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We investigate the cosmological consequences of a phase transition which is driven primarily 
by slow nucleation of bubbles of the new phase via the effectively zero temperature quantum 
tunneling process of Coleman and Callan These bubbles will asymptotically fill an arbitraril?, large 
fraction of the space, yet they never percolate. Instead they form finite clusters, with each cluster 
dominated by a single largest bubble. The large scale thermalization required by the original 
" ' inflationa~ universc" scenario does not take place. The Coleman-De Luccia formalism for 
bubble formation in curved space is reviewed, with minor extensions. We argue that a single 
uncollided bubble would contain much less total cntropy than the observed universe, unless the 
Higgs field potential involves widely disparate mass scales, as in the new inflationa~' universe 
scenario. We also argue that finite clusters are unlikely to yield a homogeneous and isotropic 
region containing sufficient entropy. Thus. unless the Higgs potential has the special form required 
by the new inflationa~ scenario, it appears quite implausible that there was such a phase 
transition in our past. 

1. Introduction 

It is widely believed that in the very early universe temperatures were sufficiently 
high to restore those elementary particle symmetries which are now spontaneously 
broken. As the universe expanded and cooled there would then be a number of 
phase transitions before the present state of symmetry breaking was achieved: the 
nature of these depends on the detailed properties of the high-energy interactions [ 1 ]. 
The Weinberg-Salam theory of electroweak interactions leads to a phase transition 

" This work was supported in part by the US Department of Energy (DOE) under contracts 
I)E-AC02-76ER03069 and DE-AC02-76ER0227t and in part by Alfred P Sloan t:ellowships. 
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constraints from observations
Planck Collaboration: Cosmological parameters
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Fig. 21. Left: Constraints on the tensor-to-scalar ratio r0.002 in the ⇤CDM model, using Planck TT+lowP and Planck
TT+lowP+lensing+BAO+JLA+H0 (red and blue, respectively) assuming negligible running and the inflationary consistency rela-
tion. The result is model-dependent; for example, the grey contours show how the results change if there were additional relativistic
degrees of freedom with �Ne↵ = 0.39 (disfavoured, but not excluded, by Planck). Dotted lines show loci of approximately con-
stant e-folding number N, assuming simple V / (�/mPl)p single-field inflation. Solid lines show the approximate ns–r relation for
quadratic and linear potentials to first order in slow roll; red lines show the approximate allowed range assuming 50 < N < 60 and
a power-law potential for the duration of inflation. The solid black line (corresponding to a linear potential) separates concave and
convex potentials. Right: Equivalent constraints in the ⇤CDM model when adding B-mode polarization results corresponding to the
default configuration of the BICEP2/Keck Array+Planck (BKP) likelihood. These exclude the quadratic potential at a higher level
of significance compared to the Planck-alone constraints.

limited by cosmic variance of the dominant scalar anisotropies,
and it is also model dependent. In polarization, in addition to B-
modes, the EE and T E spectra also contain a signal from tensor
modes coming from reionization and last scattering. However,
in this release the addition of Planck polarization constraints at
` � 30 do not significantly change the results from temperature
and low-` polarization (see Table 5).

Figure 21 shows the 2015 Planck constraint in the ns–r plane,
adding r as a one-parameter extension to base ⇤CDM. Note that
for base ⇤CDM (r = 0), the value of ns is

ns = 0.9655 ± 0.0062, Planck TT+lowP. (38)

We highlight this number here since ns, a key parameter for in-
flationary cosmology, shows one of the largest shifts of any pa-
rameter in base ⇤CDM between the Planck 2013 and Planck
2015 analyses (about 0.7�). As explained in Sect. 3.1, part of
this shift was caused by the ` ⇡ 1800 systematic in the nominal-
mission 217 ⇥ 217 spectrum used in PCP13.

The red contours in Fig. 21 show the constraints from Planck
TT+lowP. These are similar to the constraints shown in Fig. 23
of PCP13, but with ns shifted to slightly higher values. The ad-
dition of BAO or the Planck lensing data to Planck TT+lowP
lowers the value of ⌦ch2, which at fixed ✓⇤ increases the small-
scale CMB power. To maintain the fit to the Planck tempera-
ture power spectrum for models with r = 0, these parameter
shifts are compensated by a change in amplitude As and the tilt
ns (by about 0.4�). The increase in ns to match the observed
power on small scales leads to a decrease in the scalar power
on large scales, allowing room for a slightly larger contribution

from tensor modes. The constraints shown by the blue contours
in Fig. 21, which add Planck lensing, BAO, and other astrophys-
ical data, are therefore tighter in the ns direction and shifted to
slightly higher values, but marginally weaker in the r-direction.
The 95 % limits on r0.002 are

r0.002 < 0.10, Planck TT+lowP, (39a)
r0.002 < 0.11, Planck TT+lowP+lensing+ext, (39b)

consistent with the results reported in PCP13. Note that we as-
sume the second-order slow-roll consistency relation for the ten-
sor spectral index. The result in Eqs. (39a) and (39b) are mildly
scale dependent, with equivalent limits on r0.05 being weaker by
about 5 %.

PCP13 noted a mismatch between the best-fit base ⇤CDM
model and the temperature power spectrum at multipoles ` <⇠ 40,
partly driven by the dip in the multipole range 20 <⇠ ` <⇠ 30. If
this mismatch is simply a statistical fluctuation of the ⇤CDM
model (and there is no compelling evidence to think otherwise),
the strong Planck limit (compared to forecasts) is the result of
chance low levels of scalar mode confusion. On the other hand if
the dip represents a failure of the ⇤CDM model, the 95 % limits
of Eqs. (39a) and (39b) may be underestimates. These issues are
considered at greater length in Planck Collaboration XX (2015)
and will not be discussed further in this paper.

As mentioned above, the Planck temperature constraints on
r are model-dependent and extensions to ⇤CDM can give sig-
nificantly di↵erent results. For example, extra relativistic de-
grees of freedom increase the small-scale damping of the CMB
anisotropies at a fixed angular scale, which can be compensated
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for example:

Silverstein & Westhpal (2008)
McAllister et. al (2014)
Kallosh & Linde (2014)



inflation ends, details depend on:

�, �

• shape of the potential (self couplings)

• couplings to other fields

for example:
Kofman, Linde & Starobinsky (1994)
Shtanov, Traschen & Brandenberger (1995)
review: MA, Kaiser, Karouby & Hertzberg (2014)
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now in 3D:  
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MA, Easther, Finkel, Flaugher & Hertzberg (2011) 
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condition for emergence of  
oscillons after inflation

          MA (2010)

V (�) / |�|2n

|�| ⇠ M

⇠ mpl

M
� 1growth-rate of fluctuations

expansion rate



has Alan though about this ?



“quasi-thermal” field configuration

simulation of  “quasi-thermal” example in 
Farhi, Graham, Guth, Iqbal, Rosales, Stamatopoulos 2008
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simulation of  “quasi-thermal” example in 
Farhi, Graham, Guth, Iqbal, Rosales, Stamatopoulos 2008



lumps ?

(1) oscillatory (2) spatially localized (3) very long lived

Bogolubsky & Makhankov (1976), Gleiser (1994), Copeland, Gleiser and Mueller et al. (1995) …

osc
illon

!

existence and stability:  
MA (2013)
MA & Shirokoff (2010)
Hertzberg (2011)
Sfakianakis (2015)
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consequences ?

• equation of state/duration to radiation domination ? (if 
coupled to other fields) 

• black holes ? 

• gravitational waves ?  
Zhou, Copeland, Easther, Finkel, Mou & Saffin (2013)
Antusch, Cefala, Krippendorf, Muia, Orani, Quevedo (2017) 



end of inflation in “simple” models
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• shape of the potential (self couplings)

• couplings to other fields
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power law at the minimum
n = 1 (quadratic)

scale where potential flattens

flattened potential

Lozanov & MA (2017)

new !
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eq. of state 
* after sufficient time
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Figure 3. The equation of state parameter obtained from the numerical simulations is shown for di↵erent values of
n and M . The orange curve and green curves correspond to initially e�cient (M ⇡ 7.75⇥ 10�3mPl) and ine�cient
resonance (M ⇡ 2.45mPl), with M ⇠ 2.5 ⇥ 10�2mPl separating the two regimes. The horizontal axes show the
number of e-folds after the end of inflation for e�cient (orange, bottom axis) and ine�cient (green, top axis)
resonance. The dashed line is drawn at w = 1/3 and the dotted line denotes the homogeneous equation of state.

complete fragmentation. The above statements
are quite general; however, n = 1 is special. In this
case, the higher order bands become too narrow
to allow for significant particle production at late
times, thus arresting further fragmentation.

Lattice simulations — The presence of linear
instabilities eventually leads to significant non-
linear dynamics of the fields. To study these
non-linear dynamics we solve the equations of
motion ⇤� + @�V = 0 and the Friedmann equa-
tion numerically using a parallelized version of
LatticeEasy [26]. We initialize the simulations
around the end of inflation with a homogeneous
condensate + vacuum fluctuations and evolve
them for a few�10 e-folds of expansion after this
instant. We ran di↵erent simulations (depending
on parameters) with N = 1283, 2563, 5123, and/or
10243 lattices, with the initial size of the simu-
lation volumes L ⇠ (few � 0.1)H�1

inf

. We always
terminated the simulations before resolution
e↵ects became important. Conservatively, the
lattice simulation results should be trusted for
the number of e-folds shown in Fig. 3. We also
verified that our results are independent of the
initial power spectra of field fluctuations on scales
which are not resonantly excited during the linear
stage. The details of the numerical checks and the
evolution of the power spectra will be presented
elsewhere.

The Equation of State — We now turn our
attention to the equation of state parameter
defined as

w ⌘ hpi
s

h⇢i
s

=
h�̇2/2 � (r�)2/6a2 � V i

s

h�̇2/2 + (r�)2/2a2 + V i
s

. (3)

Here, p and ⇢ are the energy density and pressure
of the inflaton field respectively. The symbol h. . .i

s

stands for spatial average. The equation of state is
often rapidly oscillating compared to the expansion
time scales; a time average over many oscillations
should be assumed when we refer to w unless other-
wise stated. Note that if the spatially and tempo-
rally averaged gradient and kinetic energy densities
are equal to each other and dominate over the po-
tential energy density, we get w = 1/3.

We find the following results for the equation of
state at su�ciently late times:

w !
(

0 if n = 1 ,

1/3 if n > 1 ,
(4)

and independent of M . mPl. We explain the in-
dependence from M , the special nature of n = 1,
and the generic behavior for n > 1 below.

For e�cient initial resonance (M .
2.5 ⇥ 10�2mPl) the linear fluctuations grow
rapidly and backreact on the condensate. For
n = 1, meta-stable pseudo solitons (oscillons, see
for e.g. [27, 28]) are copiously produced within 1
e-fold of expansion. They behave as pressureless
dust, w = 0, and can lead to a long period of
matter dominated expansion. See the leftmost
panel in Fig. 3. For the n > 1 case, we still form
highly overdense field configurations that dominate
the energy density, but they are transients, lasting
for about an e-fold of expansion. Shortly after

w 6= n� 1

n+ 1

n = 1 n > 1

M
⌧

m
p
l

M
⇠

m
p
l

independent of M

Lozanov & MA (2017)
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Figure 4. A summary for the asymptotic equation of
state without coupling to additional fields. The nu-
merical results from lattice simulations are shown as
green circles for M ⇡ 2.45mPl, and orange squares for
M ⇡ 7.75 ⇥ 10�3mPl. The dotted blue line is the ex-
pectation from a homogeneous, oscillating condensate.

the transients decay, the inflaton is completely
fragmented with almost no energy remaining in the
homogeneous condensate. The field configuration
now evolves freely in a turbulent manner (as
discussed for n = 2 in [29]). Numerically, we find
that the kinetic and gradient energies are approxi-
mately equal to each other and much greater than
the potential energy, implying w ! 1/3 (cf. Fig.
3), and that the field is virialized in the sense that
h�̇2/2i

s,t

= h(r�)2/2a2i
s,t

+ nhV i
s,t

holds. We
can then get an estimate of the deviation of w

from 1/3: w � 1/3 ! (2/3)(n � 2)⇥ the fraction
of energy density in the potential energy. For
ine�cient initial resonance M & 2.5⇥10�2mPl and
n = 1, we observe initially some small excitations
of the modes near k = 0 due to the broad band
which is eventually shut o↵ by expansion. The
condensate energy is redshifted as a�3, slower than
the gradient energy (a�4). Hence, the fluctuations
become ever smaller, and the oscillating condensate
determines the equation of state, yielding w = 0.
For n > 1, after initial particle production is shut
o↵ the condensate energy decays as a�6n/(n+1),
whereas the gradient energy stored in field fluctu-
ations decays as a�4 (i.e. like radiation) until the
first narrow resonance band becomes important
and particles are again produced. This second
phase of particle production in a narrow k band is
expected from our Floquet analysis and confirmed
by our lattice simulations. Subsequent evolution
includes a shifting of this peak towards higher

(n < 2) or lower (n > 2) co-moving momenta as
expected from the flow lines in the Floquet anal-
ysis. This is followed by the generation of a series
of secondary peaks from nonlinear scattering (for
n = 2, see [30]). Eventually the growth is shut o↵
by backreaction. All the peaks smear out, whereas
the remnant condensate continues to oscillate with
slowly decaying amplitude, continuing its particle
production. After su�ciently long times, we find
that the kinetic and gradient energies are approxi-
mately equal and much greater than the potential
energy with the field again virialized. This yields
an equation of state parameter w ⇡ 1/3. Note that
the n = 2 case would yield w = 1/3 for the homo-
geneous and inhomogeneous field. A summary of
the asymptotic equation of state is shown in Fig. 4.

e-folds to Radiation Domination — Our linear
analysis of the instabilities allows us to estimate
the number of e-folds after inflation required to
reach radiation domination, �N

rad

⌘ R arad

aend
d ln a,

by calculating the time of backreaction of the fluc-
tuations. First, note that for n = 2, �N

rad

⌧ 1
since in this case w ! 1/3 with and without
fragmentation. For all other n & 1, the universe
becomes radiation dominated within

�N
rad

⇠
8
<

:

1 M . 10�2mPl ,
n + 1

3
ln

✓


�

10M

m
Pl

◆
M & 10�2mPl .

(5)
Here, �/ ⇠ 10�2 is the fractional width of the

first k 6= 0 narrow resonance band (cf. Fig. 2).
Note that �/ becomes vanishingly small as n !
1 (and n � 2), leading to �N

rad

� 1. These
estimates are confirmed by our lattice simulations
(see Fig. 3).

We emphasize that w ! 1/3 can be achieved
without coupling to other fields for all n & 1.
When coupling to other massless fields is included,
�N

rad

is reduced further. Thus the above calcu-
lated �N

rad

should be taken as an upper bound on
�N

rad

. Using these results, we can calculate the
expected values of the tensor-to-scalar ratio r and
the spectral index n

s

for di↵erent values of M and
n, even including the uncertainty from couplings
to additional light fields (see Fig. 5, we use a pivot
scale k? = 0.002 Mpc�1). The solid black lines use
�N

rad

calculated above, whereas the width of the

3

Figure 3. The equation of state parameter obtained from the numerical simulations is shown for di↵erent values of
n and M . The orange curve and green curves correspond to initially e�cient (M ⇡ 7.75⇥ 10�3mPl) and ine�cient
resonance (M ⇡ 2.45mPl), with M ⇠ 2.5 ⇥ 10�2mPl separating the two regimes. The horizontal axes show the
number of e-folds after the end of inflation for e�cient (orange, bottom axis) and ine�cient (green, top axis)
resonance. The dashed line is drawn at w = 1/3 and the dotted line denotes the homogeneous equation of state.

complete fragmentation. The above statements
are quite general; however, n = 1 is special. In this
case, the higher order bands become too narrow
to allow for significant particle production at late
times, thus arresting further fragmentation.

Lattice simulations — The presence of linear
instabilities eventually leads to significant non-
linear dynamics of the fields. To study these
non-linear dynamics we solve the equations of
motion ⇤� + @�V = 0 and the Friedmann equa-
tion numerically using a parallelized version of
LatticeEasy [26]. We initialize the simulations
around the end of inflation with a homogeneous
condensate + vacuum fluctuations and evolve
them for a few�10 e-folds of expansion after this
instant. We ran di↵erent simulations (depending
on parameters) with N = 1283, 2563, 5123, and/or
10243 lattices, with the initial size of the simu-
lation volumes L ⇠ (few � 0.1)H�1

inf

. We always
terminated the simulations before resolution
e↵ects became important. Conservatively, the
lattice simulation results should be trusted for
the number of e-folds shown in Fig. 3. We also
verified that our results are independent of the
initial power spectra of field fluctuations on scales
which are not resonantly excited during the linear
stage. The details of the numerical checks and the
evolution of the power spectra will be presented
elsewhere.

The Equation of State — We now turn our
attention to the equation of state parameter
defined as

w ⌘ hpi
s

h⇢i
s

=
h�̇2/2 � (r�)2/6a2 � V i

s

h�̇2/2 + (r�)2/2a2 + V i
s

. (3)

Here, p and ⇢ are the energy density and pressure
of the inflaton field respectively. The symbol h. . .i

s

stands for spatial average. The equation of state is
often rapidly oscillating compared to the expansion
time scales; a time average over many oscillations
should be assumed when we refer to w unless other-
wise stated. Note that if the spatially and tempo-
rally averaged gradient and kinetic energy densities
are equal to each other and dominate over the po-
tential energy density, we get w = 1/3.

We find the following results for the equation of
state at su�ciently late times:

w !
(

0 if n = 1 ,

1/3 if n > 1 ,
(4)

and independent of M . mPl. We explain the in-
dependence from M , the special nature of n = 1,
and the generic behavior for n > 1 below.

For e�cient initial resonance (M .
2.5 ⇥ 10�2mPl) the linear fluctuations grow
rapidly and backreact on the condensate. For
n = 1, meta-stable pseudo solitons (oscillons, see
for e.g. [27, 28]) are copiously produced within 1
e-fold of expansion. They behave as pressureless
dust, w = 0, and can lead to a long period of
matter dominated expansion. See the leftmost
panel in Fig. 3. For the n > 1 case, we still form
highly overdense field configurations that dominate
the energy density, but they are transients, lasting
for about an e-fold of expansion. Shortly after

green = inefficient initial resonance
orange = efficient initial resonance

duration to radiation domination 

from analytic considerations

Lozanov & MA (2017)
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Figure 4. A summary for the asymptotic equation of
state without coupling to additional fields. The nu-
merical results from lattice simulations are shown as
green circles for M ⇡ 2.45mPl, and orange squares for
M ⇡ 7.75 ⇥ 10�3mPl. The dotted blue line is the ex-
pectation from a homogeneous, oscillating condensate.

the transients decay, the inflaton is completely
fragmented with almost no energy remaining in the
homogeneous condensate. The field configuration
now evolves freely in a turbulent manner (as
discussed for n = 2 in [29]). Numerically, we find
that the kinetic and gradient energies are approxi-
mately equal to each other and much greater than
the potential energy, implying w ! 1/3 (cf. Fig.
3), and that the field is virialized in the sense that
h�̇2/2i

s,t

= h(r�)2/2a2i
s,t

+ nhV i
s,t

holds. We
can then get an estimate of the deviation of w

from 1/3: w � 1/3 ! (2/3)(n � 2)⇥ the fraction
of energy density in the potential energy. For
ine�cient initial resonance M & 2.5⇥10�2mPl and
n = 1, we observe initially some small excitations
of the modes near k = 0 due to the broad band
which is eventually shut o↵ by expansion. The
condensate energy is redshifted as a�3, slower than
the gradient energy (a�4). Hence, the fluctuations
become ever smaller, and the oscillating condensate
determines the equation of state, yielding w = 0.
For n > 1, after initial particle production is shut
o↵ the condensate energy decays as a�6n/(n+1),
whereas the gradient energy stored in field fluctu-
ations decays as a�4 (i.e. like radiation) until the
first narrow resonance band becomes important
and particles are again produced. This second
phase of particle production in a narrow k band is
expected from our Floquet analysis and confirmed
by our lattice simulations. Subsequent evolution
includes a shifting of this peak towards higher

(n < 2) or lower (n > 2) co-moving momenta as
expected from the flow lines in the Floquet anal-
ysis. This is followed by the generation of a series
of secondary peaks from nonlinear scattering (for
n = 2, see [30]). Eventually the growth is shut o↵
by backreaction. All the peaks smear out, whereas
the remnant condensate continues to oscillate with
slowly decaying amplitude, continuing its particle
production. After su�ciently long times, we find
that the kinetic and gradient energies are approxi-
mately equal and much greater than the potential
energy with the field again virialized. This yields
an equation of state parameter w ⇡ 1/3. Note that
the n = 2 case would yield w = 1/3 for the homo-
geneous and inhomogeneous field. A summary of
the asymptotic equation of state is shown in Fig. 4.

e-folds to Radiation Domination — Our linear
analysis of the instabilities allows us to estimate
the number of e-folds after inflation required to
reach radiation domination, �N

rad

⌘ R arad

aend
d ln a,

by calculating the time of backreaction of the fluc-
tuations. First, note that for n = 2, �N

rad

⌧ 1
since in this case w ! 1/3 with and without
fragmentation. For all other n & 1, the universe
becomes radiation dominated within

�N
rad

⇠
8
<

:

1 M . 10�2mPl ,
n + 1

3
ln

✓


�

10M

m
Pl

◆
M & 10�2mPl .

(5)
Here, �/ ⇠ 10�2 is the fractional width of the

first k 6= 0 narrow resonance band (cf. Fig. 2).
Note that �/ becomes vanishingly small as n !
1 (and n � 2), leading to �N

rad

� 1. These
estimates are confirmed by our lattice simulations
(see Fig. 3).

We emphasize that w ! 1/3 can be achieved
without coupling to other fields for all n & 1.
When coupling to other massless fields is included,
�N

rad

is reduced further. Thus the above calcu-
lated �N

rad

should be taken as an upper bound on
�N

rad

. Using these results, we can calculate the
expected values of the tensor-to-scalar ratio r and
the spectral index n

s

for di↵erent values of M and
n, even including the uncertainty from couplings
to additional light fields (see Fig. 5, we use a pivot
scale k? = 0.002 Mpc�1). The solid black lines use
�N

rad

calculated above, whereas the width of the

additional light (massless) fields can 
only decrease the duration!

* decay to significantly massive fields can change this conclusion
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Fig. 21. Left: Constraints on the tensor-to-scalar ratio r0.002 in the ⇤CDM model, using Planck TT+lowP and Planck
TT+lowP+lensing+BAO+JLA+H0 (red and blue, respectively) assuming negligible running and the inflationary consistency rela-
tion. The result is model-dependent; for example, the grey contours show how the results change if there were additional relativistic
degrees of freedom with �Ne↵ = 0.39 (disfavoured, but not excluded, by Planck). Dotted lines show loci of approximately con-
stant e-folding number N, assuming simple V / (�/mPl)p single-field inflation. Solid lines show the approximate ns–r relation for
quadratic and linear potentials to first order in slow roll; red lines show the approximate allowed range assuming 50 < N < 60 and
a power-law potential for the duration of inflation. The solid black line (corresponding to a linear potential) separates concave and
convex potentials. Right: Equivalent constraints in the ⇤CDM model when adding B-mode polarization results corresponding to the
default configuration of the BICEP2/Keck Array+Planck (BKP) likelihood. These exclude the quadratic potential at a higher level
of significance compared to the Planck-alone constraints.

limited by cosmic variance of the dominant scalar anisotropies,
and it is also model dependent. In polarization, in addition to B-
modes, the EE and T E spectra also contain a signal from tensor
modes coming from reionization and last scattering. However,
in this release the addition of Planck polarization constraints at
` � 30 do not significantly change the results from temperature
and low-` polarization (see Table 5).

Figure 21 shows the 2015 Planck constraint in the ns–r plane,
adding r as a one-parameter extension to base ⇤CDM. Note that
for base ⇤CDM (r = 0), the value of ns is

ns = 0.9655 ± 0.0062, Planck TT+lowP. (38)

We highlight this number here since ns, a key parameter for in-
flationary cosmology, shows one of the largest shifts of any pa-
rameter in base ⇤CDM between the Planck 2013 and Planck
2015 analyses (about 0.7�). As explained in Sect. 3.1, part of
this shift was caused by the ` ⇡ 1800 systematic in the nominal-
mission 217 ⇥ 217 spectrum used in PCP13.

The red contours in Fig. 21 show the constraints from Planck
TT+lowP. These are similar to the constraints shown in Fig. 23
of PCP13, but with ns shifted to slightly higher values. The ad-
dition of BAO or the Planck lensing data to Planck TT+lowP
lowers the value of ⌦ch2, which at fixed ✓⇤ increases the small-
scale CMB power. To maintain the fit to the Planck tempera-
ture power spectrum for models with r = 0, these parameter
shifts are compensated by a change in amplitude As and the tilt
ns (by about 0.4�). The increase in ns to match the observed
power on small scales leads to a decrease in the scalar power
on large scales, allowing room for a slightly larger contribution

from tensor modes. The constraints shown by the blue contours
in Fig. 21, which add Planck lensing, BAO, and other astrophys-
ical data, are therefore tighter in the ns direction and shifted to
slightly higher values, but marginally weaker in the r-direction.
The 95 % limits on r0.002 are

r0.002 < 0.10, Planck TT+lowP, (39a)
r0.002 < 0.11, Planck TT+lowP+lensing+ext, (39b)

consistent with the results reported in PCP13. Note that we as-
sume the second-order slow-roll consistency relation for the ten-
sor spectral index. The result in Eqs. (39a) and (39b) are mildly
scale dependent, with equivalent limits on r0.05 being weaker by
about 5 %.

PCP13 noted a mismatch between the best-fit base ⇤CDM
model and the temperature power spectrum at multipoles ` <⇠ 40,
partly driven by the dip in the multipole range 20 <⇠ ` <⇠ 30. If
this mismatch is simply a statistical fluctuation of the ⇤CDM
model (and there is no compelling evidence to think otherwise),
the strong Planck limit (compared to forecasts) is the result of
chance low levels of scalar mode confusion. On the other hand if
the dip represents a failure of the ⇤CDM model, the 95 % limits
of Eqs. (39a) and (39b) may be underestimates. These issues are
considered at greater length in Planck Collaboration XX (2015)
and will not be discussed further in this paper.

As mentioned above, the Planck temperature constraints on
r are model-dependent and extensions to ⇤CDM can give sig-
nificantly di↵erent results. For example, extra relativistic de-
grees of freedom increase the small-scale damping of the CMB
anisotropies at a fixed angular scale, which can be compensated
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Figure 4. A summary for the asymptotic equation of
state without coupling to additional fields. The nu-
merical results from lattice simulations are shown as
green circles for M ⇡ 2.45mPl, and orange squares for
M ⇡ 7.75 ⇥ 10�3mPl. The dotted blue line is the ex-
pectation from a homogeneous, oscillating condensate.

the transients decay, the inflaton is completely
fragmented with almost no energy remaining in the
homogeneous condensate. The field configuration
now evolves freely in a turbulent manner (as
discussed for n = 2 in [29]). Numerically, we find
that the kinetic and gradient energies are approxi-
mately equal to each other and much greater than
the potential energy, implying w ! 1/3 (cf. Fig.
3), and that the field is virialized in the sense that
h�̇2/2i

s,t

= h(r�)2/2a2i
s,t

+ nhV i
s,t

holds. We
can then get an estimate of the deviation of w

from 1/3: w � 1/3 ! (2/3)(n � 2)⇥ the fraction
of energy density in the potential energy. For
ine�cient initial resonance M & 2.5⇥10�2mPl and
n = 1, we observe initially some small excitations
of the modes near k = 0 due to the broad band
which is eventually shut o↵ by expansion. The
condensate energy is redshifted as a�3, slower than
the gradient energy (a�4). Hence, the fluctuations
become ever smaller, and the oscillating condensate
determines the equation of state, yielding w = 0.
For n > 1, after initial particle production is shut
o↵ the condensate energy decays as a�6n/(n+1),
whereas the gradient energy stored in field fluctu-
ations decays as a�4 (i.e. like radiation) until the
first narrow resonance band becomes important
and particles are again produced. This second
phase of particle production in a narrow k band is
expected from our Floquet analysis and confirmed
by our lattice simulations. Subsequent evolution
includes a shifting of this peak towards higher

(n < 2) or lower (n > 2) co-moving momenta as
expected from the flow lines in the Floquet anal-
ysis. This is followed by the generation of a series
of secondary peaks from nonlinear scattering (for
n = 2, see [30]). Eventually the growth is shut o↵
by backreaction. All the peaks smear out, whereas
the remnant condensate continues to oscillate with
slowly decaying amplitude, continuing its particle
production. After su�ciently long times, we find
that the kinetic and gradient energies are approxi-
mately equal and much greater than the potential
energy with the field again virialized. This yields
an equation of state parameter w ⇡ 1/3. Note that
the n = 2 case would yield w = 1/3 for the homo-
geneous and inhomogeneous field. A summary of
the asymptotic equation of state is shown in Fig. 4.

e-folds to Radiation Domination — Our linear
analysis of the instabilities allows us to estimate
the number of e-folds after inflation required to
reach radiation domination, �N

rad

⌘ R arad

aend
d ln a,

by calculating the time of backreaction of the fluc-
tuations. First, note that for n = 2, �N

rad

⌧ 1
since in this case w ! 1/3 with and without
fragmentation. For all other n & 1, the universe
becomes radiation dominated within

�N
rad

⇠
8
<

:

1 M . 10�2mPl ,
n + 1

3
ln

✓


�

10M

m
Pl

◆
M & 10�2mPl .

(5)
Here, �/ ⇠ 10�2 is the fractional width of the

first k 6= 0 narrow resonance band (cf. Fig. 2).
Note that �/ becomes vanishingly small as n !
1 (and n � 2), leading to �N

rad

� 1. These
estimates are confirmed by our lattice simulations
(see Fig. 3).

We emphasize that w ! 1/3 can be achieved
without coupling to other fields for all n & 1.
When coupling to other massless fields is included,
�N

rad

is reduced further. Thus the above calcu-
lated �N

rad

should be taken as an upper bound on
�N

rad

. Using these results, we can calculate the
expected values of the tensor-to-scalar ratio r and
the spectral index n

s

for di↵erent values of M and
n, even including the uncertainty from couplings
to additional light fields (see Fig. 5, we use a pivot
scale k? = 0.002 Mpc�1). The solid black lines use
�N

rad

calculated above, whereas the width of the

3

Figure 3. The equation of state parameter obtained from the numerical simulations is shown for di↵erent values of
n and M . The orange curve and green curves correspond to initially e�cient (M ⇡ 7.75⇥ 10�3mPl) and ine�cient
resonance (M ⇡ 2.45mPl), with M ⇠ 2.5 ⇥ 10�2mPl separating the two regimes. The horizontal axes show the
number of e-folds after the end of inflation for e�cient (orange, bottom axis) and ine�cient (green, top axis)
resonance. The dashed line is drawn at w = 1/3 and the dotted line denotes the homogeneous equation of state.

complete fragmentation. The above statements
are quite general; however, n = 1 is special. In this
case, the higher order bands become too narrow
to allow for significant particle production at late
times, thus arresting further fragmentation.

Lattice simulations — The presence of linear
instabilities eventually leads to significant non-
linear dynamics of the fields. To study these
non-linear dynamics we solve the equations of
motion ⇤� + @�V = 0 and the Friedmann equa-
tion numerically using a parallelized version of
LatticeEasy [26]. We initialize the simulations
around the end of inflation with a homogeneous
condensate + vacuum fluctuations and evolve
them for a few�10 e-folds of expansion after this
instant. We ran di↵erent simulations (depending
on parameters) with N = 1283, 2563, 5123, and/or
10243 lattices, with the initial size of the simu-
lation volumes L ⇠ (few � 0.1)H�1

inf

. We always
terminated the simulations before resolution
e↵ects became important. Conservatively, the
lattice simulation results should be trusted for
the number of e-folds shown in Fig. 3. We also
verified that our results are independent of the
initial power spectra of field fluctuations on scales
which are not resonantly excited during the linear
stage. The details of the numerical checks and the
evolution of the power spectra will be presented
elsewhere.

The Equation of State — We now turn our
attention to the equation of state parameter
defined as

w ⌘ hpi
s

h⇢i
s

=
h�̇2/2 � (r�)2/6a2 � V i

s

h�̇2/2 + (r�)2/2a2 + V i
s

. (3)

Here, p and ⇢ are the energy density and pressure
of the inflaton field respectively. The symbol h. . .i

s

stands for spatial average. The equation of state is
often rapidly oscillating compared to the expansion
time scales; a time average over many oscillations
should be assumed when we refer to w unless other-
wise stated. Note that if the spatially and tempo-
rally averaged gradient and kinetic energy densities
are equal to each other and dominate over the po-
tential energy density, we get w = 1/3.

We find the following results for the equation of
state at su�ciently late times:

w !
(

0 if n = 1 ,

1/3 if n > 1 ,
(4)

and independent of M . mPl. We explain the in-
dependence from M , the special nature of n = 1,
and the generic behavior for n > 1 below.

For e�cient initial resonance (M .
2.5 ⇥ 10�2mPl) the linear fluctuations grow
rapidly and backreact on the condensate. For
n = 1, meta-stable pseudo solitons (oscillons, see
for e.g. [27, 28]) are copiously produced within 1
e-fold of expansion. They behave as pressureless
dust, w = 0, and can lead to a long period of
matter dominated expansion. See the leftmost
panel in Fig. 3. For the n > 1 case, we still form
highly overdense field configurations that dominate
the energy density, but they are transients, lasting
for about an e-fold of expansion. Shortly after
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things that can happen

inflation
preheating non-linear!

regime
perturbative!

regime thermalization

scalar & gauge bosons + fermions

topological & non-topological solitons!
 (strings, textures, bubbles, Q-balls, oscillons)

gravitational perturbations!
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complex enough: “universal” results

� 2Nf � 2NfM1 M2 MNs

|��(Ns)�|��(0)�
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complex non-perturbative particle production

occupation numbers grow exponentially 
(universality similar to Anderson localization)

universally log-normal distributions

treat as scattering problems 
(similar to that when dealing with impurities in wires)



theory : its complicated (probably)

a ⇠ eHt

• inflation

• reheating after inflation



inspiration from disordered wires



the framework



multifield inflation/reheating

reheating

inflation �

�n

4 Generalization to Multiple Fields

Ultimately, one of our motivations is to describe the complex multi-field dynamics that may have

occurred in the early universe. This also has a direct analog in the theory of disordered wires.

So far, we have ignored the finite thickness of the wire. Taking the thickness into account leads

to a finite number of transverse excitations in the electron wavefunction. This then gives rise

to coupled, longitudinal ‘conduction channels’. In this section, we will develop the framework

of stochastic particle production with multiple fields and its correspondence to multi-channel

conduction.

4.1 Preliminaries

Consider the action of N
f

coupled scalar fields �a,

S =

Z

d4x
p
�g

"

M

2

pl

2
R� 1

2
G

ab

(�c)@µ

�

a

@

µ

�

b � V (�c) + · · ·
#

, (4.1)

where a, b, c = 1, . . . , N
f

. The linearized equation of motion for the field fluctuations can be

written in the following from (see e.g. [23])
⇥

1 (@2

⌧

+ k

2) + p(k, ⌧)@
⌧

+m(k, ⌧)
⇤

| {z }

⌘ w(k, ⌧)

· �~�
k

= 0 , (4.2)

where �~� is a vector made out of the fluctuations of the fields �a. The coe�cient functions p(k, ⌧)

and m(k, ⌧) are matrices, with

(p)a
b

= 2H�

a

b

+ · · · , (m)a
b

= a

2

G

ac

V

,cb

+ · · · . (4.3)

The ellipses in (4.3) stand for a complicated set of terms arising, for instance, from a nontrivial

field space metric G

ab

6= �

ab

. The precise form of (4.2) will not be important. All we care about

here is that it defines a linear map describing the unitary evolution of �~�
k

(⌧). For simplicity

and concreteness, we will assume that17 G

ab

= �

ab

, and ignore the Hubble expansion for the

remainder of this section, i.e. we set (p)a
b

= 0 and (m)a
b

= �

ac

V

,cb

. We will refer to m as the

mass matrix.

We assume that the evolution of the field fluctuations contains localized non-adiabatic events

at random intervals around ⌧ = ⌧

j

, and that the fields are otherwise free. After the j-th event,

the evolution of the fields is given by

�

~

�

j

(⌧) =
1p
2k

h

~

�

j

e

ik⌧ + ~↵

j

e

�ik⌧

i

, (4.4)

where we have suppressed the dependence of �

~

�

j

and (~↵
j

,

~

�

j

) on k to reduce clutter. The

Bogoliubov coe�cients before and after the non-adiabatic event are related by
 

~

�

j

~↵

j

!

=

 

(t†
j

)�1 �(t†
j

)�1r†
j

�(tT
j

)�1r
j

(tT
j

)�1

!

| {z }

M
j

 

~

�

j�1

~↵

j�1

!

. (4.5)

17The assumption Gab = �ab can also be justified from an e↵ective field theory perspective [25]: in cases of strong

disorder in the mass term, the corrections to Gab are often irrelevant in the technical sense.

16

see for example: DeCross, Kaiser, Prabhu, Prescod-Weinstein, Sfakianakis (2016)
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electron wave function: disordered wires

impurites

location along the wire x !



Anderson localization !
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Anderson 1957
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complexity in time 
cosmology
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complexity in space 
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simplified version!

exponential growth in occupation number Anderson localization

see also: Zanchin et. al 1998, Basset 1998, Brandenberger & Craig 2008 



multifield particle production 
as scattering

2Nf � 2NfM1 M2 MNs
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occupation number performs  
a drifted random walk 
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multifield Fokker Planck equation

1

µk

�

��
P (na; �) =

Nf�

a=1

�

�(1 + 2na) +
1

Nf + 1

�

b�=a

na + nb + 2nanb

na � nb

�

� �P

�na

+
2

Nf + 1

Nf�

a=1

na(1 + na)
�2P

�n2
a

joint probability for occupation numbers satisfies the a Fokker Planck-like 
equation:

more general results in 
MA, Garcia, Xie and Wen 2017

MA & Baumann 2015

Dokhorov, Mello, Pereyra & Kumar = DMPK eq.



solution: “universal” distributions
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Here, we have made use of the fact that ✓

1

= ✓ + �✓, with �✓ independent of ✓. We apologize

for the somewhat ambiguous notation: the P ’s without the arguments ✓ should be understood

as the original P ’s integrated over ✓. Substituting (3.6) into (3.11), we get

P (n; ⌧ + �⌧) = hP (n+ �n; ⌧)i
�⌧

.

(3.12)

Taylor expanding the left-hand side with respect to �⌧ and the right-hand side with respect to �n,

we find

@

⌧

P (n; ⌧) =
@

@n

P (n; ⌧)
h�ni

�⌧

�⌧

+
1

2

@

2

@n

2

P (n; ⌧)
h(�n)2i

�⌧

�⌧

+ · · · ,

(3.13)

where, using (3.8), we have

h�ni
�⌧

= (µ�⌧)(1 + 2n) ,

h(�n)2i
�⌧

= (µ�⌧)2n(1 + n) + O[(µ�⌧)2] .
(3.14)

This being an expansion in µ�⌧ = hn
2

i
�⌧

means that we are restricting to cases where the local

particle production rate is always small. This is the most limiting assumption of this derivation

and should be kept in mind while applying our framework.

Putting everything together, we arrive at the final form of the Fokker-Planck equation

1

µ

k

@

@⌧

P (n; ⌧) = (1 + 2n)
@

@n

P (n; ⌧)
| {z }

drift

+ n(1 + n)
@

2

@n

2

P (n; ⌧)
| {z }

di↵usion

, (3.15)

where we have restored the momentum dependence in the mean particle production rate, µ
k

⌘
�

k

/�⌧ , but left it implicit in the number density, n = n

k

.

We find it useful to write the FP equation in the following form

1

µ

k

@

@⌧

P (n; ⌧) =
@

@n

✓

n(n+ 1)
@P

@n

◆

. (3.16)

(MA: Figure and histogram) It is also instructive to consider the asymptotic limit, n � 1, of

the FP equation. In that case n

2 + n ! n

2 in (3.16) and it is easy to show that the solution is

the log-normal distribution

P (n; ⌧)dn =
1p

4⇡µ
k

⌧

exp

"

�
�

lnn � µ

k

⌧

�

2

4µ
k

⌧

#

d lnn . (3.17)

This shouldn’t be surprising. In §2.3, we saw that the phase-average of lnn is the sum of the log’s

of the particle densities produced at each scattering. The central limit theorem then suggests

that lnn is Gaussian distributed (and n obeys a log-normal distribution). This is true, except

for deviations at small n. These deviations arise because the total transmission probability is

bounded by 1 (and n is bounded by 0). For n ⌧ 1, we have n2+n ! n in (3.16) and the solution

becomes

P (n; ⌧) =
1

µ

k

⌧

exp



� n

µ

k

⌧

�

. (3.18)

In fact, the FP equation (3.16) can be solved exactly [18] for all n, although the integral form

of the solution isn’t very instructive. We will find it more useful to study the moments of the

density directly.

12

ln(1 + hni)

ln(1 + ntyp)
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background dynamics particle production curvature fluctuations
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• Curvature Perturbations with Dissipation and Driving : In this part of the project, the
overall goal is to exploit an e↵ective field theory (EFT) with dissipation and a driving
term [26] calculated from stochastic, non-perturbative particle production. The main
appeal of an EFT approach is that the form of the equation governing curvature pertur-
bations is determined by the breaking of time translation symmetry of the background.
In this language, the Goldstone mode ⇡

k

(which is related to long wavelength curvature
perturbation via ⇣

k

= �H⇡
k

) satisfies

⇡̈
k

+ [3H + O
d

] ⇡
k

+
k2

a2
⇡
k

= O
s

(h�� . . .i
k

) . (4)

The symbolic terms O
s

and O
d

are the driving and dissipation e↵ects due to the
stochastic particle production. These terms generally involve correlation functions of
the stochastically produced fields and the background evolution. The power spectrum
of inflationary perturbations can be calculated for a given realization of the stochastic
couplings. The statistical ensemble of the observable curvature power spectra can then
be directly related to the statistical properties of the stochastic couplings.1

• Comparison with Existing Works: Random potentials in the context of inflation have
been discussed in earlier works (see a recent example, see [27, 28, 29]). Rapid turns in
inflaton trajectories at the background level acts as a non-adiabatic, time-dependent
e↵ective mass. It might also be possible to understand the e↵ect of many heavy fields
during inflation [30, 31]. The statistical framework described in this proposal is readily
applicable to these scenarios, and a direct comparison to existing results will be possible.
These scenarios will serve as an excellent test case for the formalism in a realistic setting.

The main output from the proposed calculations is an ensemble of power spectra of curvature
fluctuations based on di↵erent realizations of the stochastic couplings. The moments of the
statistical ensemble are expected to be calculable within our framework from the statistical
properties of the stochastic couplings. For our observed universe, the calculations will provide
potentially non-trivial distributions and correlations of for the a

lm

’s characterizing the CMB
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