to meet the CMB-S4 science goals.

CMB-S4 thus requires multiple telescopes, each with a maximally outfitted focal plane of pixels utilizing
superconducting, background limited, CMB detectors. To achieve the large sky coverage and to take
advantage of the best atmospheric conditions, the South Pole and the Chilean Atacama sites are baselined,
with the possibility of adding a new northern site to increase sky coverage to the entire sky not contaminated
by prohibitively strong Galactic emission.

CMB-S4 Science Book

ground based  
- Chilean  Atacama Plateau
- South Pole
- Northern Hemisphere ?



B-modeE-mode

additional information in CMB ?  
CMB is polarized



improvement expected  
necessitates better theoretical understanding

2.5 Implications of an improved upper limit on r 25
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Figure 10. Forecast of CMB-S4 constraints in the n
s

–r plane for a fiducial model with r = 0.01.
Constraints on r are derived from the expected CMB-S4 sensitivity to the B-mode power spectrum as
described in Section 2.3. Constraints on n

s

are derived from expected CMB-S4 sensitivity to temperature
and E-mode power spectra as described in Section 8.10.2. Also shown are the current best constraints from a
combination of the BICEP2/Keck Array experiments and Planck [8]. Chaotic inflation with V (�) = µ4�p�p

for p = 2/3, 1, 2 are shown as blue lines for 47 < N? < 57 (with smaller N? predicting lower values of n
s

).
The Starobinsky model and Higgs inflation are shown as small and large filled orange circles, respectively.
The lines show the classes of models discussed in Section 2.5. The green band shows the predictions for
quartic hilltop models, and the gray band shows the prediction of a sub-class of ↵-attractor models [60].

2.5 Implications of an improved upper limit on r

As detailed in previous sections, a detection of primordial gravitational waves would have profound implica-
tions. However, even excluding the presence of gravitational waves at a level observable by CMB-S4 would
have important consequences for the theory of inflation. Current constraints already strongly disfavor models
that were plausible candidates, such as chaotic inflation with a quadratic potential [7, 66, 8]. Upper limits
from CMB-S4 would rule out large classes of inflationary models. In particular, all models that explain the
observed value of ns naturally (in the sense detailed below), with a scale of the characteristic variation of
the potential exceeding the Planck scale would be excluded.

We present a version of an argument for the implications of an upper limit on r, developed in Refs. [67, 68, 69],
which does not rely on the microscopic details of inflationary models. In the limit where the slow-roll
parameter ✏ ⌧ 1, Eqs. (2.6) and (2.8) lead to a di↵erential equation

d ln ✏

dN � (ns(N ) � 1) � 2✏ = 0 , (2.19)

where N is the number of e-folds until the end of inflation, and ns(N )�1 denotes the spectral index evaluated
at the wavenumber of the mode that exits the horizon N e-folds before the end of inflation. Note that ✏ is
small (but positive) during inflation and ✏ ⇠ 1 when inflation ends. If ✏ is a monotonic function of N this
implies ns(N ) � 1  0, in agreement with observations.
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Will also require better understanding of the aftermath of inflation

CMB S4 Science Book



constraints on additional light species 

4.2 New Light Species at Recombination 75

Figure 22. Forecasts for �(N
e↵

) with varying beamize in arcmin and temperature noise. These forecasts
assume f

sky

= 0.4 and vary Yp with N
e↵

to be consistent with BBN. The color scale is the same for both
panels. Left: Specific forecasts, including delensing, for various CMB-S4 configurations. Right: A wide
range of beam sizes and sensitivities are used to show the need for the high resolution and sensitivity of
CMB-S4 to be close to our thresholds.
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Figure 23. Left: Forecasts for �(N
e↵

) as a function of sky fraction. The sensitivity has been normalized

to 1 µK-arcmin for f
sky

= 0.4 and is scaled according to S / f1/2
sky

for di↵erent sky fractions. The grey line
shows the value of �(N

e↵

) = 0.027 which is the 1� sensitivity any scalar thermal relic, or equivalently, 2�
sensitivity to any vector thermal relic. For a fixed number of detectors, we see that �(N

e↵

) is minimized
by increasing sky fraction. Right: Same as Figure 21 showing plausible 2� limits from CMB-S4 in red,
assuming 1’ beams and 1 µK-arcmin temperature noise. The light red region with solid boundary and darker
red with dashed boundary are for f

sky

= 0.5 and f
sky

= 0.7 respectively. These modest increases in sky
fraction can have a significant impact with regards to the theoretical thresholds for vectors or Weyl fermions.

For su�ciently large sky fraction, the thresholds for the light fermions and vectors are accessible at 2�
for plausible experimental configurations, or equivalently, 1� for the minimum threshold for a light scalar.
Specifically, to reach �(Ne↵) = 0.027 with s = 1 µK-arcmin, we need fsky � 0.5 and fsky � 0.6 for 1’
and 2’ beams respectively. In the right panel of Figure 23, we show how 2� limits available with CMB-

CMB-S4 Science Book

will be able to constrain 
the the effective number 
of additional light 
species, beyond 
neutrinos!

Baumann, Green & Wallish (2016)

will also require better understanding of the aftermath of inflation

+ CMB S4 Science Book 



large scale structure
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Ground or space ground ground space space ground

Previous surveys
CFHTLS, DES,

HSC

BOSS, eBOSS,

PFS
no direct precursor

PRIMUS,

COMBO-17,

COSMOS

GBT HIM

Survey start 2020 2020 2018 2020 2016

Redshift-range
z < 3 (1%

sources above 3)

z < 1.4,

2 < z < 3.5 (Lya)
z < 3 z < 1.5 0.75 < z < 2.5

Survey area [deg2] 20k 14k 15k 40k 20k

Approximate

number of objects

2⇥ 109 (WL

sources)

22⇥106 gal.,

⇠ 2.4⇥ 105 QSOs

40⇥ 106 redshifts,

1.5⇥ 109 photo-zs
15⇥ 109 pixels 107 pixels

Galaxy clustering 33⇧ 3 3 3 3

Weak lensing 3 3 3

RSD 3 3 33 33

Multi-tracer 33 33 33 3

Table 2. A selection of currently funded or planned surveys. Other important surveys not included in the
table are PFS, JPAS, PAU, EMU. Relevant survey links [LSST],[DESI],[Euclid], [UBC],[PFS], [JPAS],[PAU],
[EMU]. ⇧Galaxy clustering is possible, but very strong radial degradation.

simplifies aspects of each experiment and therefore numerical values should be compared with care.

For the same reason we refrain from making any specific forecasts.

In general, galaxy clustering power spectrum and bispectrum measurements will provide mea-

surements of the fNL parameters with accuracy up to around 1 for the local shape and somewhat

worse for other bi-spectrum shapes. With su�cient modeling, the galaxy power spectrum and

Lyman-↵ flux power spectrum can provide information on the spectral index and its running and

constrain possible sharp features or oscillations in the primordial power spectrum. They will also

be able to further improve limits on curvature parameter ⌦k and the fraction of isocurvature fluc-

tuations. Weak lensing measurements will be able to provide information on the same parameters

with very di↵erent systematics: they probe the dark-matter directly which simplifies theoretical

treatments, but have fewer modes and challenging-to-control observational systematics. Note also

that none of the LSS experiments will be able to provide meaningful information on the presence of

primordial tensor modes.

3.3 What would an ideal survey for constraining f loc
NL with the power spectrum look

like?

Having considered the expected constraints on primordial non-Gaussianity from upcoming surveys,

it is instructive to ask what would be an ideal experiment to constrain it. We will focus here on

primordial non-Gaussianity of the local type as constrained by scale-dependent bias in the galaxy

power spectrum. Based on Section 2, let us take �(f loc
NL) ⇠ 1 as a target for the ideal survey. The

results in this section will be largely based on [114], but see also other recent works, e.g. [113, 115].

The forecast numbers are necessarily very rough as they depend on the various survey parameters.

We quote them to give an approximate quantitative sense of what is required of a survey and refer

to [114] for more details.
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from Alvarez et. al 2014

• 3D, more modes — lensing, spectroscopic, 21 cm etc.)



stochastic gravitational waves

aLIGO-Virgo 2017 
Amin et. al 2014 
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๏ inflation - origin of density perturbations

๏ aftermath - gap in our cosmic history

- simple models (solitons, eq. of state, g-waves)
-  complex (universal behavior)
-  model-specific (hierarchy problem etc.)

๏ what’s next  — light species ? g-waves ? polarization ? relics ?

summary



extra slides
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inflation ends, what’s next ?

inflation
preheating non-linear!

regime
perturbative!

regime thermalization

scalar & gauge bosons + fermions

topological & non-topological solitons!
 (strings, textures, bubbles, Q-balls, oscillons)

gravitational perturbations!
( non-gaussianity, gravitational waves)

particle production

time

expansion history,  baryogenesis …
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from review: MA, Kaiser, Karouby & Hertzberg (2013)


