Nonperturbative Dynamics
of Cosmological Scalar Fields




inflationary cosmology: a calculable framework of initial
perturbations™
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* how did inflation end ? (reheating)

e Standard Model?
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general results possible ?

. SIMPLE enough ' COMPLEX enough



general results possible ?

. SIMPLE enough |




constraints from observations

refer to F. Finelli’s talk on Monday
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energy transfer: “reheating”

* shape of the potential (self couplings)
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end of inflation in “simple” models

for example:

Silverstein & Westhpal (2008)
McAllister et.al (2014)
Kallosh & Linde (2014)
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* shape of the potential (self couplings)




end of inflation in “simple” models

for example:

Silverstein & Westhpal (2008) :
McAllister et.al (2014) : flattened &Ote”t'a'
Kallosh & Linde (2014)

power law at the minimum

M € scale where potential flattens
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* shape of the potential (self couplings)
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end of inflation in “simple” models
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(i) what are the dynamics ?
(i) eq.of state & how long to radiation domination ?

(iii) obs. consequences !

Lozanov & MA, Phys Rev. Lett (2017)



end of inflation in “simple” models

*can be applied to any cosmologically dominant scalar field

W/

6] ~ M

(i) what are the dynamics ?
(i) eq.of state & how long to radiation domination ?

(iii) obs. consequences !

Lozanov & MA, Phys Rev. Lett (2016/17)



homogeneous dynamics




homogeneous eq. of state

pressure

eq. of state w =
b density

(s (922 — (V)2/6a2 — V), n—1

¢

(p)s  (92/2+ (V$)2/2a2+ V),  n+1

Turner (1983)
* can be obtained from a viral theorem
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and/ or

(i) existence of wings (self-couplings) As

(i) non-quadratic minimum p > 1

* directly related to competition between growth rate and expansion, but duration depends on parameters



result of fragmented dynamics

* after sufficient time

slow




result of fragmented dynamics

* after sufficient time

( M <K Mp]




eq. of state
* after sufficient time

ftn
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4 ingredients for understanding the results
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(iii) getting stuck in the instability band
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(iv) how gradients redshift compared to the potential energy

0 ifn=1 *formation of solitons
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focus onn =1

(*quadratic minimum)
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dynamics for n = 1

(*quadratic minimum)
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dynamics for n = 1

(*quadratic minimum)

-
P = V/(SO) \./
0.4f a=2.17 t=750m"
0.2¢
,’?. /\N\/\/\/\/W\J—\_/_\/\
3 0
=
-0.2}
-04¢ . ] . .
0 100 200 300 400
x[m"]

MA (2010)
Khlopov et. al (1985)



dynamics for n = 1

(*quadratic minimum)
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dynamics for n = 1

(*quadratic minimum)
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dynamics for n = 1

(*quadratic minimum)

density
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now in 3D
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MA, Easther, Finkel, Flaugher & Hertzberg (201 I)




(1) oscillatory (2) spatially localized (3) very long lived

\\ t = 1m~!

L=T(X,¢)—-V(p)
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existence and stability:
MA (2013)

MA & Shirokoff (2010)
Hertzberg (201 1)

y (m™1) z (m™)

Bogolubsky & Makhankov (1976), Gleiser (1994), Copeland, Gleiser and Mueller et al. 1995 ...



insensitive to initial conditions

4
} A \ V"f JARY. \\/ \
\ H




insensitive to initial conditions

L= 3Y1

field

X —

simulation of “quasi-thermal” example in Farhi et. al 2008



consequences !

delay in radiation domination ? (if coupled to other fields)
black holes ? (upcoming paper with K. Lozanov)
baryogengesis ! (K. Lozanov & MA 2014)

gravitational waves ?

Zhou, Copeland, Easther, Finkel, Mou & Saffin (2013)
Antusch, Cefala, Orani (2016)
Antusch, Cefala, Krippendorf, Muia, Orani, Quevedo (2017)

Bond, Braden & Mersini-Houghton (2015)



gravitational waves from scalar field lumps

with full numerical GR

relevance for late universe processes — axion stars

. & MA, Garcia, & Lim (in prep)
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gravitational waves from scalar field lumps

with full numerical GR

relevance for late universe processes — axion stars

. & MA, Garcia, & Lim (in prep)
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eq. of state n > 1
* after sufficient time

see Micha & Tkachev 2002, for quartic case n—+1



duration to radiation domination

* non-quadratic minima
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duration to radiation domination

* non-quadratic minima
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duration to radiation domination

* non-quadratic minima

from detailed 3+ | dimensional lattice simulations
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duration to radiation domination

* non-quadratic minima

from detailed 3+ | dimensional lattice simulations

green = inefficient initial resonance
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from analytic considerations
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an upper bound on duration

to radiation domination

(1 M <10 2my,,
ANyaa ~ § n+1 ( k 10M




an upper bound on duration

to radiation domination

(1 M <10 2my,,
ANyaa ~ § n+1 ( k 10M

additional light (massless) fields can jid il
: (999
only decrease the duration! Sl

* decay to significantly massive fields can change this conclusion



A caveats

o effectively massless daughter fields
* non-perturbative dynamics daughter fields ?

* long term, gravitational clustering ?



implications for CMB observables
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reduction in uncertainty!
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including upper bound

— significant reduction in uncertainty !
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gravitational waves —

preliminary 7o
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inflation and its end

“simple” models

for example:

+ Silverstein & Westhpal (2008)
McAllister et. al (2014)
Kallosh & Linde (2014)
Scalisi (2016)

(i) what are the dynamics !

(i) eq. of state & how long to radiation domination ?

(iii) obs. consequences !



summary: “simple’” models

of cosmological scalar field dynamics
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two approaches

SIMPLE enough

Lozanov & MA (2016) + earlier works

COMPLEX enough

MA & Baumann (2015),
MA, Garcia, Xie & Wen (2017)



two approaches

. COMPLEX enough I

MA & Baumann (2015),
MA, Garcia, Xie & Wen (2017)
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theory : its complicated (probably)
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* inflation -
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a statistical approach?

* observations: early universe is simple

* theory: not so much ...

e coarse grained view !

e calculational tools?




inspiration from disordered wires
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multifield inflation/reheating

S = [dtay=g | PR = JCu(¢)0" 600" ~ V(6% + -

inflation ¢ “:7/




focus on perturbations

Nt
1 1
S — /d4x£ = /d4w 121 (551J3MX13XJ — §MIJ(T)XIXJ>

Mir(1) = m%du +m7 (7).

inflation ‘17/ ~




focus on perturbations

mode functions in Fourier space

(248 ) ) + 3 () =

inflation “:7/ ~




particle production as ‘“‘scattering”

| . occupation number per mode
> T .

i 1
n(k,T) 2 (IXxl” + wilxal?)




multifield particle production
as scattering

n = Tr(n) = Zna where n ~ MM?

particles in each “field” (eignevalues)



occupation humber performs
a drifted random walk
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multifield Fokker Planck equation

joint probability for occupation numbers satisfies the a Fokker Planck-like

equation:
1 0 Ne | 1 Ng + Np + 2nanb_ 0P
e ar i) = 2 (kI b g ) S
R O?P  Dokhorov, Mello, Pereyra & Kumar =
+ N1 Zna(l + "“)6—77,3 DMPK eq.

MA & Baumann 2015

local mean particle production rate

. () N¢
Hie = N it 5 Where Zl M
a=

* more general results in
* MA, Garcia, Xie and Wen 2017



moments: Fokker Planck equation

N
(n) = 7f (62/””‘“7- — 1) (In(1+n)) = upt
Varn] >t (L4 Ne\ o Var[ln(l +n)] jrs1 Np+1 1
(n)? ' 3N} ' (In(1 + n))2 " ONZ T

most probable total occupation number

2N
(In(l4n)) o  TregHeT

Ntyp — €

Log-Normal Distribution!

MA & Baumann (2015)
* result for statistical similar fields. More general result in MA, Garcia, Xie and Wen (2017)






electron wave function: disordered wires

electron waves

location along the wire T —



Anderson localization !




universal behavior

* impurities increase resistance exponentially

A . /
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location along the wire = —

at low temperatures, one dimensional wires are insulators



complexity in time complexity in space

cosmology wires

exponential growth in occupation number Anderson localization

simplified version!

e |

— X
for periodic case with noise see Zanchin et.al 1998, Brandenberger & Craig 2008



simplicity/universality

Uk local mean particle lmf mean ballistic mean
production rate free path
N¢  number of fields . Ng  number of channels




inflation

reheating

applications




applications: inflation

U MA, Garcia, Baumann, Carlsten, Chia & Green

background dynamics —3 particle production €-» curvature fluctuations

<nk1 Nky - - > <Ck1 CkQ . - >

also see: Dias, Fraser & Marsh (2016, 2017)



combine particle production

with driving and dissipation

background dynamics —3 particle production €-» curvature fluctuations

<nk1 Nk, - > <Ck1 CkQ . >

f-2 Cr = —Hmy,

dissipation driving

MA, Garcia, Baumann, Carlsten, Chia & Green

Green, Horn, Senatore, and Silverstein (2009)
Green 2014

Nacir, Porto, Senatore, and Zaldarriaga (2012)
Flauger, Mirbabayi, Senatore, Silverstein (2016)




applications : reheating

/I\

for example:

Shtanoyv, Traschen & Brandenberger (1995)

Kofman, Linde & Starobinsky (1997)

Zanchin et. al (1998) & Bassett (1998) [with noise]
Barnaby, Kofman & Braden et.al 2010 [quasiperiodic]

Giblin, Nesbit, Ozsoy, Sengor & Watson (2016-17)

multichannel — multifield — statistical

model-insensitive description of a

complicated reheating process.

MA, Garcia & Shen



- statistical t@gobl for theoretical complexity

- simplicit universality

/ y simplicity in spite of underlying
complexity ?




summary of 2 summaries

SIMPLE enough COMPLEX enough
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inflation — thermalization

” scalar & gauge bosons +  fermions g
4 )
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S T 2
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o particle production =
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8 time =
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, , reheatin non-linear erturbative L =
=N inflation P 8 . P . thermalization g
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o o
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S e
d=d ©
() v +J
= 3
= gravitational perturbations topological & non-topological solitons 9
( non-gaussianity, gravitational waves) (strings, textures, bubbles, Q-balls, oscillons) =

+

expansion history, baryogenesis ...

from review: MA, Kaiser, Karouby & Hertzberg (201 3)



details of spectrum

n=15, M~7.75x10 mp n=15, M~245mp

10h: Soraa = grad/tot 10 ——  faraa = grad/tot

. ——— [pot = pot/tot ——— [pot = pot/tot
0.8f |- 0.8

: ———  fiin = kin/tot ——  fuin = kin/tot
L [— T L Ny T

“
0.4 0.4F
0.2 0.2
0.0 0.0p
0 1 2 2.5 0 5 6.4 6.8
AN AN

FIG. 8. The evolution of the fraction of energy, f, stored in gradient (blue), potential (orange) and kinetic (green)
terms. The red (dotted) line is the right-hand side of the virial expression in eq. (17) divided by the total energy. All
curves represent time averages over many oscillations and spatial averages over the simulation volume. In the case
on the left, the condensate fragments rapidly into transient objects, which survive for about an e-fold of expansion
as evident from the plateau near AN = 1 in fgaq. After that the transients decay away and the inflaton field
becomes virialised. In the right panel, the first narrow instability band leads to slow but steady particle production.
The condensate oscillates for over 5 e-folds, as indicated by the initial plateaus in the three fs, before the excited
modes backreact and the condensate fragments. Interestingly, the field remains completely virialised throughout its
evolution. In both cases the self-interaction energy becomes increasingly subdominant with time.

n=1, M=~7.75x103mp n=1, M~T775x 10 2mp

50
k/m. k/me

FIG. 5. The time evolution of the power spectra of the inflaton field perturbations, with time running from red to
purple. In both panels, we see initial particle production due to the broad low-momentum instability band. In the
left panel, where M is sufficiently small, the growth is eventually shut off by backreaction and fragmentation. The
broad peak in the power spectrum is slowly shifted towards higher co-moving wavenumbers as the universe expands
at late times, indicating the formation of stable objects of fixed physical size — oscillons. In the right panel, where
M is not small enough, the particle production is quenched by the rapid expansion of the universe and does not
lead to backreaction or fragmentation. The subscript ‘c’ stands for conformal — the Fourier modes, ¢.k, are rescaled
by a®/ ("1 whereas ¢em ~ O]¢in, and me = m(pem) = m for n = 1. With these scalings, when the peak of the
rescaled (by an inflaton oscillation amplitude) power spectrum reaches unity, the variance becomes comparable to
the mean (as in the left panel) and indicates the start of backreaction. The data above is for the T-model.

n=15, M~7.75x 10 3mp n=15, M=~245mp

1072f
10—4_
10—6_
10—8_
0.100¢ .
1072
al 0.010 =
<| =
<8 0.001 1074
™~ —4
b_’& ‘ck\:l 10 10—6
107 ‘
107 o AV 10-8
0.050.10 0.50 1 5
n=3, M=~T775x10"%mp
0.100¢ ) 10—2 ¥
~ 0.010 =
<| g 1074
3] 0oz
10~
= |% 1076
[§ 1079
1076 1078 ‘
10-7 L [ NERAN ) \
0.01 0.05 0.10 . 1
k/me k/m.

FIG. 9. Representative power spectra of inflaton fluctuations for n > 1. The left column is for sufficiently small M,
allowing for the broad instability band to fragment the condensate and form transients. As the transient objects
decay, the broad peaks in the power spectra disappear, shifting power to the UV modes. The right column is for larger
M, for which the first narrow instability band leads to slow, but steady particle production in a narrow co-moving
band. The peak of this band shifts with time towards higher (n < 2), lower (n > 2) co-moving modes or stays fixed
(n =2) at k &~ 1.27m.. The generation of multiple re-scattering peaks is also evident in the second column. The
growth is eventually shut off by backreaction and fragmentation without the formation of any transient nonlinear
objects. In all six panels, power cascades slowly towards the UV at late times. Since there is a subdominant remnant
oscillating condensate, some particle production from the first narrow instability band occurs at late times (clearly
visible in the first column). The notation is the same as in Fig. 5.

Lozanov & MA (2017)



models considered

T-models E-models Monodromy models
A V(¢) A V(¢) A V(¢) Cx ‘¢‘q
, n=1 =
. i D J—
1 3 —
§¢ M k/'

¢ — ¢ —

FIG. 1. The qualitatively different models used in our analysis. In all cases, the potential behaves as |¢|*" close to
the origin, and changes behavior (flattens at least on one side) for ¢ 2 M. The T-model and Monodromy models
are symmetric about the origin, whereas the E-model is not. In the T and E-models, the potential asymptotes to a
constant for large field values (at least on one side). For the Monodromy models, the potential asymtotes to a general
(shallower than quadratic: g < 2) power law.

Lozanov & MA (2017)



